

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

 D12.9 - Final External Developers Workshops
Teaching Materials

Integrated Project

SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium - version 1.0

Coordinating Partner: Fraunhofer FIT

Project co-funded by the European Commission

within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 2 of 157 30/04/2010

Document file: D12.9 - Final External Developers Workshops Teaching Materials - 1.0 - final.doc

Work package: WP12 - Training

Task: T12.1

Document owner: Atta Badii (University of Reading)

Document history:

0.1 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

12-03-2010 Initial TOC

0.2 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

17-03-2010 Restructured TOC in preparation

for consortium discussion and

assigning of responsibilities

0.3 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

24-03-2010 Start to add content and source

references

0.5 Peeter Kool, Matts Ahlsen

(CNet), Sascha Effert

(UP), Pablo Antolin Rafael,

Francisco Milagro Lardies

(TID), Julian Schuette,

Tobias Wahl (SIT),

Andreas Zimmermann

(FIT), Klaus Marius

Hansen (UAAR)

22-04-2010 Added contributions by partners,

used partner’s material

0.7 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

29-04-2010 Revision and added content:

Commons, Event Context and

Policy Frameworks (IDE, SDK)

0.8 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

30-04-2010 Formatting, merging, cleaning

0.9 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

14-05-2010 Including reviewer’s comments

1.0 Atta Badii, Junaid Raja

Khan, Michael Crouch,

Sebastian Zickau (UR)

14-05-2010 Final version submitted to the EU

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 3 of 157 30/04/2010

Internal review history:

Reviewed by Date Comments

Jorge Irazola, Andrea Guarise (INN) 13/05/2010 See comments below

Julian Schütte (SIT) 13/05/2010 See comments below

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 4 of 157 30/04/2010

Table of Content

1. Executive summary ... 9

2. Introduction .. 10

2.1 Purpose, context and scope of this deliverable ... 10
2.2 Background ... 10

3. Hydra Architecture .. 11

3.1 Device Classification ... 12
3.2 Applications and Devices ... 13
3.3 Applications ... 13
3.4 Hydra Devices .. 13
3.5 Semantic Devices ... 14
3.6 Hydra Apps .. 14
3.7 Application Templates ... 14
3.8 The SDK and the DDK ... 15

4. Installing the Hydra Middleware ... 16

4.1 Prerequisites .. 16
4.2 Required Bundles ... 16

4.2.1 Core required bundles ... 16
4.2.2 Hydra bundles .. 17

4.3 Crypto Manager Setup... 17
4.4 VM Arguments ... 18
4.5 Running the framework ... 18

5. Software Development Kit ... 21

5.1 Hydra Commons ... 21
5.1.1 Hydra Middleware API.. 21
5.1.2 Hydra Middleware Clients ... 21
5.1.3 Hydra Configurator .. 22

5.2 Network Manager ... 24
5.2.1 Hydra Definition of Device To Device Communication 24
5.2.2 The Peer-to-Peer Network Architecture .. 25
5.2.3 Purpose ... 26
5.2.4 Main Functionalities ... 26
5.2.5 Hydra Web Service Provider ... 26
5.2.6 Crypto HIDs ... 28

5.3 Device Application Catalogue ... 31
5.3.1 The DAC browser .. 31
5.3.2 The Graphical Browser ... 32

5.4 Discovery Manager (Framework) .. 38
5.4.1 Physical Discovery... 39
5.4.2 External Discovery .. 40
5.4.3 Semantic Discovery ... 41

5.5 Ontology Manager .. 42
5.6 Event Manager ... 44
5.7 Context Awareness Framework .. 46

5.7.1 Context Manager .. 46
5.7.2 Contexts .. 47
5.7.3 Queries .. 48
5.7.4 Context-sensitive Actions ... 48
5.7.5 Data Acquisition Component ... 49
5.7.6 Subscriptions .. 49
5.7.7 Plausibility Checking .. 50
5.7.8 Data Reporting ... 50

5.8 Access Control Policy Framework .. 51

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 5 of 157 30/04/2010

5.8.1 Policy Enforcement Point .. 51
5.8.2 Policy Decision Point .. 52
5.8.3 Policy Administration Point ... 52
5.8.4 Policy Information Point ... 53

5.9 Quality of Service Manager .. 53
5.9.1 Functionalities .. 54
5.9.2 Dependencies ... 54
5.9.3 Used by ... 54
5.9.4 Prerequisites .. 54
5.9.5 Installation ... 54

5.10 Execution in eclipse ... 59
5.10.1 Usage .. 60

5.11 Storage Architecture ... 62
5.11.1 Implementation details .. 63
5.11.2 Storage Manager Device .. 64
5.11.3 API .. 65
5.11.4 Client .. 66
5.11.5 Command Line Client ... 67
5.11.6 File System Devices... 67
5.11.7 API .. 67
5.11.8 File System Device types ... 69

6. Device Development Kit... 71

6.1 DDK Components and Tools ... 71
6.1.1 Limbo .. 71
6.1.1 Obtaining and Installing Limbo ... 71
6.1.2 Describing the service in a WSDL file ... 72
6.1.3 Describing the service-related statemachine 74
6.1.4 Run the Limbo compiler on the WSDL file ... 75
6.1.5 Implement and deploy the device-specific service 75
6.1.6 Running the Generated Code .. 76

6.2 Device Ontology ... 76
6.2.1 Device Creator .. 77

6.3 Flamenco ... 80
6.3.1 System Requirements and Installation ... 80
6.3.2 Design Time Usage ... 80
6.3.3 The auxiliary page ... 81
6.3.4 The net .. 81
6.3.5 The declarations ... 81
6.3.6 Flamenco/SW ... 82

6.4 Device Discovery Manager ... 88
6.5 Hydra-Enabling a Device ... 89

7. Integrated Development Environment – Java .. 95

7.1 Network Manager IDE ... 95
7.1.1 IDE connection ... 95
7.1.2 Remote connection.. 95
7.1.3 Hydra Status and Configuration views ... 97

7.2 Trust Manager IDE .. 100
7.3 Crypto Manager IDE .. 103
7.4 Context Manager IDE .. 105

7.4.1 Context Specifications ... 105
7.4.2 Context Queries .. 112

7.5 Obligation Framework IDE ... 113
7.5.1 Obligation GUI .. 113

7.6 Access Control Policy Framework IDE .. 116
7.7 Device Application Catalogue IDE ... 121
7.8 Installing Limbo in IDE .. 123

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 6 of 157 30/04/2010

8. Integrated Development Environment - .Net 128

8.1 Creating a Basic Hydra Application .. 128
8.2 Creating a Hydra application from a template ... 128

8.2.1 Initiating the Network Manager ... 129
8.2.2 Initiating the Application Device Manager 129
8.2.3 Working with devices ... 130
8.2.4 Applications Bindings ... 131

8.3 Creating an Advanced Hydra Application .. 132
8.3.1 Initiate Application .. 132
8.3.2 Searching and finding for devices .. 133
8.3.3 Invoking Device Services ... 135

8.4 Understanding the Hydra Device XML .. 135
8.4.1 Extending the Hydra Device XML ... 138

8.5 SDK components .. 138
8.5.1 Application Project Templates ... 139
8.5.2 HydraBasicApplication ... 139
8.5.3 HydraEnergyApplication ... 139
8.5.4 HydraDynamicApplication ... 139
8.5.5 HydraSensorApplication ... 139

8.6 Tools integration .. 140
8.6.1 The DAC browser .. 140
8.6.2 The Device Ontology browser ... 140

8.7 SDK Class library for .NET ... 141
8.7.1 Using the .Net DDK tools ... 141
8.7.2 Using Intel Service Author for UPnP Technologies 141
8.7.3 Using Hydra .Net DDK tool ... 144

9. Summary ... 151

10. References and further Reading .. 152

11. Glossary .. 155

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 7 of 157 30/04/2010

Figures

Figure 1: Hydra Architecture (layer model) ... 11
Figure 2: Flowchart for the device classification process. .. 12
Figure 3: Run Configuration (Hydra Bundles) .. 17
Figure 4: Eclipse Run Configuration (Arguments) ... 18
Figure 5: Network Manager Status page in browser ... 19
Figure 6: Hydra Status page ... 20
Figure 7: List of services (in browser) .. 20
Figure 8: Hydra Status page screenshot ... 23
Figure 9: Introduction of a property at the XML file of a declarative service 27
Figure 10: Querying the Hydra network for a HID matching some attributes 30
Figure 11: DAC Browser (upper right) in the IDE ... 31
Figure 12: The Hydra Browser ... 32
Figure 13: Retrieving discovery information from the physical device 33
Figure 14: Discovery information from a Bluetooth Device .. 34
Figure 15: Resolving a physical device into a Hydra Device. .. 35
Figure 16: Resolve information is sent as an XML structure to the Discovery Manager 35
Figure 17: A physical device with unknown functionality has been transformed into Basic Phone

Device with services for reading/sending SMS. .. 36
Figure 18: Sending an SMS through the Basic Phone Device ... 36
Figure 19: Using the DAC browser to retrieve a WSDL description for the device. 37
Figure 20: A WSDL (Web Service Description Language) for the device 38
Figure 21: 3-layered discovery architecture in Hydra ... 39
Figure 22: Ontology State Machine Concepts .. 43
Figure 23: Ontology Browser .. 44
Figure 24- Event Manager Interface ... 45
Figure 25: Event Manager Deployment ... 46
Figure 26: Subscriber Notification .. 46
Figure 27: Select project .. 55
Figure 28: Ontology Browser .. 56
Figure 29: Repository Manager .. 57
Figure 30: Dialog Box .. 57
Figure 31: Hydra Status Page ... 58
Figure 32: Bundles for QoS Manager .. 59
Figure 33: Basic architecture of storage in Hydra... 63
Figure 34: Some examples for Responses ... 64
Figure 35: API of a Hydra Storage Manager Device .. 65
Figure 36: API of HydraSMConnector ... 66
Figure 37: API of a Hydra File System Device .. 69
Figure 38: Basic architecture of file system ... 70
Figure 39: Dummy state machine .. 74
Figure 40: The Device Browser tab. ... 77
Figure 41: Adding a new instance. ... 77
Figure 42: Device editing functionality ... 78
Figure 43: CPN Tools ... 81
Figure 44: Flamenco .. 82
Figure 45: Device Protégé .. 84
Figure 46: Device Rules Protégé .. 85
Figure 47: Flamenco Planning Layer ... 87
Figure 48: Create Visual Project .. 89
Figure 49: Visual Studio – editing file ... 90
Figure 50: Visual Studio (WebServices) .. 91
Figure 51: Build application .. 93
Figure 52: Adding breakpoint .. 94
Figure 53: Hydra Middleware Connection configuration page ... 96
Figure 54: Remote connection button .. 96

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 8 of 157 30/04/2010

Figure 55: Network manager status views .. 98
Figure 56: Event Manager Status view ... 99
Figure 57: Hydra Configurator view .. 100
Figure 58: TrustManager GUI showing the details of a X509v3 certificate 101
Figure 59: Adding a new trust root to using the TrustManager GUI 102
Figure 60: Validating a certificate using the TrustManager GUI (Trust Manager IDE) 102
Figure 61: CryptoManager View.. 104
Figure 62: Certificate generation wizard .. 105
Figure 63: Create Context Specification Wizard .. 106
Figure 64: Context Definition page ... 107
Figure 65: Data Subscription page .. 108
Figure 66: Context Rules - Imports and Types ... 109
Figure 67: Context Rules - Functions .. 110
Figure 68: Context Rules - Rules LHS .. 110
Figure 69: Publish Event to Event Manager Wizard ... 111
Figure 70: Context Queries .. 113
Figure 71: The Obligation GUI perspective. EventListener view on the left, message console on

the bottom and event editor in the middle. .. 114
Figure 72: Situation editor (empty list of policies on the right) ... 116
Figure 73: The Policy IDE Dashboard .. 117
Figure 74: Creating a new Policy .. 118
Figure 75: Content Assist for selecting Rule Combining Algorithm 119
Figure 76: Content Assist selecting Data Type .. 119
Figure 77: Content Assist in adding new root Policy XACML Elements 120
Figure 78: XACML policy with an invalid attribute value ... 120
Figure 79: XACML Schema Validation reporting errors ... 121
Figure 80: Device Application Catalogue View .. 122
Figure 81: DAC configuration preference page ... 123
Figure 82: Limbo wizard selection in Eclipse ... 123
Figure 83: Limbo wizard starting point .. 124
Figure 84: Limbo wizard options ... 125
Figure 85: Limbo wizard, selecting output ... 125
Figure 86: Limbo wizard, output directory ... 126
Figure 87: Template view in Visual Studio ... 128
Figure 88: Auto generated files for Basic Hydra Application .. 129
Figure 89: Creating WS clients for device .. 131
Figure 90: Energy Application Template view ... 133
Figure 91: Selecting web references to devices .. 134
Figure 92: DAC Browser (upper right) in the IDE ... 140
Figure 93: The web-based Device Browser... 141
Figure 94: Producing SCPD window... 142
Figure 95: Action tab .. 143
Figure 96: Action Editor... 143
Figure 97: Save file window ... 144
Figure 98: Add new device window ... 144
Figure 99: Window for setting name and other properties .. 145
Figure 100: Adding service window ... 145
Figure 101: Choosing a file in explorer .. 146
Figure 102: Obex service window ... 146
Figure 103: Generating a Hydra device dialogue ... 147
Figure 104: Code Generation Window ... 147
Figure 105: Hydra .Net-IDE ... 148
Figure 106: Hydra .Net IDE ... 149
Figure 107: DAC with example SmartPhone device ... 150

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 9 of 157 30/04/2010

1. Executive summary

This deliverable D12.9, titled - Final External Developers Workshops Training Materials, is intended

to serve external solution and device developers as well as application integrators who wish to

examine how to use, set up and configure Hydra components and how these components can be
integrated to form the Hydra middleware platform plus the benefits that they could offer for solving

specific design and requirement challenges.

D12.9 is a sequel deliverable to D12.8 and brings together the high level architectural and sub-

system level descriptions from D12.8 with the lower level implementation, functionality and how-to-
configure details as used to build applications based on the Hydra Middleware Platform.

The task of developing internal and external training materials has been an ongoing process during

the Hydra project. Internal training material has been in use by the Partners and people who are
interested in the technical aspects of the project. Training materials have been subjected to periodic

updates as informed by the feedback from the training sessions conducted to-date as well as

revisions and new additions that have been added as they have become available throughout the
course of the project. In particular the technical details regarding architectural and implementation

issues have been updated continuously to reflect the latest developments and improvements as
following the iterative cycles of design refinement and re-engineering as the project has evolved.

During the current phase the design and implementation decisions have been finalised and the
technologies used within Hydra are now consolidated into what will be delivered as the final version

of Hydra Platform at the end of the project. Within its three sections; namely Hydra Technologies,
Hydra Components, and Hydra Tools, this document covers the following five areas:

i) How-to use underlying technologies used for the realisation of the components of the

Hydra Platform

ii) A Hydra system setup description on how to establish a Hydra environment

iii) A description of Hydra components and their configuration and usage

iv) A description of the various tools (SDK, DDK and IDE) used in Hydra and how they are
used to develop Hydra applications and a Hydra-enabled environment

v) General concepts and technologies specifically related to Hydra.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 10 of 157 30/04/2010

2. Introduction

2.1 Purpose, context and scope of this deliverable

This deliverable D12.9, titled - Final External Developers Workshops Training Materials, brings

together a collection of descriptions, tutorials and how-to-dos, to teach on using the Hydra
Middleware. It is aimed at a target audience of external developers, and as such is at a sufficiently

technical level, describing the interfaces of each Hydra component, and how to use them.

D12.9 is the final update to D12.5 featuring all the latest and most advanced features of the Hydra

middleware from the perspective of a third-party developer. The target audience is thus application
and device developers.

2.2 Background

Following on from the Executive Summary and Introduction, an overview of the Hydra Research and

Development and Technology Development (RTD) Objectives is given in Chapter 3, including an

overview of the Hydra concepts and architecture highlighting the main design principles of the
middleware.

Chapter 4 presents the explanation of installation and prerequisites for setting up the Hydra

middleware.

Chapter 5 sets out a detailed description of how to configure the different SDK components of Hydra

and how the enabling technologies have been used thus adding value for the whole middleware
platform.

Chapter 6 explains the DDK and the set up of Hydra tools and concepts and how they can be

deployed when using Hydra to develop applications.

Chapter 7 is an intensive chapter focussed primarily on Java IDEs for the various components in the

Hydra middleware.

Chapter 8 focuses exclusively on .NET IDE development and configuration.

Chapter 9 presents summarises the document and provides the conclusions.

Further reading suggestions and useful sources are given in the reference section in Chapter 10

whereas Chapter 11 provides a glossary with relevant Hydra terminology.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 11 of 157 30/04/2010

3. Hydra Architecture

The software architecture described is an abstract representation of the software part of the Hydra

middleware. The architecture is a partitioning scheme, describing components and their interaction

with each other. Figure 1 gives a structural overview of the Hydra middleware and explains how the
elements are logically grouped together. “Hydra Managers” constitute the major building blocks that

make up the Hydra middleware. A Hydra manager encapsulates a set of operations and data that
realise a specific functionality.

Figure 1: Hydra Architecture (layer model)

The Hydra middleware managers are enclosed by the physical communication layer and the

application layer shown at the bottom and at the top of the diagram respectively. The physical layer
realizes several network connection technologies such as ZigBee, Bluetooth or WLAN. The

application layer contains user applications which could comprise modules such as workflow

management, user interface, custom logic and configuration details. These two layers are not part of
the Hydra middleware.

The Hydra middleware offers a large collection of reusable core software components to
experienced developers. Based on these software components, programming abstractions allow for

programming with well-known concepts from the field of pervasive and ambient computing by
means of reducing the details of the underlying implementation. From the bottom to the top of

Figure 1 the Hydra middleware provides more and more programming abstraction and functionality

for the developers:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 12 of 157 30/04/2010

 The Network Manager implements Web Service over JXTA as the Peer-to-Peer model for

device-to-device communication.
 The Device and Device Service Manager in a bundle implement a service interface for a

physical device, handle several service requests and manage the responses.

 The Application Device and Application Service Manager provide programming interfaces

and information for the different devices to the software developers.
 The Discovery Manager automates and facilitates the discovery of devices in a Hydra

network.

 The Ontology Manager is used by the Application Device Manager to get meta-information

about devices and also semantically resolves what type of device has been discovered.

 The Event Manager provides a topic based publish-subscribe service in Hydra.

 The Crypto, Trust and Policy Manager takes care of cryptographic operations, the evaluation

of trust in different tokens and the enforcement of access control security policies.
 The Data Acquisition Component retrieves the data delivered by the sensors (via push or

pull mode).

 The Quality-of-Service (QoS) Manager in Hydra is a component that accesses and

particularly processes all non-functional properties-data for services/components, devices,
and networks.

 The Self* Manager provides support for automating application management.

 The Context Manager allows for the definition of an application-dependent context model.

 The Hydra Storage Architecture realises the persistent storage of information in Hydra

middleware.

3.1 Device Classification

The Hydra middleware is designed to handle all types of devices, with varying capabilities. The

figure below, demonstrates how devices are classified into different categories, based on what

technologies they can support, which determines how the device can become "Hydra-enabled" (see
glossary in chapter 11 for terms used in Hydra).

Figure 2: Flowchart for the device classification process.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 13 of 157 30/04/2010

The significance of the D0--D4 categories is that devices within each category are handled in the
same way in relation to the Hydra middleware and the enabling process. For further details on

Hydra terminologies please refer to the Glossary section in Chapter 8.

Category-D0 devices are used with a proxy, that is, they can only be reached through a proxy-

service residing on a Category-D4 device. The proxy service must implement the communication
with the D0 device.

Category-D1 devices can host a web service, and the intention is that such embedded web

services are created with the Limbo tool (see chapter 6.1.1)

Category-D2--D4 devices are said to be Hydra enabled. Hydra enabled devices host the network

manager and all other managers needed for that device, but differ in their networking capabilities.

3.2 Applications and Devices

Hydra applications are built by programming networked ambient intelligent devices. Devices are

made programmable by the Hydra middleware by means of proxies as well as by embedded

components. Whatever the method, it is transparent to the application developers, as they access all
devices based on a pure service and event based programming model. The API of this programming

model is manifested by the Hydra SDK, for application development.

3.3 Applications

An application in Hydra is built around a DAC (a Device Application Catalogue) which functions as a

kind of device registry, holding references to the set of devices which has been discovered and are
available to the application.

Hydra provides different levels of configuration, depending on the application requirements. A

minimal configuration for a Hydra application consists of an Application Device Manager, and a
Network Manager running on a Hydra gateway device (aka D4 device), to which one or more other

devices are connected or can be connected.

The minimal configuration can be extended by an Ontology Manager, which will add semantic

discovery capability to the system. Additional functionality for context management and security can

be obtained by the corresponding managers (Context Manager, see 5.7, Security Manager, see
5.2.6, 5.8, 7.2).

3.4 Hydra Devices

A basic idea in Hydra is to differentiate between the physical devices and the application view of the
device, in terms of so called Hydra Devices.

A Hydra Device is the software representation of a physical device. This representation is either
implemented by a proxy running on a gateway device, or, by embedded Hydra managers on the

actual device. A Hydra Device is said to Hydra-enable a physical device.

The Hydra MDA run-time includes a Device Service Generator which creates the service interfaces
for discovered devices. Each Hydra device will thus get a web service as well as a UPnP service

interface.

There are five categories of Web Services generated for a Hydra Device,

 A Generic Hydra web service, exposing metadata and management functions common to all

Hydra Devices.

 An Energy web service, providing a set of functions for the monitoring and control of energy

consumption of devices.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 14 of 157 30/04/2010

 A Memory Service which allows logging and storing of device internal data such as state

variables and energy consumption data.

 A Location Service which can be used to query the device about its location and position.

 A device type specific web service, exposing the device type specific functions

3.5 Semantic Devices

Based on Hydra Devices, the SDK provides the concept of a Semantic Device as an application

development construct. This allows a programmer to develop new application specific adaptations of
the available Hydra Devices.

The services offered by the Hydra devices have been designed independently from the particular

applications in which the device might be used, e.g., a lamp might offer “on/off” and “dimming” as
two services while a pump might offer “increase flow” and “get water temperature” as two services.

A semantic device on the other hand represents what the particular application would like to have.
We call these logical aggregates of devices and their services for Semantic Devices.

A semantic device instantiates itself dynamically on-the-fly, when appropriate physical devices are
discovered. A simple example is a programmer that creates a semantic device, “intelligent meat

thermometer” based on two physical devices – meat thermometer and a DLNA-enabled TV. The

semantic device takes sensor data from the meat thermometer and uses the display capabilities of
the DLNA-enabled TV. The programmer expresses some behaviour rules, what should happen when

the thermometer reaches certain temperatures. His cool new device will then allow a user to put a
steak into the oven and then go watch TV. When the meat temperature reaches 54 degrees the user

is alerted with a picture of red meat that is shown on the TV, at 58 degrees a medium cooked steak

is shown and at 60 degrees we see a well-done steak. The programmer could also add some
monitoring rules, to check if the temperature is raising to fast etc and in that case advice the user to

turn down the oven temperature. The TV could be delivered with a whole catalogue of semantic
devices which regularly check the network to instantiate themselves. If the user then buys a

thermometer and brings it home he is informed that this can be used together with the TV and
asked if he wants to install this facility. Since semantic devices are Hydra Devices themselves they

can then be recursively combined, and also be discovered by other Hydra DAC.

3.6 Hydra Apps

Hydra Apps are ICT services that users can buy or subscribe to in order to solve specific needs in
both private and professional settings, such as vital signs monitoring, energy optimisation, smart

home control and more. The Semantic Device construct is a basis for delivering such “Apps” on the
Hydra platform. Thus, a Hydra App is a semantic device which has been tailored for some

application specific purpose, by a Hydra developer. In principle a Hydra App can be seen as a
semantic device designed for a specific purpose and with a user/client interface.

3.7 Application Templates

In order to facilitate automation of developments work, the Hydra SDK includes different types of

templates. Among these are a number of application templates,

- Template for a Basic Application: most generic type of application, minimal.

- Template for a Energy Application: monitoring and control of a set of homogeneous
devices in a local network.

- Template for a Dynamic Application: a generic application using devices of a certain
class at run-time, i.e., not bound to specific devices types by design time.

- Template for a Sensor Application: a generic event-based application

The templates are integrated in the host IDE. The following sections describe the principal use of
these templates (see 7)

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 15 of 157 30/04/2010

3.8 The SDK and the DDK

Whereas the SDK is focused on the development of applications of devices, the purpose of the DDK
is to adapt various physical devices for use by the Hydra developers. The DDK is described in

Chapter 6. Many elements of the Hydra platform are of course common to both the SDK and the
DDK. Among them are the Device Application Catalogue (DAC) and the Ontology Manager. The SDK

and the DDK are integrated to form the Hydra IDE.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 16 of 157 30/04/2010

4. Installing the Hydra Middleware

This chapter discusses the requirements for installation of the Hydra Middleware, using the Equinox

(Eclipse) implementation of OSGi. The Hydra Middleware will be provided as a stand-alone package

which can be run in any generic OSGi framework, not only depending on the eclipse IDE. (Please
see chapter 10 for additional information and URLs)

4.1 Prerequisites

Some bundles are not provided with Eclipse (Galileo - 3.5 and earlier), and so will need to be

downloaded and placed in the plugins folder of your Eclipse installation, if the Hydra Middleware is
to be launched from within the Eclipse environment, which is not compulsory.

Most significantly this may include

 org.eclipse.equinox.cm_1.0.100.v20090520-1800

 org.eclipse.equinox.ds_1.1.1.R35x_v20090806

4.2 Required Bundles

The following chapters specify the various OSGi bundles required to launch the Hydra Middleware.

This includes both core bundles, and the bundles of Hydra Managers and components. The
configuration provided here is a very basic one, and extra Hydra bundles can be added to include

their functionality.

4.2.1 Core required bundles

These external bundles have to be added in the run configuration:

javax.servlet_2.5.0.v200806031605

javax.xml_1.3.4.v200902170245

org.apache.commons.codec_1.3.0.v20080530-1600

org.apache.commons.httpclient_3.1.0.v20080605-1935

org.apache.commons.lang_2.3.0.v200803061910

org.apache.commons.logging_1.0.4.v200904062259

org.apache.log4j_1.2.13.v200903072027

org.apache.xalan_2.7.1.v200905122109

org.apache.xml.serializer_2.7.1.v200902170519

org.eclipse.equinox.cm_1.0.100.v20090520-1800

org.eclipse.equinox.ds_1.1.1.R35x_v20090806

org.eclipse.equinox.http.jetty_2.0.0.v20090520-1800

org.eclipse.equinox.http.servlet_1.0.200.v20090520-1800

org.eclipse.equinox.util_1.0.100.v20090520-1800

org.eclipse.osgi.services_3.2.0.v20090520-1800

org.eclipse.osgi_3.5.1.R35x_v20090827

org.mortbay.jetty.server_6.1.15.v200905151201

org.mortbay.jetty.util_6.1.15.v200905182336

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 17 of 157 30/04/2010

4.2.2 Hydra bundles

These Hydra bundles have to be added in the run configuration (see chapter 10 for download links):

CryptoManager_1.1.0

HydraManagerConfigurator_1.0.0.qualifier

HydraMiddlewareAPI_1.0.0.qualifier

HydraMiddlewareClients_1.0.0.qualifier

HydraWSProvider_1.0.0.qualifier

Network_Manager_Bundle_1.7.0.qualifier

Figure 3: Run Configuration (Hydra Bundles)

These bundles provide the basic functionality of the Network Manager with the CryptoManager.

Other bundles must be added as required.

4.3 Crypto Manager Setup

The Crypto Manager (see chapters 5.2.6 and 7.3 for details) requires some initial modification of the

default Java distribution, in order to provide the functionalities it requires.

How to register the global crypto provider:

1. In order to use the bouncycastle keystore and cryptographic keys longer than 128bit, the "JCE
unlimited strength policy files" needs to be updated. Copy local_policy.jar and

US_export_policy.jar to $JAVA_HOME/jre/lib/security (overwriting existing files).

(The following step should be optional. You should try it if you get a "KeystoreException: no match")

2. In order to make the bouncycastle crypto provider available for the whole OSGi framework, it
needs to be installed as a global java security provider

a. Copy lib/bcprov-jdk14-138.jar to $JAVA_HOME/jre/ext

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 18 of 157 30/04/2010

b. In $JAVA_HOME/jre/lib/security/java.security, add bouncycastle to the available
crypto providers1:

 security.provider.5=org.bouncycastle.jce.provider.BouncyCastleProvider

4.4 VM Arguments

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -Dorg.osgi.service.http.port=8082

Figure 4: Eclipse Run Configuration (Arguments)

4.5 Running the framework

When the Hydra framework is started and 'ss' type in to see the list of installed plugins. It should

look like this (id numbers may be different, but the order of the bundles in which they start is vital):

Framework is launched.

id State Bundle

0 ACTIVE org.eclipse.osgi_3.5.1.R35x_v20090827

2 ACTIVE CryptoManager_1.1.0

3 ACTIVE org.apache.log4j_1.2.13.v200903072027

4 ACTIVE javax.servlet_2.5.0.v200806031605

5 ACTIVE org.eclipse.equinox.util_1.0.100.v20090520-1800

6 ACTIVE org.apache.xml.serializer_2.7.1.v200902170519

7 ACTIVE org.eclipse.equinox.http.jetty_2.0.0.v20090520-1800

8 ACTIVE org.mortbay.jetty.server_6.1.15.v200905151201

9 ACTIVE HydraMiddlewareAPI_1.0.0.qualifier

11 ACTIVE org.eclipse.equinox.ds_1.1.1.R35x_v20090806

1 Don't set bouncycastle as the first provider. This is a known bug and won't work.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 19 of 157 30/04/2010

12 ACTIVE HydraManagerConfigurator_1.0.0.qualifier

14 ACTIVE org.eclipse.osgi.services_3.2.0.v20090520-1800

15 ACTIVE org.eclipse.equinox.cm_1.0.100.v20090520-1800

16 ACTIVE HydraWSProvider_1.0.0.qualifier

17 ACTIVE javax.xml_1.3.4.v200902170245

18 ACTIVE org.mortbay.jetty.util_6.1.15.v200905182336

19 ACTIVE org.apache.commons.lang_2.3.0.v200803061910

21 ACTIVE org.apache.xalan_2.7.1.v200905122109

22 ACTIVE Network_Manager_Bundle_1.7.0.qualifier

23 ACTIVE org.apache.commons.logging_1.0.4.v200904062259

24 ACTIVE org.eclipse.equinox.http.servlet_1.0.200.v20090520-1800

25 ACTIVE org.apache.commons.httpclient_3.1.0.v20080605-1935

26 ACTIVE HydraMiddlewareClients_1.0.0.qualifier

27 ACTIVE org.apache.commons.codec_1.3.0.v20080530-1600

Useful URLs

Goto: http://localhost:8082/NetworkManagerStatus

It should show something like this

Figure 5: Network Manager Status page in browser

Goto: http://localhost:8082/HydraStatus

It should show something like this

http://localhost:8082/NetworkManagerStatus
http://localhost:8082/HydraStatus

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 20 of 157 30/04/2010

Figure 6: Hydra Status page

Goto: http://localhost:8082/axis/services

It should show something like this

Figure 7: List of services (in browser)

http://localhost:8082/axis/services

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 21 of 157 30/04/2010

5. Software Development Kit

This chapter provides an introduction to the Software Development Kit (SDK) in Hydra, detailing the

software interfaces (Web Services etc) of each Hydra component / manager / tool, and tutorials on

how to use them.

5.1 Hydra Commons

The Hydra Commons set of bundles provides the main point of interaction between the developer

and the SDK. The commons bundles include:

 Middleware API

 Clients

 Configurator

These bundles make life a lot easier for the developer to use the managers and components of the

Hydra Middleware, as well as for the creation of applications.

5.1.1 Hydra Middleware API

The Hydra Middleware API bundle contains the Hydra API, that is, all external interfaces of the

Hydra managers and the types used in them. In that way, there is one common bundle containing
all relevant Hydra interfaces, separating them from their implementation, which is necessary for a

well-structured integrated middleware. This also includes the classes for the various types that act
as parameters for calls to middleware components, as well as a set of utilities to aid with usage.

Use of the Middleware API for particular components is discussed in the sections relevant to each

component. Typically, this also involves the Hydra Middleware Clients bundle, as described in the

following section.

5.1.2 Hydra Middleware Clients

The Hydra Middleware Clients bundle contains all the Web Service clients for calling the various
managers and components of the Hydra Middleware. These clients include the generated AXIS files

for the creation of Web Service Clients, providing the services as defined in the Hydra Middleware

API. The middleware clients are located in bundles named as follows:

Using the Event Manager as an example, the developer can generate the Event Manager client in
one of two ways. Firstly, by using the generated Locator class for each client, as shown below:

EventManagerPortServiceLocator locator =

 new EventManagerPortServiceLocator();

locator.setEventManagerPortEndpointAddress(endpoint);

EventManagerPort em = locator.getEventManagerPort();

em.subscribe("ExampleTopic", "0.0.0.235235154145");

Here, the locator is configured with an endpoint address. This is the address of the local SOAP
Tunnel (exposed by the Network Manager), specifying the from and to HIDs, as well as the

sessionID. An example endpoint is given below, with no sessionID (0).

http://localhost:8082/SOAPTunneling/0.0.0.341243145454252/0.0.0.4124344658

75/0/

The second method is to use the RemoteWSClientProvider OSGi service that allows retrieval of the

relevant manager objects without the need to create specific Web Service Locator objects. This

service offers a method, called getRemoteWSClient, which interface is:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 22 of 157 30/04/2010

public Object getRemoteWSClient(String className,

 String endpoint, boolean coreSecurityConfig);

When calling the method, the interface class name of the Web Service, the endpoint to this Web
Service and a Boolean value indicating whether we want to call the service with Hydra security or

not must be provided.

The next lines show an example of calling a method of the Network Manager Web Service. The
developer first obtains a RemoteWSClientProvider element, and via this Web Service Client object

finally makes the call to the desired method of the Network Manager (in this case getHIDs).

RemoteWSClientProvider service = (RemoteWSClientProvider)

context.getService(context.getServiceReference

(RemoteWSClientProvider.class.getName()));

NetworkManagerApplication nm = (NetworkManagerApplication)

service.getRemoteWSClient(NetworkManagerApplication.

class.getName(),

endpoint, true);

Vector v = nm.getHIDs();

5.1.3 Hydra Configurator

In order to achieve high level of integration between the set of managers that conforms the Hydra
Middleware, a common configuration system for all Hydra managers and applications has been

implemented.

This common configuration system is based on the use of the configuration admin OSGi service. This

service provides a way to dynamically update the configurations, avoiding having to restart the
managers in order to update them. It also provides persistency for the configurations.

Thus, an OSGi bundle which provides a common interface for the configuration of all Hydra

managers has been implemented. The bundle is called the Hydra Manager Configurator. Adapting
the configuration of a particular manager is achieved using the Configurator class provided by the

Hydra API. The Configurator class is a class that implements the ManagedService interface, so that it

can receive configurations from the configuration admin OSGi service. The Configurator class
provides the methods and attributes for managing the configuration of the manager which

instantiates it, and a way for communicating with the configuration admin service in order to apply
into this service all changes introduced by the user at the Configurator class, registering itself as a

managed service.

The Hydra Manager Configurator bundle provides a set of interfaces that makes it possible to modify

the configuration of the different Hydra managers previously adapted to the new common
configuration system. This bundle provides three interfaces for configuring Hydra managers:

 A web application called Hydra Status

 A Web Service deployed by the Hydra Manager Configurator

 An OSGi console command, currently working on Equinox

The Hydra Status page (Figure 8) is a web application that provides a web interface for configuring

the different local Hydra managers adapted to the new common configuration system, based on the
configuration admin OSGi service. It also provides all the information provided by the well-known

Network Manager Status page and Event Manager Status pages.

Regarding the Network Manager information included, the Hydra Status page provides information

about HIDs, hosts where they are deployed, descriptions and endpoints of all devices detected by

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 23 of 157 30/04/2010

the local Network Manager, differentiating between local and remote HIDs (local and remote
Network Manager installations).

Regarding the Event Manager, the Hydra Status page provides information about the topics, the
endpoints and the dates of subscription of all the Hydra events the local Event Manager is

subscribed to.

Regarding the configuration of the managers, the Hydra Status page provides a graphical interface
for configuring all Hydra managers adapted to the new common configuration system in a dynamic

way. The available sets of configuration options are loaded dynamically if the manager which uses

them is running, identifying themselves by their configuration PID. Clicking over a configuration PID,
all its options and their values will be loaded, making it possible to modify them and update the

modifications made by clicking the Update Configurations button.

Once you update the configuration, the new configuration will be working, without having to restart

the managers. However, if you put –clean parameter inside the program arguments of your OSGi
configuration all updated configurations will be reset to their initial state. The URL of the Hydra

Status page (a screenshot of the service can be seen in Figure 8) is
http://localhost:8082/HydraStatus, (given that the web server of the Hydra installation is running in

the 8082 port, which is the default port of the Hydra configuration). This functionality is also
replicated inside the IDE, as discussed in the relevant section(s).

Figure 8: Hydra Status page screenshot

Another configuration tool provided is the Web Service, which is deployed by the Hydra Manager

Configurator bundle, and that provides the following methods:

 getAvailableConfigurations(): list the available set of configurations.

 deleteConfiguration(String configuration_pid): delete a concrete configuration from the

common configuration system.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 24 of 157 30/04/2010

 listConfiguration(String configuration_pid): list the options provided by a concrete

configuration and their current values.
 setConfiguration(String configuration_pid, String option_key, String value): set the value

of a concrete option for a concrete configuration.

Finally, and regarding the configuration tools using Equinox OSGi console, the configure command is

used, which provides similar options as the ones provided by the Web Service above. These options

are the:

 configure –l: list the available set of configurations.

 configure –d <configuration_pid>: delete a concrete configuration from the common

configuration system.
 configure <configuration_pid>: list the options provided by a concrete configuration and

their current values, e.g. configuration com.eu.hydra.network will print current

configuration of the Network Manager.

 configure <configuration_pid> <option_key> <option_value>: set the value of a

concrete option for a concrete configuration.

5.2 Network Manager

The network model complements the runtime platform model regarding the details of the network.
In Hydra the underlying network is complex and therefore, it needs to be described in a separate

(but related) network model. The purpose of the network model is to define what types of network
connections will be supported and if there are constraints that have to be adhered to during

implementation and network design.

5.2.1 Hydra Definition of Device To Device Communication

The Network Manager is the incoming and outgoing point of information in the middleware.
Therefore, the main purpose of Device to Device communication will be managing the

communication between Network Managers. This means that only Hydra-enabled-devices will be
involved in this kind of communication.

Devices inside Hydra need to communicate in order to exchange information. Each device offers
different resources inside the Hydra network mechanisms which need to be implemented so making

possible the discovery of new resources in Hydra-enabled devices inside the network. Moreover, in
order to consume these resources, Hydra devices need the means to establish communication

between each other. The following sections will present those aspects.

5.2.1.1 Addressing

From the middleware point of view, an addressing method based on Hydra Identifiers (HID) has

been defined for Hydra, instead of the usual IP-based one. The Identity Manager is responsible for
the management of these HIDs. Its main functionality is providing a unique context-dependant

identifier for every device (physical or semantic), resource or service, called HID. It is also

responsible for the maintenance of the idTable, a data structure dedicated to store the matching
between logical and physical identifiers.

However, this addressing method is useless if there is not a way to propagate this information to

other Hydra-enabled devices involved in the Hydra Network. The Backbone Manager is responsible
for spreading this information between the different Hydra-enabled devices in the network. Thus,

every Identity Manager belonging to the Hydra Network keeps an idTable internally and an updated

list of every HID in the network. This process is known as Network Manager Discovery.
The Hydra middleware will be running in dynamical environments, where new resources are

susceptible to constantly appear or disappear. In order to detect new resources inside the Hydra
network, we need a discovery mechanism.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 25 of 157 30/04/2010

Inside the Hydra network, devices and resources are identified through a Hydra ID (HID), which

varies depending on the context. In order to contact them, one Hydra-enabled device needs to

contact the Network Manager of the Hydra-enabled device they belong to. The discovery of Network
Managers will be done through use of Device to Device communication.

Through Device To Device communication, we aim to propose an innovative way to discover

Network Managers (and thus, Hydra-enabled devices) and also to know more about their features
and the services they provided, in a scalable Wide Area Network. This means that the scope of the

Hydra network will not be restricted to a Local Area Network.

5.2.1.2 Communication

As mentioned before, the Network Manager is the incoming and outgoing point for information in

the middleware. The Hydra network is an “all-IP” network. This means that only devices with IP
communication capabilities will be able to communicate directly (through device to device

communication) inside the Hydra network.

Moreover, the device to device communication will be restricted to the Hydra-enabled devices that

are able to host the Hydra middleware, which in Hydra terms means that this communication will be
“inside” Hydra. Thus, the device to device communication can be defined as the data exchange

between devices “inside” the Hydra network, which are Hydra enabled and have IP communication
capabilities.

5.2.2 The Peer-to-Peer Network Architecture

There exist multiple objectives regarding device to device communication. First, the Hydra
middleware needs to offer an efficient way to share resources among the Hydra Network, in a

scalable, distributed and efficient way. The Hydra middleware also needs to prevent system failures
when a node is not available. And finally, the Hydra Network needs to allow ubiquitous access to the

network.

All of these reasons have led us towards a Peer-to-Peer architecture. Several Peer-to-Peer models

have been analysed and according to the requirements identified for device to device
communication, JXTA P2P communication protocols have been selected as the most suitable

mechanism to carry on the communications “inside” Hydra. That is, the communication between

Network Managers.

The reasons that have led us to select JXTA are:

 Interoperability: Enables communication between peers independently of network

addressing and physical protocols.

 Platform independence: JXTA does not depend on the programming language, network

transport protocols and deployment platforms, giving freedom of choice. Java SE and Java

ME implementations have been selected for Hydra.

 Ubiquity: JXTA is designed to be deployed on any device, not just PCs.

 Security: for security means regarding authentication, authorisation, and integrity can be

implemented based on JXTA. Attacks on the level of the protocol cannot be addressed as
that would require changing the JXTA protocol.

 Community support: JXTA is supported by a wide community of developers and the different

specifications are fully documented.

 Wide range of services: Most of the P2P models studied have been designed exclusively for

providing file sharing services. Instead, in JXTA, thanks to its abstract architecture based

on six protocols, it is possible and feasible to create a wide range of interoperable services
and applications.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 26 of 157 30/04/2010

5.2.3 Purpose

The Network Manager is the bottom layer of the Hydra middleware deployed in Hydra Gateways and

in Hydra-enabled devices. It is the entry and exit point of information of the Hydra middleware.

There is only one Network Manager per device where the middleware is deployed.

The Network Manager provides a Web Service interface (which is the main interface of the Network
Manager), which is the information entry point for the middleware. Data transferred between Hydra-

enabled devices and gateways should always pass through the Network Manager.

5.2.4 Main Functionalities

The Network Manager is responsible for managing the communication between Hydra-enabled
devices. In order to do this, the Network Manager:

 Creates and overlay P2P network, where all the Hydra-enabled devices appear directly

interconnected, no matter if they are behind a NAT (Network Address Translator) or

Firewall.

 Provides indirection architecture for addressing Web Services hosted by Hydra devices using

the HID addressing mechanism. Each service is identified in Hydra through an HID, which is
a global and unique identifier. The Network Manager provides interfaces for other

managers, applications and Hydra devices for HID creation, modification and deletion. It
also offers the possibility to select the transport protocol for the service invocation between

TCP, UDP and Bluetooth.
 Provides a transport mechanism over the overlay P2P network for invoking Web Services

hosted by Hydra devices (SOAP Tunnelling) using the HID addressing mechanism. The SOAP

messages addressed to an HID are routed by the Network Manager through the overlay

network to the Network Manager hosting the service. Therefore, using the SOAP Tunnelling
and the Network Manager any device or application is able to transparently publish and

consume services anywhere, anytime, breaking the network interconnectivity barriers and
independently of the service endpoint location.

 Provides a transport mechanism over the overlay P2P network for multimedia content

exchange between UPnP AV or DLNA devices.

 Provides session management mechanisms between HIDs during service invocations.

 Provides time reference synchronization between different Network Managers.

 Provides a status page for developers, which the developer can use for monitoring dynamic

information about the Hydra Network and the HIDs available.

Each Hydra-enabled device will run one and only one Network Manager. The Network Manager
maintains two complex data structures: the Hydra ID (HID) and the Session. The following sections

provide an overview on these two data structures.

5.2.5 Hydra Web Service Provider

First of all, in order to make the deployment of Web Services in the Hydra middleware easier, a new
OSGi bundle has been created to take the place of the obsolete Axis bundle that the managers were

using since the beginning of the project. This bundle is the Hydra WS Provider bundle. The main
goal of this component is to provide automatic deployment of Web Services and independence for

Hydra managers from Axis.

Now it is possible to deploy Web Services, including the Hydra manager ones, in an automatic way,
without the use of a deployer class or WSDD files.

The Hydra WS Provider bundle is still based on the Axis bundle, but it has been adapted to the
Hydra middleware, providing transparent interfaces to the developers supporting all the

characteristics that the Hydra middleware needs.

The Hydra WS Provider bundle is composed of three packages, as seen in the Table 1:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 27 of 157 30/04/2010

Package Definition

com.eu.hydra.security.axis Provides Core Hydra security to the

bundle.

com.eu.hydra.wsprovider.impl The main package, deals with the

detection of OSGi services and their

deployment as Web Services.

com.eu.hydra.wsprovider.servlet Deploys a servlet which represents the

Axis administration servlet.

Table 1: Hydra WS Provider package structure

The main class is the Activator class, which can be found under the com.eu.hydra.wsprovider.impl
package. It deals with the detection of OSGi services and their deployment as Web Services through

a ServiceTracker object.

The services to be published as Web Services should have been deployed as an OSGi service. It is

also recommended but not mandatory to use OSGi Declarative Services. When a service is to be

published as a Web Service using the Hydra WS Provider, a set of properties need to be defined:

 SOAP.service.name: mandatory property, it defines the name of the service to be deployed.

The Hydra WS Provider deploys each service using this defined property. Once this property

is set, the service will be deployed with this name at http://localhost:8082/axis/services.

 SOAP.service.methods: optional property, it provides a list of the names of the methods to

be implemented. When defined, the Hydra WS Provider deploys only the methods indicated.

Otherwise, the Hydra WS Provider deploys all the methods of the Web Service, i.e. all

methods that have an access level of „public‟.

 Hydra.security.config: optional property, it defines whether the Web Service is to be

deployed with or without security. A Boolean value defines this property. All services will be

deployed with security by default.

In order to register and deploy a Web Service in the Hydra middleware, the developer must register

the service in the framework with the SOAP.service.name property indicating the name of the
service. Programmatically, and in the case of non declarative services, a service is registered as

follows:

Hashtable props = new Hashtable();

props.put("SOAP.service.name", "EventManagerPort");

context.registerService(EventManager.class.getName(),this, props);

By using OSGi declarative services, the services are already registered via the framework, but the

properties have to be set in the OSGI-INF/component.xml file (at least the mandatory
SOAP.service.name property), as shown in the Figure 9.

Figure 9: Introduction of a property at the XML file of a declarative service

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 28 of 157 30/04/2010

5.2.6 Crypto HIDs

From the Lessons Learned of the third iteration, we realized that the service addressing mechanisms

implemented in Hydra, the HIDs, lack of high security features. The HIDs are identifiers that allow
developers and applications to identify each entity evolving in a Hydra network. It was designed to

identify each service in a given situation (context) but also to dismiss the real identity of the device

offering the service.

The main problem with current implementation of HIDs is that the information related to their
description is being exchanged over the network without any encryption between the Network

Managers. Thus an attacker of the Hydra middleware would be able to identify the identity of HIDs
and the service provided by the owner of the HID by just sniffing the network traffic. Another

problem identified with HIDs, is that the description field associated with them is not enough to

unambiguously identify a service, as it is just a String with no fixed format. These problems are not
very important for building applications that do not have high security requirements, but when

moving to domains that require these high levels of security, such as e-Health, the problems
become important.

In order to solve these issues, we have extended the HID concept incorporating new security
features like certificate linking, HID description through attributes and HID data encryption. These

new secure Hydra Identifiers are called Crypto HIDs. The main features incorporated to Crypto HIDs
are:

5.2.6.1 Certificate linking

Each HID, when it is created, it is associated with a certificate, generated using the Crypto Manager.
This certificate is used to encrypt and decrypt all the information sent to and from this HID.

Therefore, before sending any information to an HID, the Network Managers perform a certificate
exchange process for encrypting the information that is going to be exchanged. This certificate

exchange is performed using the Secure Session Protocol, with which certificates will be distributed
using a public key exchange protocol.

5.2.6.2 HID attributes

In order to unambiguously identify a HID in the Hydra Network, we have extended the description
of HIDs to attributes. Each HID is created with some attributes, which are securely stored in its

certificate. The number of attributes is not fixed, and it is up to the developer to decide which
attributes to use. Some examples for attributes would be:

• PID (Persistent Identifier): An identifier for the device providing a service (for example,

MAC address of the device)
• SID (Service Identifier): An identifier for the service provided. It could also be a semantic

identifier of the service provided.

• UserID (User Identifier): Identifier for the owner of the device providing a service.

These attributes, and any others, are provided during HID generation following the Java Properties

class XML schema. An example of attributes for an HID would be:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM

"http://java.sun.com/dtd/properties.dtd">

<properties>

<entry key="PID">03-43-F3-23-24</entry>

<entry key="SID">ThermometerService</entry>

<entry key="UserID">Peter</entry>

</properties>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 29 of 157 30/04/2010

The attributes are not exchanged between Network Managers during the HID exchange process,

that is, Network Managers have all the HIDs in the Hydra Network but do not have the information

at to what each HID stands for. In order to provide developers and applications the means to know
these attributes, we have implemented two mechanisms to retrieve the attributes for a specific HID

and to query the network searching for an HID matching some attributes. These two mechanisms
have been designed taking security into account:

 Retrieving attributes for an HID: Using this mechanism, developers and applications

are able to retrieve the attributes of a specific HID. As mentioned above, attributes

for a HID are stored securely into the certificate linked to it. Therefore, in order to
retrieve the attributes for a HID, the Network Manager starts the Secure Domain

Protocol, exchanging the certificates of the interested parties. Therefore, nobody
without a valid Hydra certificate is able to retrieve the attributes for a HID.

 Querying the Hydra network of a HID matching some attributes: This is the situation
when an application wants to address a specific HID, with some fixed attributes, but

without knowing beforehand which is the HID assigned to it. Imagine an application
that wants to retrieve the temperature from a specific thermometer. It first needs to

know the HID of that thermometer in order to be able to invoke its service.

The process is simple: a query is generated and sent to all the Network Managers in the network

using a multicast channel (step 1 in Figure 10). In the query, the requester has to provide its
credentials, this is, its HID and attributes. Each Network Manager receives the query and searches in

the local idTable (step 2 in Figure 10) (the table where all the HIDs are stored). If a Network
Manager finds a HID that matches the query (step 3 in Figure 10), before answering to the sender,

checks with the Policy Manager if there is any policy applied for that HID and provides the sender

information (step 4 in Figure 10). The Policy Manager answers the Network Manager as to whether
it is allowed or not to send that information to the requester (step 5 in Figure 10). Whether or not it

is allowed, a query response containing the HID is sent to the sender over a unicast channel (step 6
in Figure 10). If it is denied, no information is sent to the sender. Therefore, in every step of this

process, security is ensured. This process is illustrated in the Figure below.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 30 of 157 30/04/2010

Figure 10: Querying the Hydra network for a HID matching some attributes

In order to provide the developers with the tools for using these new mechanisms, four new

methods have been added to the Network Manager API. The old methods for creating and
interacting with HID related information are still maintained, for backwards compatibility reasons,

but its usage is discouraged as they have been deprecated.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 31 of 157 30/04/2010

5.3 Device Application Catalogue

5.3.1 The DAC browser

The DAC Browser is now also an integral component of SDK as part of the IDE as seen in Figure 11

below:

Figure 11: DAC Browser (upper right) in the IDE

It provides the same functions as the stand-alone version and in addition,

- Provide an IDE-view of all devices known to the Hydra Network

- Enables the developer to create proxies by selecting devices

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 32 of 157 30/04/2010

5.3.2 The Graphical Browser

A fundamental part in every Hydra-based application is the Device Application Catalogue (), which is

managed by the Application Device Manager, as was explained in previous chapters. This is a
runtime component that keeps track of and manages all devices that are currently active within an

application. The Hydra Device Application Catalogue serves all Hydra middleware managers with the

information and metadata they need regarding devices, their services, and their status.

Hydra uses the Hydra Device Ontology and models for discovery to recognise new devices when
they enter into a Hydra network. Based on the discovery model it queries the Device Ontology to

deduce what type of device has entered the network. The Hydra can be queried by different
middleware managers to retrieve a service interface for different devices.

A Hydra browser has been developed to allow a user/developer to graphically browse the Hydra
network and inspect properties and services of devices. The browser tool also allows the user to

invoke the different services offered by devices.

Figure 12: The Hydra Browser

By manually invoking the different services, the actual role the Device Application Catalogue plays in
the Hydra middleware can be illustrated. As can be seen in Figure 12 above, 5 different Discovery

Managers are available in the network, each of them is dedicated to discover a certain type of
physical device (Bluetooth, RF Switches, ZigBee etc).

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 33 of 157 30/04/2010

Each Discovery Manager keeps track of the device it has discovered and tries to elicit as much
information as possible from the device. All this physical discovery information can be accessed by

calling the service “Get Device Physical Discovery”.

Figure 13: Retrieving discovery information from the physical device

This discovery information is returned as an XML document, which can be seen in the figure below:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 34 of 157 30/04/2010

Figure 14: Discovery information from a Bluetooth Device

In Figure 14 we can see that it is a Bluetooth Device that has been discovered, it has the Bluetooth

Major DeviceType “Phone” and Minor DeviceType “CellPhonePhone” (Major DeviceType and Minor
DeviceType are part of the Bluetooth standard.

The Bluetooth Discovery Manager has also managed to extract the different Bluetooth services
offered by the device. This discovery information can now be used to reason about what type of

device has been discovered. The physical discovery XML is given to the Device Ontology which
deducts that this device corresponds to a “Basic Phone” in the Hydra Device Ontology.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 35 of 157 30/04/2010

Figure 15: Resolving a physical device into a Hydra Device.

By invoking the service “Resolve Device” the Bluetooth Discovery Manager can be told that this is a

“Basic Phone”. The idea is of course to do this programmatically, but here it is done manually for

illustration purposes.

Figure 16: Resolve information is sent as an XML structure to the Discovery Manager

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 36 of 157 30/04/2010

The Discovery Manager then creates and publishes the Device to the network as a “Basic Phone”
device. The Basic Phone device is now available together with the services offered by a Basic Phone

(in this case a set of SMS read/send functions).

Figure 17: A physical device with unknown functionality has been transformed into Basic Phone

Device with services for reading/sending SMS.

These services are now directly invokeable from the Browser, and for instance, an SMS can be sent.

Figure 18: Sending an SMS through the Basic Phone Device

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 37 of 157 30/04/2010

Finally the Browser can be used to retrieve a service description for a web service that allows us to
access the device programmatically:

Figure 19: Using the DAC browser to retrieve a WSDL description for the device.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 38 of 157 30/04/2010

Figure 20: A WSDL (Web Service Description Language) for the device

5.4 Discovery Manager (Framework)

Hydra implements a 3-layered discovery architecture – physical, network and semantic discovery,

see Figure given below.

In short the 3-layered discovery architecture works this way: First physical devices are discovered
using native discovery protocols such as Bluetooth. Then the Hydra Middleware (Discovery Manager)

creates a software wrapper that allows further extraction of metadata from the device and makes it
available in a Hydra network. Finally the device ontology is used to fully resolve what type of device

and what kind of functions it has and how the service interface looks like.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 39 of 157 30/04/2010

Figure 21: 3-layered discovery architecture in Hydra

5.4.1 Physical Discovery

At the lowest level the Hydra project is developing techniques for the discovery at the physical level.

This will allow us to discover devices using communication protocols like Bluetooth, ZigBee, WiFi etc.
Each of these protocols is handled by a specific Discovery Manager.

The Discovery Manager is part of the implementation (a sub-manager) of the Application Device
Manager. This (sub-) manager also implements the base class for all protocol specific discovery

managers in Hydra. A discovery manager keeps track of the devices it has discovered. As long as
the devices are unresolved they are treated as Embedded devices of the Discovery Manager. A

discovery manager runs locally on a gateway/PC where it looks for remote devices such as Bluetooth

devices.

The following discovery managers exist with interfaces available:

• Bluetooth Discovery Manager

• SerialPort Discovery Manager
• RFSwitch Discovery Manager

• ZigBee Discovery Manager
• UPnP Discovery Manager

• RFID Discovery Manager
• External Discovery Manager

The External Discovery Manager now supports discovery of devices over the P2P architecture.

Network discovery based on UPnP

Once a device has been discovered at the physical level it needs to be discovered at a network level.

This is done by creating a UPnP (Universal Plug and Play) wrapper to represent the device on the
network. The UPnP wrapper then allows the device to be discovered at a network layer.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 40 of 157 30/04/2010

The UPnP (Universal Plug and Play) architecture offers pervasive peer-to-peer network connectivity
of PCs, intelligent appliances and wireless devices. The UPnP architecture is a distributed, open

networking architecture that uses TCP/IP and HTTP. It enables seamless proximity networking in

addition to data transfer between networked devices at home, in the office and everywhere in
between.

It enables data communication between any two devices under the command of any control device

in the network. UPnP has a number of characteristics:

• Media and device independence. UPnP technology can run on any medium including

phone lines, power lines, Ethernet, IR (IrDA), RF (WiFi, Bluetooth), and FireWire. No device
drivers are used; common protocols are used instead.

• Common base protocols. Base protocol sets (Device Control Protocols, DCP) are used, on

a per device basis.

• Operating system and programming language independence. Any operating system and

any programming language can be used to build UPnP products. UPnP does not specify or
constrain the design of an API for applications running on control points. OS vendors may

create APIs that suit their customer's needs. UPnP enables vendor control over device UI
and interaction using the browser as well as conventional application programmatic control.

• Internet-based technologies. UPnP technology is built upon IP, TCP, UDP, HTTP, SOAP

and XML, among others.

• Programmatic control. UPnP architecture also enables conventional application

programmatic control.

• Extensibility. Each UPnP product can have value-added services layered on top of the

basic device architecture by the individual manufacturers.

The UPnP architecture supports zero-configuration, invisible networking and automatic discovery for

a breadth of device categories from a wide range of vendors. Devices can dynamically join a
network, obtain IP addresses, announce their names, convey their capabilities upon request, and

learn about the presence and capabilities of other devices. DHCP and DNS servers are optional. A

device can leave a network smoothly and automatically without leaving any unwanted state
information behind.

5.4.2 External Discovery

External discovery enables Hydra gateways to locally represent all Hydra devices in the Hydra

network even if they reside in a different physical network. This enables the developer to build

applications that use devices in exactly the same way independently of their network location.

The basis for the external discovery process is synchronisation of information in-between the
Application Device Managers in the network. For each of the found external Hydra devices a local

device proxy is created using the SCPD of the external device. This will also copy all of the Hydra

UPnP properties for the device such as the HIDs for the different device services.

The external discovery follows the following procedure:

1. Contact Network Manager to find all Device Application Managers in the network
2. Contact each of the Application Device Managers to retrieve a list of their local devices

3. Contact each device and use the generic Hydra Web Service to retrieve the device XML

(SCPD)
4. For each device create a local device proxy using the device XML.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 41 of 157 30/04/2010

5.4.3 Semantic Discovery

Once the device is discovered as part of the network, it needs to be discovered semantically, i.e.,

the device needs to be related to the Hydra Device Ontology so that it is known what kind of device
has been discovered.

Hydra uses two different XML structures to describe a device and its capabilities. First there is the
device description, which contains various metadata regarding the device such as its type, the

manufacturer, model etc. An example of a device description is shown below:

<device>

<deviceType>urn:schemas-upnp-org:device:waterPump:1</deviceType>

<friendlyName>GrundfosPump</friendlyName>

<manufacturer>Grundfos</manufacturer>

<manufacturerURL>http://www.grundfos.com</manufacturerURL>

<modelDescription>Pump</modelDescription>

<modelName>Grundfos Magna</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:dac824ab-bca1-4d5c-93c5-578a0c697ba1</UDN>

<serviceList>

<service>

<serviceType>urn:schemas-upnporg:

service:grundfosPumpService:1</serviceType>

<serviceId>urn:upnp-org:serviceId:grundfosPumpService</serviceId>

<SCPDURL>_grundfosPumpService_scpd.xml</SCPDURL>

<controlURL>_grundfosPumpService_control</controlURL>

<eventSubURL>_grundfosPumpService_event</eventSubURL>

</service>

</serviceList>

</device>

Secondly, there is the SCPD (Service Control Point Description), which describes the capabilities of

the device and how to invoke its different services. An example of service description is shown
below:

<?xml version="1.0" encoding="utf-8"?>

<scpd xmlns="urn:schemas-upnp-org:service-1-0">

<specVersion>

<major>1</major>

<minor>0</minor>

</specVersion>

<actionList>

<action>

<name>GetStatus</name>

<argumentList>

<argument>

<name>ResultStatus</name>

<direction>out</direction>

<relatedStateVariable>Status</relatedStateVariable>

</argument>

</argumentList>

</action>

<action>

<name>SetTarget</name>

<argumentList>

<argument>

<name>newTargetValue</name>

<direction>in</direction>

<relatedStateVariable>Target</relatedStateVariable>

</argument>

</argumentList>

</action>

</actionList>

<serviceStateTable>

<stateVariable sendEvents="yes">

<name>Status</name>

<dataType>boolean</dataType>

</stateVariable>

<stateVariable sendEvents="no">

<name>Target</name>

<dataType>boolean</dataType>

</stateVariable>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 42 of 157 30/04/2010

</serviceStateTable>

</scpd>

A final part of the semantic discovery is the service discovery task to find a suitable service provided

by specific device (or device type) in accordance to defined requirements. In the context of Hydra,

the service discovery task defined this way can be used in various cases, for example:

• From a developer user point of view: to find the required service provided by a
specific device in the process of development of basic communication patterns, such

as composed (or orchestrated) services, choreography interfaces or service user
interfaces.

• From a system or application point of view: to find the required service provided by

specific device when executing the complex process requiring the service
orchestration.

• Tools and matchmakers exist supporting the service discovery for both OWL-S and
WSMO standards (description of this tools is out of scope of this deliverable), which

may be used for particular approach.

In Hydra support for SAWSDL annotations is provided. As the SAWSDL approach does not explicitly

support service discovery, there are two basic possibilities, which can be used in this case:

• The Service discovery process is realised by searching the SAWSDL according to

provided semantic annotations.
• Using the annotations in SAWSDL file, the model of service is annotated in the Hydra

service ontology and the discovery process is realised by matching the ontology

concepts in accordance to specified requirements, similarly as in OWL-S/WSMO
approach.

5.5 Ontology Manager

This section focuses on the creation of StateMachine ontology, which is used for the creation of

state machine stubs to handle device run time status changes, and also for the diagnosis and
monitoring rules used for achieving self* properties.

 The StateMachine machine ontology is modelling the state machine concept in UML2. The concepts
in StateMachine ontology is shown in the following figure:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 43 of 157 30/04/2010

Figure 22: Ontology State Machine Concepts

How to create a state machine instance is described below. Taking the simple Thermometer device
as an example, the following steps are involved to add this state machine instance.

1. Add all the states (starting, measuring, stopping) to the ''Simple'' concept, which means that the

Thermometer state machine has these simple states. The adding of instances to an ontology is
achieved with the "Individuals" tab, by clicking on the concept (for example "Simple"), and then

click on the button "create instance" button. This is shown in the following figure. Protege is
used as the OWL development environment. As every state for all devices need to be

differentiated, each state is named according to its device, for example,

''pico_th03_indoor_measuring''. Set the "isCurrent" property to indicate whether this state is a
current state or not, and add give it a label.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 44 of 157 30/04/2010

Figure 23: Ontology Browser

2. Add the ''doActivity'' associated with a state by clicking on the button 'create new resource'

followed the "doActivity" property. For the measuring state, this is the '''getTemperatureIndoor'
activity, which is used to model the indoor temperature measuring. An instance of data (not

mandatory) is shown in the above figure.

3. Add the transition instances to ''Transition'' concept in the ontology, in the same way as in Step 1,
with the meaningful name for example ''T_measureToStop''. Chose the source state and target state

of the transition by clicking the "Select existing resource", choose the state that has just been
created to reflect the transition direction.

4. This simple state machine is ready now. For this simple case, there is no need to have instances

of "Guard", "PseudoState", etc.

Please see chapter 10 and use the online resources for further information.

5.6 Event Manager

The Hydra Event Manager provides publish/subscribe functionality, i.e., the ability for publishers to
send a notification to multiple subscribers while being decoupled from them (in terms of, e.g., not

holding direct references to subscribers). The specific variant of publish/subscribe implemented is
topic-based publish/subscribe where the events are key/value pairs.

The Event Manager is deployed as a service in the Hydra network and implements the following
interface:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 45 of 157 30/04/2010

Figure 24- Event Manager Interface

Interaction with the Event Manager can be performed using this service, by creating an Event

Manager client handling the calls to the Event Manager. To publish an Event to the Event manager,
the publish method must be called, passing the topic of the Event, as well as an array of key-value

Part objects, that specify additional data associated with the Event.

EventManagerPort em = { Get Event Manager Client };

Part[] parts = { Get Part Array };

em.publish("ExampleTopic", parts);

The code snippet above gives an example of using the EventManagerPort interface to publish an

Event. An application can subscribe to receive notifications of events by calling the subscribe or
subscribeWithHID methods. These methods take the topic of the events being subscribed to, along

with callback information, such the Event Manager can send notifications when the events are
published. With the subscribe method, this information is provided as a Web Service endpoint

address, whereas the subscribeWithHID method takes the HID of the subscriber, to then call back

through the Hydra Network Manager.

EventManagerPort em = { Get Event Manager Client };

em.subscribeWithHID("ExampleTopic", <Subscriber HID>);

The above code snippet gives an example of a subscriber subscribing to the Event Manager.

Furthermore, subscribers must implement the following interface:

The figure below shows the resulting deployment:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 46 of 157 30/04/2010

Figure 25: Event Manager Deployment

Given such a deployment, the figure below shows a typical interaction with the EventManagerServer
(where the address is the address of the Subscriber web service that later should be notified):

Figure 26: Subscriber Notification

5.7 Context Awareness Framework

The Context Awareness Framework (CAF) isused within Hydra to define and make use of certain
context data, which is produced by sensors and devices at runtime. The user and developer can use

this framework to define context situations and their individual actions (application behaviours)

following these pre defined sets (there is also the term „rule‟ used in the scope of the CAF). The CAF
can also be queried to extract context information used within Hydra or at the application level.

5.7.1 Context Manager

The Context Manager component, as described in D12.8, brings the ability for context-awareness,

that can be utilised by applications in whichever domain. The SDK component provides the interface

for communicating with the Context Manager, for publishing created contexts (created with the
IDE), to the Context Manager, as well as being able to query contexts, through Context Provisioning.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 47 of 157 30/04/2010

The Context Manager client can be retrieved using the methods described in the Hydra Middleware
Clients chapter 5.1.2, providing access to the Context Manager interface as described by the Context

Manager service of the Middleware API. The functionalities include:

 Adding contexts to a Context Manager

 Management of existing contexts

 Adding named queries

 Interface for executing named queries, and single queries

Existing Context Managers on the Hydra network have the SID (Service identifier - part of the
CryptoHID) as shown below:

 SID = com.eu.hydra.caf.cm

The Context Manager has a relatively simple configuration, using the Hydra Configurator. The main
configurations that can be set, are:

 ContextManager.PID

o Persistent Identifier of the Context Manager. If not given, this is automatically

configured as "ContextManager:<machine-name>"

 ContextManager.DaqcPID
o The PID of the Data Acquisition Component the Context Manager should use to get

data. If no PID is given, then the Context Manager will try and find DAqC service in

its local OSGi registry, and use that instead. Failing that, the Context Manager will
be unable to subscribe for data.

 ContextManager.DefaultEventManagerPID

o The PID of the Event Manager that the Context Manager should publish events to
(as a result of reasoning performed by rule), if the rule action does not explicitly

state an Event Manager to use.

5.7.2 Contexts

Contexts are represented by the ContextSpecification in the Hydra Middleware API. This object

contains a definition of the context, including a set of properties and members of the context, as
described in D12.8. In addition to the definition, it may also contain a set of subscriptions or rules

(or both), depending on the type of the context (Application / Device / Semantic). Subscriptions are
used for the subscriptions for data from the Data Acquisition Component (see chapter 5.7.2).

Context Specifications can be persisted as XML documents, but are transferred as objects, as
described by the Context Manager WSDL, and also included in the Middleware API. The

specifications can be created using the Context IDE components, as described in the relevant
chapter of this document. These XML documents (with .ctx extensions) can be programmatically

processed into the ContextSpecification object using the ContextBuilderFactory class also provided
as part of the Middleware API. This class provides the functionality for marshalling the Java objects

to and from the XML representation.

ContextManager cm = <Get ContextManager client>

...

InputStream input = Class.class.

 getResourceAsStream("contexts/exampleContext.ctx");

ContextSpecification ctx =

ContextBuilderFactory.buildContext(input);

ContextResponse response = cm.createContextSpecification(ctx);

The code snippet above gives an example of using the ContextBuilderFactory to build the

ContextSpecification, and then sending it to a previously specified Context Manager, using the

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 48 of 157 30/04/2010

createContextSpecification method. The ContextSpecifcation is built using a created InputStream to
a locally stored file, retrieved using the Java ClassLoader mechanism. Alternatively, the builder can

also take Strings as input. Additionally, the builder provides functionality for storing contexts locally,

to marshall them back from the object to a String, or to a provided OutputStream.

The ContextResponse element returned contains a Boolean variable stating the success of the
operation (the example given above being creating a context in the Context Manager). Additionally,

the response may also contain a set of ContextManagerError objects, specifying any errors
encountered during the processing of the request.

Examples of defined contexts are given in the relevant IDE section (see chapter 7.4).

5.7.3 Queries

The querying of context is a significant part of the Context Provisioning functionality of the Context

Manager, allowing for applications to use contextual information - to become "context-aware". The
Context Manager provides multiple different options for querying context, that can be used using the

interfaces exposed by the Context Manager. Mostly, queries are based around the ContextQuery
object (typically sent as part of a QuerySet) found in the Middleware API.

Queries, like Rules, are based around Drools language rules, albeit the query only being a LHS (left-

hand-side) of a rule, without the RHS action. As with contexts, QuerySet objects are created using

the Context IDE components, and can be persisted and loaded using the ContextBuilderFactory.
Query results are returned as encoded XML of the specified query outputs.

ContextManager cm = <Get ContextManager client>

...

InputStream input = Class.class.

 getResourceAsStream("queries/exampleQuerySet.ctq");

QuerySet querySet = ContextBuilderFactory.buildQuerySet(input);

ContextResponse response = cm.installQuerySet(querySet);

The code snippet above gives an example of loading a local QuerySet object, and installing it in the

previously configured Context Manager. The interfaces of the Context Manager supporting querying

of contextual data, are as follows:

Method Description
executeNamedQuery(String name,
 Parameter[] params)

Executes a previously configured query,
referenced by its name, using the provided

parameters - if the query takes any.

executeSingleQuery(ContextQuery query) Executes the single query passed that is not
persisted in the Context Manager.

queryKeyValue(String contextId,

 String keyId,
 String keyType)

Queries for the value of the specified key-value

pair, within the given context. keyType refers to
the type of the pair being queried (Property or
Member).

All queries return the QueryResponse object, containing the String result of the query, which may be
encoded XML, or simply the string-value of some data. Additionally, as with the ContextResponse, it

contains a set of ContextManagerError objects.

Example queries are given in the relevant IDE section (see chapter 7.4).

5.7.4 Context-sensitive Actions

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 49 of 157 30/04/2010

The other modality of making an application "context-aware", is through configuration of context-
sensitive actions as the output of context rules, reasoning over contextual parameters to determine

a significant change in context (as defined in the rules), that should then be reported to an external

Context Consumer (e.g. application). This is therefore an asynchronous architecture, with the
Context Consumer waiting to be reported to, rather than querying itself.

This itself can be achieved in two different ways. Firstly, the Context Manager may fire an event to a

specified Event Manager, to which the context-aware application is subscribed, such that it receives
the alert, and can interpret it as required in the flow of the application. This enables multiple

applications to respond to a single change in interpreted context, utilising the many-to-many

architecture of the Event Manager. As discussed in chapter 5.6 on the Event Manager, the Context
Consumer would then need to implement and expose the EventManagerSubscriber interface, with

the single method shown below:

 public boolean notify(String topic, Part[] parts);

Secondly, the context-aware application may expose services on the Hydra network that should be

called as the output of context rules, rather than calling an Event Manager. This can be called using
the predefined Web Service call action, in the RHS of rules.

5.7.5 Data Acquisition Component

The Data Acquisition Component (DAqC) performs the acquisition of data, from data sources
including sensors and services, as well as events published by a particular data source. The

acquisition is based on subscriptions made to the Data Acquisition Component. It is primarily used

by the Context Manager for the retrieval of data, but may also be used by other managers or
applications that require frequent updates of data or events from a data source.

Configuration of the Data Acquisition Component is minimal, with the Daqc.PID configuration being

the only entry of significance that can be set using the configurator, to define the persistent

identifier of the

DataAcquisitionComponent daqc = <get DAqC Service>

...

DaqcSubscription daqcSub = <get Subscription>

DaqcSubscriptionResponse response = daqc.subscribe(daqcSub);

The code snippet above gives an example of using the DataAcquisitionComponent service to pass a
set of subscripitions, as a DaqcSubscription object, to the DAqC, and receive the response. To then

receive the reports of the acquired data through this description, be it Events or pulled data, the
application must first implement the DataReportingService (of the Middleware API), as described

later.

5.7.6 Subscriptions

The SDK functionality of the DAqC provides the interface for configuring and cancelling subscriptions

for data, defined by the DaqcSubscription object in the Middleware API. This object contains the HID
of the subscribing entity (for acquired data to be reported back to), as well as a set of subscriptions

for data from the two protocols - PUSH and PULL (see D12.8).

Attribute ID Description Required?

EventManager.PID PID of the Event Manager to subscribe to

Event.Topic Topic of the published Event

EventSource.PID PID of the data source publishing the Event

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 50 of 157 30/04/2010

EventSource.SID SID of the data source publishing the Event
EventSource.HID HID of the data source publishing the Event

Table 2: Push Protocol Attributes

Attribute ID Description Required?

Datasource.PID PID of the service to 'pull' data from

Datasource.SID SID of the service to 'pull' data from

Pull.METHOD Name of the method to call
Pull.FREQUENCY Frequency (in ms) at which to 'pull' data
Pull.NAMESPACE Namespace of the service
Pull.SOAPACTION SOAP Action of the service
Pull.RETURNTYPE Type of the data returned
PlausibilityExpression Regular Expression to determine plausibility

Table 3: Pull Protocol Attributes

The two tables above show the attributes understood by each protocol, that are passed in the

subscriptions to the DAqC.

5.7.7 Plausibility Checking

The Data Acquisition Component provides the facility for low-level analysis of retrieved data, to
check its plausibility status. As this is at the level of data directly from a data source, the level of

semantics involved within the plausibility checking mechanism, is relatively minimal.

The analysis of the data is performed by matching the data against a Regular Expression, which is a
pattern used to match strings of data.

^(-[0-9]|(-[01])?[0-9]|([0-9])?[0-9]|1[0-2][0-9])$

The example regular expression, above, demonstrates an example of a numerical plausibility

expression for a thermometer device that returns sensed temperature in Celsius. It specifies that
the data has a plausible value of between -19 and 129 degrees. Anything outside this range would

be flagged up as being implausible, and the subscriber notified, such that they can take appropriate
action.

5.7.8 Data Reporting

Data retrieved by the Data Acquisition Component is reported back to the subscriber
asynchronously, and therefore (as with the Event Manager) any component seeking to use the Data

Acquisition Component to retrieve raw data and events from devices, must implement the
DaqcReportingService interface, which is defined in the Middleware API, and shown below. This is a

simple interface containing a single method, reportAcquiredData, that passes the retrieved data in

the form of a Data Report.

public boolean reportAcquiredData(DataReport dataReport)

The DataReport object, as shown above, is the object in which the retrieved data is stored, to be

reported back to the subscriber, and is generic to handle data from both Push and Pull protocols. It
references the Data Id specified for the data being reported, so that the subscriber can identify the

data which is being reported, as well as the protocol used to retrieve it. The data itself is passed as

a set of key-value attributes. When reporting data from the Push protocol, these key-value attributes
represent the "parts" content of the Event about which the protocol was notified. In the case of the

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 51 of 157 30/04/2010

Pull protocol, this is simply a single key-value piece of data, holding the value retrieved. All data sent
in the report is represented as a String.

As well as containing the data being reported, the DataReport object also contains both an update
on the status of the subscription that it is reporting for. This provides the mechanism for informing

the subscriber of a potential malfunction in the data source - when implausible data has been
retrieved, and also of when a data source is no longer available and data could not be retrieved.

This is essential to ensure that the subscriber is aware that they are no longer receiving data
updates from this device. It is then the responsibility of the subscriber to re-establish the

subscription, as and when the data source is available again.

5.8 Access Control Policy Framework

The Policy Framework provides policy-driven, access-control protection for Hydra devices and

applications. Policies can be utilised to ensure access to devices and applications is limited only to
those permitted access, including the ability to restrict the level of discoverability of an end-user‟s

devices and applications.

The Policy Framework, consisting of its various components, provides the functionalities to create,

update, and maintain Policies, in addition to its core of evaluating access requests, and enforcing the
decisions made. The SDK functionality of the Access Control Policy Framework comes with three

distinct interfaces, as well as another interface for extension, these being:

 Policy Enforcement Point

o Called at the point of interception of a request

o Formats the credentials of the request in to an XACML RequestCtx object, and calls
the PDP for a decision

o Enforces the returned decision, handling any obligations specified in the Policy
 Policy Decision Point

o Receives the XACML RequestCtx object from the PEP

o Analyses the request against the policies stored in its policy repository
o Returns the determined decision

 Policy Administration Point

o Interface exposed by the PDP for the administration of XACML policies

o Active / deactivate XACML policies
 Policy Information Point

o Extension interface for PDP

o Adds functions for the PDP to use when they are referred to in XACML policies

5.8.1 Policy Enforcement Point

Typically, in the context of communication in Hydra, the Access Control Policy Framework is used to
provide access control at the level of the Network Manager, such that access decisions can be made

on receiving a request, through the SOAP Tunnel, for a hosted service, before actually forwarding
the payload of the request to the endpoint service. The Policy Enforcement Point (PEP), therefore, is

utilised by the Network Manager, when it receives a call, forwarding the various credentials it has
about the request, to the Policy Enforcement Point.

Although the PEP itself does not expose a service to the Hydra Network, it does register itself with
an HID and certificate, such that it can be identified as being a PEP. The SID of the PEP is as

follows:

 SID = com.eu.hydra.policy.pep

Configuration of the PEP bundle specifies the following important configurations:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 52 of 157 30/04/2010

 Pep.PID = The PID of the registered PEP service

 Pep.PdpPID = The PID of the PDP service that the PEP should use to retrieve an access

decision

The PEP exposes a couple of methods also, used by the Network Manager, to pass the credentials of

a request. These are:

public PepResponse requestAccessDecision(String senderHid,

 String senderCert,

 String receiverHID,

 String receiverCert,

 String soapMsg,

 String sessionId);

public PepResponse requestAccessDecisionWMethod(String senderHID,

 String senderCert,

 String receiverHID,

 String receiverCert,

 String method,

 String sessionId);

Both methods request an access decision, but for different contexts. The Network Manager uses the
requestAccessDecision method, passing on the complete SOAP Message received from which the

PEP extracts the credentials of the action to be performed, whereas the

requestAccessDecisionWMethod method passes the name of the method directly instead. The
senderCert and receiverCert arguments are the encoded CryptoHID certificates for the two entities

involved at either end of the request.

5.8.2 Policy Decision Point

The Policy Decision Point (PDP) is a manager on the Hydra network that registers two different

services, one for the process of access requests, returning a decision, and another for the
administration of the XACML policies that the PDP uses in these decision making processes. This

administration service is described in the next chapter.

The PolicyDecisionPoint interface, of the Hydra Middleware API, declares just one single method, for
the evalutation of the XACML RequestCtx, as follows:

public String evaluate(String requestXml);

This method takes the RequestCtx object, encoded as a String, and evaluates it against the set of
policies in the policy repository. The ResponseCtx, containing the decision made along with any

obligations with the decision, is returned as encoded XML.

The SID of the PDP service is:

 SID = com.eu.hydra.policy.pdp

The PDP has minimal configuration, using the configurator, as follows:

 PdpService.PID = PID of the PDP
 Pdp.UseDatabase = true / false depending on whether XMLDB based storage or file-

based storage is to be used for XACML policies

5.8.3 Policy Administration Point

The interface for actually authoring XACML policies is part of the IDE, and discussed in the chapter
7.7. It uses the interface exposed by the PDP that is distinctly separated from the service performing

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 53 of 157 30/04/2010

the decision functionality, as described in the previous chapter. It sets out the following methods as
the PdpAdmin interface of the Middleware API:

public boolean activatePolicy(String policyId);

public boolean deactivatePolicy(String policyId);

public String[] getActivePolicyList();

public.String[] getInActivePolicyList();

public boolean publishPolicy(String policyId, String policyXML);

public boolean removePolicy(String policyId);

public String getPolicy(String policyId);

The key method involved here, is the publishPolicy method that publishes the policy with the given
id, policyId, with the XML-encoded content provided with the policyXML argument.

 The SID of the PDP service is:

 SID = com.eu.hydra.policy.pap

The PAP has even less configuration than the PDP, using the configurator, as follows:

 PdpAdminService.PID = PID of the PDP Administration service

5.8.4 Policy Information Point

The Hydra PDP is designed to be extensible, to easily allow for new functionality to the PDP through

adding additional Policy Information Point (PIP) components, which includes the ability to resolve

certain attributes, add additional functions that can be used in policies, add new data types, and so
on.

PIPs are implemented as OSGi bundles that register services, recognised by the PDP, that it uses to

extend the functionality, adding new Functions and Attribute Finders to the PDP at runtime. These
interfaces are PipFunction, and PipModule.

PipFunction provides a method that the PDP can use to retrieve the custom XACML Functions
(com.sun.xacml.cond.Function) that it then installs to the PDP Function factory, such that they are

then immediately available for use. Therefore, the interface is simply:

 public interface PipFunction {

 public Set<Function> getFunctions();

}

Implemented PipModule components define XACML AttributeFinders, that can retrieve attributes that

are not available in the request, but are specified in an XACML policy. The PipModule itself is
essentially just an extension of the AttributeFinderModule defined by the XACML 1.x implementation

by Sun, providing a service name unique to the Hydra Access Control Policy Framework. Therefore,
the PipModule interface is:

 public abstract class PipModule extends AttributeFinderModule {

}

5.9 Quality of Service Manager

Hydra operates within the scope of network embedded devices, like mobile phones, laptop and

desktop computers, etc. These devices have different capabilities in terms of computational power,
screen size and memory, etc. To address this fact and, e.g. playing media files, the QoS Manager

can be used to optimize the quality of the file depending on which device it is played on.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 54 of 157 30/04/2010

5.9.1 Functionalities

The QoSManager provides three functionalities:

1. To request the best-suitable service out of a range of Hydra services with same functionality.

2. To request a ranking list of best-suitable services.

3. To request a set of quality views of service parameters that are regularly updated from
ontology.

5.9.2 Dependencies

First of all the QoSManager requires the new Hydra Commons and the Network Manager as entry
point to Hydra middleware.

This tutorial and the usage of the QoSManager require knowledge of new Hydra Commons. For
processing specific service requests, the QoS Manager needs to query Hydra Ontology. For this the

Ontology Manager provides an accessible web interface for retrieving data values of QoS properties
of Hydra services and the (embedded) devices on which these services are running.

5.9.3 Used by

Inside an application built on Hydra, the Application Service Component is intended to consume the
QoSManager for retrieving the best-suitable services under consideration of QoS properties.

The self*-management component requires an regular update of the quality views of services

parameter, and thus needs to request a specific set of QoS properties for self-adaption.

5.9.4 Prerequisites

You need to have installed:

1. OSGi environment (e.g. Equinox)

2. MySQL (MySQL 5.1; the typical and complete version as well) and

3. Protégé 3.4.1

5.9.5 Installation

1. Install new Hydra Commons and latest version of Network Manager.

2. Download the QoS Manager.

3. Create and Adapt QoSManager.properties configuration file in ECLIPSE\QoSManager\config\

4. Start a database server (For example, MySQl)

Start Protégé and load Ontology from 'Ontology' folder inside QoSManager.

Configuration

Before running QoS Manager some configuration needs to be done inside Protégé:

1. Select from the menu File -> Open...

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 55 of 157 30/04/2010

2. Navigate to the destination of the recently checked out QoS Manager Bundle in order to
select the 'HydraOntologyManager.pprj' project file included in the 'Ontology'

Figure 27: Select project

And the OntologyProject is loaded:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 56 of 157 30/04/2010

Figure 28: Ontology Browser

3. Select from the menu OWL -> Ontology repositories..., and the following dialogue is loaded

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 57 of 157 30/04/2010

Figure 29: Repository Manager

4. On each tab, i.e. on the Project repositories and Global repositories tab, press the '+'-
button, and select 'Local Folder' as the radio button option, and select as your destination

the 'Ontology' folder.

5. Close the dialogue and another message dialogue asking you to perform a reload appears.

Figure 30: Dialog Box

6. Select the 'Reload' button and finally save the project, and close Protégé.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 58 of 157 30/04/2010

While running configure via Hydra Commons Configurator

(First, setup the run configuration of the OSGi bundle set, as described in next section)

For providing a unique and better interface for configuration, the QoS Manager has been ported to

the Hydra Commons Configurator.

While running the OSGi configuration, all the listed properties can be changed via
http://localhost:8082/HydraStatus#.

Just type in a value field of a property and push the 'Update Configuration' button.

To make the QoS Manager perform correctly, the following fields (PID, ontology folders, MySQL
configuration etc) need to be adapted accompanied with exemplified values:

 QoSManager.PID= QoSManager:Hydra

 hydraontology.path=C:/archive/workspace/hydra/Ontology/HydraOntologyManager.owl

 globalrepositories.path=C:/archive/workspace/hydra/Ontology/

 mysql.username=root

 mysql.password=otto81

 mysql.port=3306

 mysql.defaultdb=hydra

See also this screenshot given below:

Figure 31: Hydra Status Page

http://localhost:8082/HydraStatus

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 59 of 157 30/04/2010

5.10 Execution in eclipse

The bundle has been tested using the equinox OSGi framework.

1. Create in the 'Run Configurations...' menu a new launch configuration for the OSGi
framework. As all related bundles have been developed as OSGi Declarative Services there is
no need for setting start levels.

Choose the prepared QoSManager lauch configuration, or create a new run configuartion

and select the following bunldes depicted in the screeenshot below (please consider to
select the two mortbay.*-bundles - for them the screen was too small):

Figure 32: Bundles for QoS Manager

Switch to the 'Arguments' tab and put inside the VM Arguments:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 60 of 157 30/04/2010

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -

Dorg.osgi.service.http.port=8082

As Protégé related libraries require a large amount of user memory it is recommended that the VM

line with -Xms and Xmx, in particular -Xmx option in order to prevent a Java heap space exception:

-Declipse.ignoreApp=true -Dosgi.noShutdown=true -

Dorg.osgi.service.http.port=8082 -Xms512m -Xmx1024M

5.10.1 Usage

A QoS tester bundle can be downloaded. It has been implemented according to new Hydra
Commons.

There is the following code in component class activate-method calling the getRankingList
functionality of QoS Manager:

protected void activate(ComponentContext context){

 RemoteWSClientProvider service = (RemoteWSClientProvider)

context.locateService(RemoteWSClientProvider.class.getSimpleName());

 try {

 nm =

 (NetworkManagerApplication) service

 .getRemoteWSClient(

 NetworkManagerApplication.class.getName(),

//

 "http://localhost:8082/axis/services/NetworkManagerApplication"

 null,

 false);

 createCryptoHID();

 // Get Remote QoSManager

 String qosManagerHID = getQoSManagerHID(myHID);

 //Change if QoSManager is running on remote

machine

 String qosManagerIP="localhost";

 String targetUrlHydraEventManager =

 "http://" +qosManagerIP+ ":" +

 System.getProperty("org.osgi.service.http.port")+

 "/SOAPTunneling/0"

 + "/" +

qosManagerHID +

 "/0/hola";

 QoSManager qosManager =

 (QoSManager)

service.getRemoteWSClient(QoSManager.class.getName(),

targetUrlHydraEventManager, false);

 String result =

qosManager.getRankingList(xmlQoSRequest);

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 61 of 157 30/04/2010

 LOG.debug("result="+result);

 } catch (IOException e) {

 LOG.error(e.getMessage());

 } catch (Exception e) {

 LOG.error(e.getMessage());

 }

 }

The appropriate response to this request looks like:

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<ResultList xmlns="http://qosmanager.hydra.eu.com">

<Rank>

<Position>1</Position>

<Device>Dell Laptop</Device>

<ServiceName>PlayVideo3</ServiceName>

<HID>http://en.wikipedia.org/</HID>

<Rate>5</Rate>

<AveragePercentage>62.33%</AveragePercentage>

<Details>

<Detail>

<Property>cost</Property>

<Value>2.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>

<Property>powerconsumption</Property>

<Value>90.0</Value>

<Unit>watts</Unit>

</Detail>

<Detail>

<Property>screensize</Property>

<Value>15.0</Value>

<Unit>inch</Unit>

</Detail>

</Details>

</Rank>

<Rank>

<Position>2</Position>

<Device>Pioneer Plasma</Device>

<ServiceName>PlayVideo1</ServiceName>

<HID>http://www.youtube.com/</HID>

<Rate>4</Rate>

<AveragePercentage>34.61%</AveragePercentage>

<Details>

<Detail>

<Property>cost</Property>

<Value>3.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>

<Property>powerconsumption</Property>

<Value>380.0</Value>

<Unit>watts</Unit>

</Detail>

<Detail>

<Property>screensize</Property>

<Value>50.0</Value>

<Unit>inch</Unit>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 62 of 157 30/04/2010

</Detail>

</Details>

</Rank>

<Rank>

<Position>3</Position>

<Device>Samsung Projector</Device>

<ServiceName>PlayVideo2</ServiceName>

<HID>hid2</HID>

<Rate>3</Rate>

<AveragePercentage>66.67%</AveragePercentage>

<Details>

<Detail>

<Property>cost</Property>

<Value>4.0</Value>

<Unit>euro</Unit>

</Detail>

<Detail>

<Property>powerconsumption</Property>

<Value>48.0</Value>

<Unit>watts</Unit>

</Detail>

<Detail>

<Property>screensize</Property>

<Value>80.0</Value>

<Unit>inch</Unit>

</Detail>

</Details>

</Rank>

</ResultList>

5.11 Storage Architecture

 The Hydra Storage Architecture is designed to enable developers to integrate any kind of storage
into the Hydra middleware. Therefore storage is realised as a virtual devices. These devices have to

be Hydra enabled, so they can be recognised by the Hydra Discovery Manager and accessed using

the Network Manager. From the application developer‟s view these devices behave like any other
Hydra enabled device. Figure 33 below shows a short overview over the basic architecture.

The most important part for developers integrating storage is the Storage Manager Device. As the
Storage Devices the Storage Manager Device is realised as virtual Hydra enabled device. One of

these exists on any physical Hydra device bringing storage into the network. The Storage Manager

Device is responsible for the administration of the local Storage Devices. A closer description of the
Storage Manager Device is given in the following sections.

The Storage Devices are connectors to some kind of storage in Hydra. There can be different
devices using different APIs for different kinds of storage. The File System Device for example is

designed to realise an easy to use access to storage structured in files and directories. It is also
shown that the API is specialised to support this kind of storage. A Database Storage Device would

offer an API specialised for database storage by using, e.g. SQL queries.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 63 of 157 30/04/2010

Figure 33: Basic architecture of storage in Hydra

5.11.1 Implementation details

The managers implemented in the prototype of the Hydra Storage Architecture were developed as

UPnP devices created by Limbo and are available as OSGi bundles. The managers can be reached
using UPnP or using the created Web services using the same API. Therefore the API of all

managers has to use only those two devices which use UPnP.

The first limitation concerns numbering. UPnP supports only 32 bit integers, while the Hydra Storage

Architecture often needs 64 bit. Therefore all numbers are sent as strings. Further UPnP does not

support complex types. Therefore all complex data types are converted into XML and sent as a
string. The StorageManagerCommonBundle is an OSGi bundle that implements all the complex data

types. It can be used by Java applications or other OSGi bundles to convert Strings in Objects and
Objects in Strings. The complex data structures used most often are the response types. As UPnP

does not support exceptions, any method that could fail has to return an error code.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 64 of 157 30/04/2010

Figure 34: Some examples for Responses

The figure above shows a small subset of the used responses. The abstract class Response holds the

error code of an operation. The class ErrorCodes defines the legal values and the meaning of the
code in different areas. The error code 0 is reserved as marker for a successful operation.

Additionally a response includes an error message. Here the sender of the response may store error
information, which could help users or developers to discover why an operation failed. The

subclasses of Response differ in the type of the delivered result. The type can be none (as in
VoidResponse), a simple type (as in StringResponse), or a complex type stored as XML data in a

string (as in StringVectorResponse). As you will see later on, there are a variety of different

subclasses of responses for different response types.

Listing 5.11.1: StringResponse as an example of the XML representation of a response

<stringResponse>

<error errorcode="1 ">

error message

</error>

<result>

<value>

response

</value>

</result>

 </stringResponse>

Listing above shows the XML representation of a StringResponse. At first it is important to know that

each subclass sets its own title of the root element of the response. The title should be equal to the

class name and should be the type of the result followed by Response. In the example in line 1 the
root type is set to StringResponse. In line 2 the element error can be seen, which holds the error

code as an attribute. The error message is stored as the content of this element in line 3. An error
can also be an empty element if no error message is returned. The element result in line 5 is owned

by the subclass. It exists in any subclass but attributes and content differ. A StringResponse stores

an element of type value here if the result of the StringResponse was not null.

Listing 5.11.2: Dictionary representation in XML

<properties>

<key1>

 value1

</key1>

<key2>

value2

</key2>

</properties >

The class offers methods to build Strings containing responses without caring about the response
objects. This can be useful if a developer uses the Limbo generated stubs of the devices directly.

This class also offers methods to convert special objects into XML. An example for such an object is
shown in the Listing 5.11.2. Each dictionary is placed in element properties. The contents of this

element are the key/value pairs of the dictionary. The key is used as name of the tag while the value
is used as content of the tag.

5.11.2 Storage Manager Device

As explained before the Storage Manager Device is responsible for the administration of the Storage

Devices. Therefore it supports a number of Storage Device types. The implementation supports the

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 65 of 157 30/04/2010

File System Devices. The Storage Manager Device is implemented as prototype in the OSGi Bundle
StorageManagerDeviceServer.

5.11.3 API

The Storage Manager Device is used to administrate storage. Therefore its API has to support the
configuration of all supported Storage Devices.

Figure 35: API of a Hydra Storage Manager Device

Figure 35 above shows the API of the Storage Manager Device. The following list includes a
description of the single methods:

createStorageDevice(config : string) : StringResponse This method is responsible for setting
up a new storage device.

createStorageDeviceLocal(config : string) : VoidResponse This method is only used for the

communication between Storage Manager Devices. By this method a Storage Manager Device can
propagate the creation of a Storage Device to other Storage Managers, which should also hold the

device.

deleteStorageDevice(id : string) : VoidResponse This method removes an existing device.

deleteStorageDeviceLocal(id : string) : VoidResponse This method is only used for the
communication between Storage Manager Devices. By this method a Storage Manager Device can

propagate the deletion of a Storage Device to other Storage Managers, that should also delete the
device.

getStorageDevices() : StringVectorResponse Gives a list of the IDs of all local hosted storage

devices.

findStorageDevice(id : string) : StringResponse This method delivers the configuration of a

Storage Device.

updateStorageDevice(config : string) : VoidResponse This method is responsible for updating

an existing storage device.

updateStorageDeviceLocal(config : string) : VoidResponse This method is only used for the
communication between Storage Manager Devices. By this method a Storage Manager Device can

propagate the update of a Storage Device to other Storage Managers, which also hold the device.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 66 of 157 30/04/2010

Figure 36: API of HydraSMConnector

5.11.4 Client

As part of the prototype there is also a Client for the Storage Manager. This client holds Limbo
generated method stubs for the Storage Manager Device. Developers can use these by including the

class torageManagerLimboClientPortImpl. To make it easier for Java developers to access the

Storage Manager the StorageManagerDeviceClientBundle extends the automatically created client by
the class HydraSMConnector.

Figure 36 above shows the API of the HydraSMConnector. It only holds the methods meant to be

used by users of a Storage Managers Device, not the methods meant for communication between
Storage Manager Devices.

HydraSMConnector (wsAddress : String) This constructor creates a new HydraSMConnector
denoting to the given Storage Manager Device.

Using this class it is quite easy to access a Storage Manager Device in Java.

Listing 5.11.3: Example of a Java application using a Storage Manager Device

package de.douglas2a.hydra.testkram;

import java.io.IOException

import com.eu.hydra.limbo.storagemanagerdevice.client.

HydraSMConnector;

import com.eu.hydra.storage.helper.ErrorCodes;

import com.eu.hydra.storage.helper.StringVectorResponse;

public class StorageManagerTester {

 public static void main (String args[]) {

 String path = "http://localhost:8083/services/storagemanager";

 try {

 HydraSMConnector smClient = new HydraSMConnector(path);

 StringVectorResponse svr =

 smClient.getSupportedStorageDevices();

 if (svr.getErrorCode()!= ErrorCodes.EC_NO_ERROR) {

 System.out.println(svr.errorOut());

 } else {

 if (svr.getResult().isEmpty()) {

 } else {

 System.out.println ("Supported Devices:");

 for (Stringtype:svr.getResult()) {

 System.out.println("_" + type);

}

}

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 67 of 157 30/04/2010

 }

 } catch (IOException e) {

e.printStackTrace () ;

}

 }

}

5.11.5 Command Line Client

The StorageManagerClientCLI is a command line interface to access a Storage Manager Device. It

can be used to maintain Storage Devices hosted by the Device. The eclipse project includes a
description for exporting the command line client including all dependent libraries as jar file. A call of

the command line client has to follow the form:

host> java -jar StorageManagerClientCLI.jar \\

SMD_WS_ADDRESS command (parameters ...)
SMD_WS_ADDRESS is the Web Service Address of the Storage Manager Device.

5.11.6 File System Devices

A File System Device is the representation of storage structured in files and directories in the Hydra
Storage Architecture. There are different kinds of File System Devices available, which store the data

in different ways, but all File System Devices share the same API. Therefore, from the developer‟s
point of view, it does not matter which kind of File System Device is accessed.

5.11.7 API

The API of the File System Device is designed to be close to functions to access files and directories
in operating systems. The File System Devices are accessed using a network and must be reachable

using web services and UPnP. Therefore, it is impossible to use streams and all accesses to files
have to be block oriented.

Listing 5.11.4: A HydraFile denoting a directory

<hydraFile

 path="/"

 isDirectory ="true "

 aTime="1234221"

 mTime="1205346"

 cTime="1131237"\>

Listing 5.11.5: A HydraFile denoting a file

<hydraFile

 path="/test.txt"

 isDirectory="false"

 aTime="1234201"

 mTime="1205002"

 cTime="1131248"

 size="4096">

 <properties>

<eu.com.hydra.storage.fsd.encoding.method>

 text

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 68 of 157 30/04/2010

 </eu.com.hydra.storage.fsd.encoding.method>

 <mimeType>

 Text:ascii

 </mimeType>

 </properties>

 </hydraFile>

The HydraFile is an important part of the File System Device API. This data structure is used to
exchange metadata information about a file or directory. It is implemented in the

StorageManagerCommonBundle.

Listing 5.11.4 shows the XML representation of a directory as a HydraFile. Each file holds the path to

the file or directory on the File System Device in the attribute path. The field isDirectory holds a
boolean value which is true if path denotes a directory. If it is set to false, path links to a file, as the

File System Devices only support files and directories.
Links, sockets, pipes, and other entities supported by some operating systems are not supported by

File System Devices. The fields aTime, mTime and cTime hold the timestamps of the last access, last

modification, and creation of the file or directory.

If the HydraFile denotes a file, it has some additional fields, like shown in Listing 3.5. The field size
holds the size of the file in bytes. Files can also have properties in the Hydra Storage Architectures.

These are submitted in the child element properties. The properties are stored as dictionaries. In

Listing 5.11.5 line 9 holds the property eu.com.hydra.storage.fsd.encoding.method with the value
text in line 10. This property has a special meaning. If it is set to base64 the File System Device will

encode any data read from the file in base64 format. Any data written to the file is supposed to be
in base64 format and will be decoded before writing. This way binary data can be submitted to the

file. If the property is set to text, no conversion will be performed.

Another structure used by the File System Device is called StatFS. This data structure is used to give

a client the most significant information about a File System Device with one method call. In the
implemented prototype this method only delivers the size of the File System device, the free space,

and the available space.

Figure 37 below shows the API of the File System Devices.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 69 of 157 30/04/2010

Figure 37: API of a Hydra File System Device

5.11.8 File System Device types

A new different File System Devices has been developed to satisfy different storage demands in the

prototype. Figure 38 below shows an overview over the different File System Devices.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 70 of 157 30/04/2010

Figure 38: Basic architecture of file system

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 71 of 157 30/04/2010

6. Device Development Kit

This chapter presents the Device Development Kit (DDK), and specifically the process of Hydra-

enabling a device. The Hydra Middleware aims at developers who want to use network embedded

devices and built applications on top of the the layer that communicates with these devices. There
are a huge variety of network devices, with even ore on the horizon. These devices communicate

with different protocols and standards. To make use of a unified method, the Hydra DDK provides
the necessary functionalities to abstracts from their different levels and standards and makes it

easier for application developer to communicate with different devices in the same way.

6.1 DDK Components and Tools

6.1.1 Limbo

This tutorial aims at giving Limbo users a guide for generating services using the Limbo compiler.
The Limbo compiler is used to create Web Service interfaces for devices, in order to communicate
and set the necessary functionalities to discover the device and its services within the Hydra

Framework. For this purpose, a simple example of a thermometer service is used. The device used is

a PICO TH03 thermometer, which is the same one used in the first Hydra prototype.

Two operations, getStatus and getTemperature, are defined in the service and they both take as
argument a thermometerID which is a string that identifies a thermometer for the case of having

more than one. This example has also been used to develop the state machine part of Limbo that
will be explained further ahead in this document.

The thermometer service will provide the following functionality (written as Java code):

 public interface th03 {

 public boolean getStatus(String thermometerId);

 public double getTemperature(String thermometerId);

}

6.1.1 Obtaining and Installing Limbo

The prerequisites for running Limbo are:

 Java 5 or later

 the Hydra Event Manager (if using the state machine part of Limbo)

Once the limbo is downloaded, to install, it needs to be unzipped to an installation directory, called
<limbo>. It is assumed that commands are invoked in the <limbo> directory.

Using Limbo

 Using Limbo includes the following steps:

 Describe targeted device in Hydra's device ontology (optional)

 Describe the service in a WSDL file. Reference the device description from the WSDL file

 Describe the service-related statemachine in the device ontology (optional)

 Run the Limbo compiler on the WSDL file

 Implement and deploy the device-specific service

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 72 of 157 30/04/2010

 Run the service

Describing the device in the Hydra ontology

A device has basic device type information (modelled with Device.owl), its associated software

platform (SoftwarePlatform.owl), hardware platform (Hardware.owl), and also a state machine to
model the device state transitions at run time (StateMachine.owl). Therefore when adding a device,

the related hardware and software, state machine information should be encoded in the related
ontologies.

The Hydra ontologies may be found in <limbo>/resources/.

In the device ontology (Device.owl), the following code is added for an indoor thermometer (the
model number is pico th03):

<InfoDescription rdf:ID="PicoTh03_info">

 <modelDescription

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">3

channels</modelDescription>

 <manufacturerURL

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">www.picotech.com</m

anufacturerURL>

 <friendlyName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">PicoTh03</friendlyN

ame>

 <modelName

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">th03</modelName>

 <manufacturer

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">Pico technology

limited</manufacturer>

 <modelNumber

rdf:datatype="http://www.w3.org/2001/XMLSchema#string">th03</modelNumber>

 </InfoDescription>

<Thermometer rdf:ID="PicoTh03_Indoor">

 <deviceId rdf:datatype="&xsd;string">PicoTh03_Indoor</deviceId>

 <hasHarware rdf:resource="&Hardware;PicoTh03_hardware"/>

 <hasStateMachine rdf:resource="&state;PIcoTh03_Indoor_sm"/>

</Thermometer>

The hardware information is added in the hardware ontology (Hardware.owl):

<DeviceHardware rdf:ID="PicoTh03_hardware">

 <primaryCPU>

 <CPU rdf:ID="PIC16C54C">

 <cpuName rdf:datatype="http://www.w3.org/2001/XMLSchema#string">

 PIC16C54C</cpuName>

 </CPU>

 </primaryCPU>

</DeviceHardware>

The software information can be left empty as this thermometer does not have a software platform
that supports web service deployment.

6.1.2 Describing the service in a WSDL file

In this case, a simple WSDL file is used for a thermometer service that contains two operations, one
for getStatus and another for getTemperature. The WSDL file, which is also in

<limbo>/tutorial/wsdl/, is shown below:

<?xml version="1.0" encoding="UTF-8"?>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 73 of 157 30/04/2010

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"

 xmlns:ns="http://hydra.eu.com/th03/"

targetNamespace="http://hydra.eu.com/th03/"

xmlns:hydra="http://hydra.eu.com/" >

 <message name="thermResponseDouble">

 <part name="result" type="xs:double"/>

 </message>

 <message name="thermRequest">

 <part name="thermometerId" type="xs:string"/>

 </message>

 <message name="thermResponseBoolean">

 <part name="status" type="xs:boolean"/>

 </message>

 <message name="thermRequest1">

 <part name="thermometerId1" type="xs:string"/>

 </message>

 <portType name="TH03Port">

 <operation name="getTemperature">

 <input message="ns:thermRequest" name="thermRequest"/>

 <output message="ns:thermResponseDouble"

name="thermResponseDouble"/>

 </operation>

 <operation name="getStatus">

 <input message="ns:thermRequest1" name="thermRequest1"/>

 <output message="ns:thermResponseBoolean"

name="thermResponseBoolean"/>

 </operation>

 </portType>

 <binding name="TH03SOAP" type="ns:TH03Port">

 <hydra:binding

device="file:./resources/Device.owl#PicoTh03_Indoor"/>

 <soap:binding style="rpc"

transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getTemperature">

 <soap:operation

soapAction="http://hydra.eu.com/th03/getTemperature" style="rpc"/>

 <input name="thermRequest">

 <soap:body use="literal"

namespace="http://hydra.eu.com/"/>

 </input>

 <output name="thermResponseDouble">

 <soap:body use="literal"

namespace="http://hydra.eu.com/"/>

 </output>

 </operation>

 <operation name="getStatus">

 <soap:operation

soapAction="http://hydra.eu.com/th03/getStatus" style="rpc"/>

 <input name="thermRequest1">

 <soap:body use="literal"

namespace="http://hydra.eu.com/"/>

 </input>

 <output name="thermResponseBoolean">

 <soap:body use="literal"

namespace="http://hydra.eu.com/"/>

 </output>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 74 of 157 30/04/2010

 </operation>

 </binding>

 <service name="TH03Service">

 <port name="TH03Service" binding="ns:TH03SOAP">

 <soap:address location="http://dmz-

168.daimi.au.dk:8084/th03"/>

 </port>

 </service>

</definitions>

6.1.3 Describing the service-related statemachine

For the current implementation of state machine stub code generation, a dummy state machine
instance is needed for one type of devices. For example, the thermometer has a dummy generic

state machine as shown in the following figure called Thermometer_sm, and then there is a state
machine instance for every device, for example PicoTh03_indoor_sm.

Figure 39: Dummy state machine

The dummy state machine Thermometer_sm can be added to the state machine ontology as
follows:

Only State instances are used to generate code (and their related doActivity).

<StateMachine rdf:ID="Thermometer_Indoor_sm">

 <hasStates rdf:resource="#ThermometerStopping"/>

 <hasStates rdf:resource="#ThermometerStarting"/>

 <hasStates rdf:resource="#ThermometerMeauring"/>

</StateMachine>

<Simple rdf:ID="ThermometerMeauring">

 <StateName rdf:datatype="&xsd;string">

 ThermometerMeauring</StateName>

 <doActivity rdf:resource="#getTemperature"/>

</Simple>

<Action rdf:ID="ThermometerStart"/>

<Simple rdf:ID="ThermometerStarting">

 <StateName rdf:datatype="&xsd;string">

 ThermometerStarting</StateName>

 <doActivity rdf:resource="#ThermometerStart"/>

</Simple>

<Action rdf:ID="ThermometerStop"/>

<Simple rdf:ID="ThermometerStopping">

 <StateName rdf:datatype="&xsd;string">

 ThermometerStopping</StateName>

 <doActivity rdf:resource="#ThermometerStop"/>

</Simple>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 75 of 157 30/04/2010

6.1.4 Run the Limbo compiler on the WSDL file

In <limbo>, invoke:

 java -jar limbo.jar <arguments> tutorial/wsdl/th03r.wsdl

where <arguments> is on the form "-<argument> <value>". For the tutorial, the argument list is
left empty.

The following arguments are supported:

 Option: name
Option:

values
Default Meaning

limbo.language jse, jme jse
Determines which programming language
code is generated for

limbo.platform standalone,osgi standalone

The target platform. In the osgi case, the

standard HTTP service will be used, in the

standalone case, Limbo will generate a
simple HTTP server

limbo.generationtype server,client,all all

Determines whether a skeleton is created

for a
server, a stub is created for a client, or

both

limbo.protocol TCP,UDP,BT TCP
Determines which transport layer protocol
will be used: TCP, UDP, or Bluetooth

(RFCOMM)

limbo.loghandler true,false false
If set to true, the generated server code
will log requests

limbo.outputdirectory any directory generated Specifies where generated code is put

Per default, Eclipse project resources are created so the generated code may be used as the basis of
a project in Eclipse.

The following files are the most important files that are generated for the thermometer code in the
case a standalone server project:

 TH03PortOpsImpl - A default implementation of the service methods

 LimboMain - A main program that will run the server created

 TH03PortLimboServer - A TH03-specific web server

In the OSGi configuration an Activator is generated instead of a main program (and a Servlet is
created instead of using a LimboServer).

6.1.5 Implement and deploy the device-specific service

The generation created two directories in generated:

 th03rClient

 th03rServer

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 76 of 157 30/04/2010

Each of these contains a project that can be imported in Eclipse. The projects are self-contained and
may be copied to one‟s workspace.

The actual device binding is implemented in the com.eu.hydra.limbo.TH03PortOpsImpl class. Here
the getStatus and getTemperature methods are implemented. In the following, just a dummy
implementation is shown:

/**

 * getStatus method - returns the current staus of the thermometer.

 *

 * @param thermometerId1 - ID of the thermometer that status is

required.

 *

 * @return the status of the thermometer.

 *

 */

public boolean getStatus(String thermometerId1) {

 return true;

}

/**

 * getTemperature method - the current temperature measured by the

thermometer.

 *

 * @param thermometerId - ID of the thermometer that temperature is

requested.

 *

 * @return the temperature given by the thermometer.

 *

 */

public double getTemperature(String thermometerId) {

 return -1.0;

}

6.1.6 Running the Generated Code

To run the server, run the com.eu.hydra.limbo.LimboMain class from Eclipse.

To interact with the server, locate the com.eu.hydra.limbo.client.TH03PortLimboClient class in the
th03rClient project and replace /*Insert method calls here*/ with calls to the thermometer service.

An example would be:

System.out.println("The temperature is " + theClient.getTemperature("42"));

Thereafter, the TH03PortLimboClient should be run in Eclipse. To change the default behaviour of
the generated server skeleton, change the com.eu.hydra.limbo.TH03PortOpsImpl class as described

above.

6.2 Device Ontology

The Device Ontology tools interface is a tool for manipulation of the device ontology via the web. It

can be used by the device developer for defining a new device description or editing an existing
device description. It can be used to browse devices in the ontology as well.

The Device Ontology tools interface can be used as a flexible ontology browser from the point of

view of the device taxonomy. A user can navigate in the device classification (ontology concepts)

and browse the device instances (concrete instance of some ontology concept, e.g.: HTCP3300
phone is an instance of MobilePhone concept). The user can view the instance properties. An

example of the browser view is in Figure below. The device browser enables to navigate through any

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 77 of 157 30/04/2010

part of the ontology. It is possible to browse through the hierarchy of sub-concepts of the
HydraDevice concept. For each instance it is possible to browse through all of the instance

properties and related property values. If the property values refer to another instance, the device

browser enables us to recursively traverse through the properties of any connected instance.
Furthermore, once an instance is selected, the browser shows all properties and connected values in

the right part of the page. Using the device browser, it is easy to effectively navigate through all
ontology concepts and the populated instances.

Figure 40: The Device Browser tab.

6.2.1 Device Creator

Figure 41: Adding a new instance.

The tool enables a user to create new devices and manually update some of the device properties.
The device creator provides the following functionality:

Manually create new device enables to add the device into a selected device type (adding a new

instance to the selected concept) by filling in the new device properties. See Figure above for the
new device form.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 78 of 157 30/04/2010

Upload/Update SCPD (Service Control Point Description) info The device can be created semi

automatically by uploading the specific XML document containing all device relevant information,

including basic device description, specification of services, but also models for events and energy

profile information. The content of XML can be generated automatically by several tools, but can be
extended and further specified also manually. It is also necessary to be aware of the update XML

structure.

Update Discovery info This functionality just simulates the semantic discovery process (normally

performed by the Discovery Managers in the Hydra architecture) and should be used only for

verification purposes. If a user fills-in the text box with the device discovery information formulated
as XML with predefined structure, the tool will perform the semantic discovery matching and create

the device run-time instance in the case of success. The tools supporting the device discovery
process will be described in the next section with more details.

Update (SA)WSDL info This tool enables the user to automatically generate device service models

from WSDL or SAWSDL files (i.e., Semantically Annotated WSDLs). The existing device instance has

to be selected and the URL address, or a local file containing the (SA) WSDL file has to be specified.

Services of the device will be substituted by a service description contained provided in the (SA)
WSDL file. This tool will be described in the next section in more detailed way.

Update Malfunctions, Events and Energy Profile info Various parts of device models can be

updated manually by providing specific XML documents describing the particular models. XML

documents have a prescribed structure. This way, the basic device information, models for

malfunctions, events and energy profiles can be updated. The illustration example of editing
capabilities for the selected device is in Figure below:

Figure 42: Device editing functionality

Import/Export functions

For the purposes of easy and effective device ontology population and device instances
update/maintenance, various import/export generators were developed. The generators should be

used both by application and device developers. Generators are also used by the ontology manager
web interface. The generators consume device descriptions, from which are generated the related

parts of ontology models, or, ontology models can be used to generate specific descriptive
information. All of the generators are used to create ontology models/descriptions automatically

rather than manually.

(SA)WSDL to ontology generator

A developer may populate the device service ontology with the description of services contained in a

related WSDL file. For a selected device, the WSDL file is parsed and the device instance is extended

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 79 of 157 30/04/2010

with the models of services specified in the WSDL file. Each time a new WSDL file is processed by
the generator, the device services are completely replaced by the services in the newly provided

WSDL. A WSDL file can be also semantically annotated using the SAWSDL standard. This

functionality can be particularly useful in order for Device Developers to facilitate Hydra enabling of
a device. In the actual implementation, the following annotations can be used:

Annotations for wsdl:operation element each WSDL operation stands for one specific service

ontology model using sawsdl:modelReference attribute directly in the wsdl:operation element. This

annotation is used to link the operation with the specific service type. Each operation should be
mapped only to one service type.

Extending wsdl operation element with sawsdl:attrExtension annotations: to enable the

annotations of service to various quality properties, such as Quality of Service or security properties,
the sawsdl:attrExtension elements are used. Each of them can map the service to a specified

ontology instance representing the property of service.

Annotation of input/output parameters to ontology instances each input or output parameter

may be annotated to the specific part of the Quality of Service ontology, which represents the

parameter types. Each parameter may be linked to the specific quality, e.g. output parameters can
be annotated to the measurement units. The generator parses the SAWSDL file and generates the

service models exactly as in the case of WSDL processing. Further more, the annotations are used to
create the relations between particular service parts and the annotated ontology concepts or

instances.

Discovery information to ontology generator

For the purposes of discovery process improvement, the developer may use a tool to generate the

device discovery ontology model directly from the discovery information acquired from the device by
one of the discovery managers. The device specific discovery information is parsed and the related

device instance is extended by the ontology model modelling the discovery information. This model
will be used in the semantic discovery process. The device discovery information acquired by a

discovery manager is specified as an XML file, which is parsed by the model generator. Generation
of discovery models should be realised for each device model newly added to the ontology. The

model generator makes it possible to process and update the discovery model in a fast automatic

way.

SPCD to ontology generator

For the purposes of adding or updating the devices model fast, the generic ontology generator
consuming SPCD XML documents, was implemented. The SPCD contains several device relevant

information, such as basic device description and manufacturer information, initial description of
services, but also discovery, events and energy profiles information. The SPCD generator uses the

specific ontology generators mentioned above processing the (SA) WSDL documents, but also

discovery information.

Ontology model to SCPD file generator

Another tool supporting the automatic semantic discovery of devices is the so called SCPD
generator. Each time, when a new device is discovered by some low-level discovery manager, the

discovery information is retrieved from the device and passed to the ontology manager which tries
to process the semantic resolution of the discovered device. This is done by comparing of the

discovery information with the various discovery models in the ontology. If semantic discovery is

successful and a suitable semantic model according to discovery information is found, the ontology
manager returns the description of the identified device and the services, which are provided. This is

done by generating so called SCPD file containing all the mentioned information. The SCPD file is
generated directly from the related device and service models in ontology.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 80 of 157 30/04/2010

6.3 Flamenco

Flamenco is a tool for supporting self-management in Hydra-based systems. In fact, Flamenco is a
way to model the desired behaviour of a device as a Coloured Petri Net (CPN), to track it at runtime

and to emit events for certain state transitions. It currently exists in two versions:

 Flamenco/CPN in which Petri Nets is used as a basis

 Flamenco/SW in which Semantic Web technologies are used as a basis

In the following the users are guided through a simple example of self-management and how to use

Flamenco to realise a scenario of managing a flow meter-based agricultural system. Furthermore, an

explanation is provided on how to make use of Flamenco to choose optimised solutions according to
multiple (conflicting) objectives, for example QoS requirements on memory consumption,

throughput, reliability and so on.

6.3.1 System Requirements and Installation

 Windows XP or Vista (CPN Tools only runs on Windows or Linux)

 Java 5 or later

 CPN Tools. A license and download the tool can be requested from:
http://wiki.daimi.au.dk/cpntools/cpntools.wiki. Version 2.3.5 which is an internal version is
needed. The CPN Tools people or UAAR need to be contacted for instructions on how to

download.

 Access to the Hydra Middleware software

 Eclipse Europa or later for running Flamenco

6.3.2 Design Time Usage

CPN Tools may be used directly to Flamenco/CPN nets. There is a template for such nets available in

HYDRA/sdk/flamenco/flamencocpn/resources/cpn/flamenco-template.cpn. The figure below shows

the result of opening the template:

http://wiki.daimi.au.dk/cpntools/cpntools.wiki

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 81 of 157 30/04/2010

Figure 43: CPN Tools

6.3.3 The auxiliary page

The right hand side is an auxiliary page that is used to generate specific Standard ML code for a
Flamenco/CPN net. When the net is changed to use it at runtime in Flamenco/CPN, the first

expression needs to be evaluated. Evaluating one of the expressions under "2." will start CPN Tools
and wait for an attachment from the Java part of Flamenco/CPN on port 9000. Depending on which

one you choose, you will be able to see the net being updated or not while Flamenco/CPN runs.

Lastly, the third expression may be evaluated to run Flamenco/CPN entirely without a user interface.
Evaluating the expression will generate a Standard ML image that contains the specific net.

6.3.4 The net

The template net is shown in the middle. It only contains two template places ("Input Events" and

"Output Events"). These places will receive and send events from the Hydra middleware respectively

at runtime. In general there should be one place with the colour INPUT and one place with the
colour OUTPUT.

6.3.5 The declarations

The declarations to the right define the colour of the input and output events and should be

extended as needed.

Runtime Usage

The net for a full Flamenco/CPN example is shown in the figure below:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 82 of 157 30/04/2010

Figure 44: Flamenco

To run Flamenco/CPN, the following steps need to be taken:

 open CPN Tools on a Flamenco/CPN net as described in the previous section and evaluate
the appropriate auxiliary declarations

 run the Hydra Event Manager

 run the Java part of Flamenco/CPN. The easiest way currently is to start Eclipse on the
FlamencoCPN project and then run com.eu.hydra.flamenco.cpn.Flamenco.

 run a number of devices that will produce events

For simulating the last step, the FlamencoTest project can be used. The class

com.eu.hydra.flamenco. cpn.FlowTester will produce events from the flow meter scenario. If the
CPN Tools are started with user interface updates, the tokens being produced and consumed in the

net will be seen.

6.3.6 Flamenco/SW

System Requirements

Currently the OWL/SWRL based Diagnosis manager is tested on Windows Vista and Java 6, but it

should run on any operating system with Java 5 or later.

Below is the list of tools needed for running it:

 Tomcat 5 or later

 Protege 3.4 build 130 or later

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 83 of 157 30/04/2010

Installation

 Install Tomcat. Change the HTTP port to 9999, create a directory called 'ontology' under the
directory 'webapps', Tomcat can be download from this link (version 5.5):
http://tomcat.apache.org/download-55.cgi

 Install Protege. The current SWRL APIs needs to access the ontologies coming with Protege,
therefore, the running of the OWL/SWRL based Diagnosis Manager needs to point to the
Protege installing directory. This is not necessary since protege 3.4 version 500, as the

SWRL related ontologies can be accessed directly through the internet. However this is still
recommended to improve performance for starting the Flamenco. Protege can be

downloaded from this link: http://protege.stanford.edu/download/registered.html

 Download the Flamenco/SW. All ontologies are located in \ontodiagnosis\resources
directory.

 Copy all ontologies (including rule ontologies) to the newly created 'ontology' directory.
Thus, all the rules and ontologies are ready for use.

 Install the testing client.

Usage

Flamenco/SW listens to topic of '/statemachine/statechange', '/flamenco/socketwatch'. Therefore to

get a diagnosis of a system/application/device, events on these topics must be published and of
course there should be a state machine corresponding to a device in oder to be diagnosed. Another

issue is that the Flamenco/SW should be subscribing to the same Event manager as the one that
publishes events, in order to make use of the Network manager and Trust manager functionalities.

The following steps need to be taken:

 Start Tomcat.

 Check that the Event manager is running (for the moment it is using EventManager_CNET),
otherwise start the Event manager.

 Start Network manager

 Change the build file of Flamenco/SW. Only this tag in the build file: <jvmarg value="-
Dprotege.dir=c:/protege/3"/> need to be changed to the Protege installation directory. After

this start the diagnosis manager with ant build. Alternatively, Flamenco/SW can be started
by running as Java application by click on class

 Start one of the test clients. In this tutorial the flowmeter client is used: Build it with the ant
build file in order to create a jar file, called Flowmeter.jar. Copy the Flowmeter.jar to
Resource manager lib directory, and then change the config.ini under the lib\configuration

as follows:

osgi.bundles = \

../lib/org.eclipse.equinox.log_1.0.1.R32x_v20060717.jar@2:start, \

../lib/org.eclipse.equinox.common_3.2.0.v20060603.jar@2:start, \

../lib/org.eclipse.osgi.services_3.1.100.v20060601.jar@2:start, \

../lib/javax.servlet_2.4.0.v200706061611.jar@3:start, \

../lib/org.eclipse.equinox.http_1.0.2.R32x_v20061218.jar@3:start, \

../lib/Flowmeter.jar@4:start

The last line is used to start the flowmeter test client. The client is started by simply running

it as a java application. It can be seen that the client is sending measurements, and when

the event manager publishes the state changes, the diagnosis manager will conduct a
diagnosis based on the changed states, and publish it.

http://tomcat.apache.org/download-55.cgi
http://protege.stanford.edu/download/registered.html

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 84 of 157 30/04/2010

 The thermometer scenario can be used by the thermometer client. The config.ini needs to
be changed and change Flowmeter.jar to Thermometer.jar (the jar name built from
thermometer client).

One thing to note is that in order to test multiple times using ant build file coming with

Flamenco/SW, Java process may need to be killed with task manager (this problem can be
particularly experienced in windows Vista/XP), remember to leave the one for Tomcat5.5, which is

usually using around 45-50M memory.

Development
There may be two kinds of developers who can utilize the Flamenco/SW diagnosis manager SDK,

knowledge developer, who is responsible for the development of rules and the addition of diagnosis

cases based on the existing ontologies, and Java application developer who make use of the rules
and ontologies for realising the diagnosis.

For knowledge developers, and most probably they are the developers who need use the SW
diagnosis manager SDK:

To use the SW for your own development, the simplest case is to add a device to an existing

system. Please use the ontologies as the starting point.

The first thing needed is to add this device instance to the Device ontology, and then add this device

instance to the HydraSystem concept in the Device ontology, which only needs to add related
diagnosis rule and the device state machine. For example the steps for adding a flow meter to the

Pig system in agriculture domain are:

1. Add the flowmeter device to the Pig system concept in the Device ontology, as shown in the

following figure.

Figure 45: Device Protégé

2. Add the flowmeter state machine instance to the StateMachine ontology. It is called

"Flowmeter_sm" in our case, if it does not exist.

3. Add the flowmeter state machine instance to the hasStateMachine property of the
"Flowmeter" device.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 85 of 157 30/04/2010

4. Add flowmeter diagnosis rule to the DeviceRule ontology, for example, one rule to diagnosis
flowmeter is:

device:FlowMeter(?device) ?
device:hasStateMachine(?device, ?statemachine) ?
statemachine:hasStates(?statemachine, ?state) ?

statemachine:doActivity(?state, ?action) ?
statemachine:actionResult(?action, ?result) ?

statemachine:historicalResult1(?action, ?result1) ?
statemachine:historicalResult2(?action, ?result2) ?

statemachine:historicalResult3(?action, ?result3) ?

swrlb:add(?temp, ?result1, ?result2, ?result3) ?
swrlb:divide(?average, ?temp, 3) ?

swrlb:subtract(?diff, ?result, ?average) ?
swrlb:abs(?absdiff, ?diff) ?

swrlb:greaterThan(?absdiff, 6.0)

 ? sqwrl:select(?device, ?statemachine, ?state, ?action, ?average, ?result, ?diff)

The adding of rules can be facilitated by using the SWRL tab in the Protege tool as shown in the

following figure:

Figure 46: Device Rules Protégé

5. Add diagnosis case to the Malfunction ontology. For example, the "flowToohigh" instance

can be added to the "DeviceError" concept, with the "pipeBroken" as the case for the
"hasCase" property by clicking the "Add new resource" button, and then fill the "pipeBroken"

by adding "cause" as "pipe broken" and "remedy" as "replace pipe".

Java application developer:

Suppose the rules added by the knowledge developer are only related to one device. Then there is
no need to do anything as the APIs can handle the diagnosis cases.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 86 of 157 30/04/2010

In the case that a developer needs to process a rule, then a key class to use is RuleProcessing in

package com.eu.hydra.flamenco.ruleprocessing. It can be used like this:

RuleProcessing rp=new

RuleProcessing("http://localhost:9999/ontology/DeviceRule.owl");

HashSet<String> set=a.getAllSWRLInferred(); // get all inferred

information, and can get inferred

 // individual or property

separately using

 //

getSWRLInferredIndividual(), getSWRLInferredProperty().

rp.checkNormalTwoColumnRule("deviceTypeChecking"); // execute rule called

"deviceTypeChecking"

There are different methods for processing different types of rules: checkSingleColumnRule() which

is used to process a rule returns only one column result but may have multiple rows. Similarly there
are other rules processing methods.

As there may be many rules, but different rules are used for different purpose, therefore, a separate

rule group can be built and executed as needed. The rule group feature can be used like this:

RuleGroupProcessing a=new

RuleGroupProcessing("http://localhost:9999/ontology/DeviceRule.owl");

a.processRuleGroup("pig"); //create a rule group called "pig"

HashSet<String> set=a.processRuleGroup("pig"); //This will execute all

rules whose name contains 'Pig'

HashSet<String> set1=a.processRuleGroup("pig", "battery", "and"); //This

will execute all rules whose name contains 'Pig' and 'battery'.

HashSet<String> set2=a.processRuleGroup("pig", "battery", "or"); //This

will execute all rules whose name contains 'Pig' or 'battery.

Now the rule grouping feature can be used to diagnosis as followed:

DiagnosisInitializingData.getDiagnosisInitializingDataInstance();

DiagnosisInitiation pig=DiagnosisInitiation.getPigRuleInstance();

 //prepare for infered result parsing as a observer to InferredResult

InferredResultParsing

parser=InferredResultParsing.getInferredResultParsingInstance();

InferredResult result=InferredResult.getInferredResultInstance();

result.addObserver(parser);

pig.Diagnosis("pig");

pig.Diagnosis("ventilator");

pig.Diagnosis("flowmeter");

Planning in Flamenco

Flamenco is adopting a 3Layered self-management approach in which there is layer responsible for

planning. The planning layer is using Genetic Algorithms (GAs) to find optimised solutions for a
problem, based on the JMetal GA framework. Currently the planning layer supports three GAs,

NSGA-II, FastGPA or MOCell.

Usage

The planning layer is part of the Flamenco, but can be used separately also. There are some existing
applications (e.g. self-adaption which reads component QoS properties from file, and self-protection

which reads QoS properties for security protocols from security ontologies). Here the self-adaption

example is used to illustrate how to run the planning layer. From the tests/evaluations, it was
concluded that NSGA-II is the best GA for self-management problem, in which usually, the NSGA-II

genetic algorithm will find a number of optimised solutions, and its corresponding variables.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 87 of 157 30/04/2010

Development

The overall architecture of the planning layer is shown in the following figure:

Figure 47: Flamenco Planning Layer

Chromosome encoding and fitness evaluations

The representation of chromosome in this case is using integer (starting from 0). That is to say, an

integer vector V =[V 1; V 2; :::V i; :::; V n] (where n is the number of decision variables, and in our
case, it is 10) is used to represent a solution. V i is a natural number, acts as a pointer to the

sequence of the concrete implementation of the ith services. For example, a chromosome
[0,1,3,3,2,0,1,1,2,3] represents that a solution chooses the first implementation of service number

1, chooses the second implementation of service number 2, chooses the fourth implementation of

service number 3, and so on. In this case, it chooses AxisSENM, AxisMECM, LimboMEDM, and so on.
Based on the chosen components, the GAs then decide its fitness using the objective equation, and

will evaluate whether the constraints are meet at the same time.

Define optimisation problem

A number of steps are needed to abstract an optimization problem:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 88 of 157 30/04/2010

 1. Define the problem class (e.g. SelfConfigurationProblem), which should extend the
SelfManagement Problem, which extends JMetal:Problem interface.

 2. Define the methods for evaluating fitness of a solution, which is defined also in SelfConfiguration

Problem class.
 3. Define the methods for evaluating constrains of the problem in the SelfConfigurationProblem

class.
 4. Define another class TestSelfConfig, which is the entry point for initiating the GAEngine, choosing

either NSGA-II, FastGPA or MOCell, to operate on the defined problem, and then the solutions and
their corresponding values for decision variables (i.e., the number of a concrete components) can be

obtained.

6.4 Device Discovery Manager

The Device Discovery Manager is used to detect devices in the Hdyra network and collect

information about its functionalities and how this functionalities can be addressed by application and
other devices. It also makes use of descriptions of devices and the Ontology Framework.

DDK Class library for .NET

A part of the Hydra DDK is a .net based class library available for device developers and device
manufacturers. The DDK documentation is divided into 4 parts: Device Service Managers, Discovery

Managers, Hydra Device Manager, Device Device Managers.

6.3.4.1 Device Service Managers

This documents the different device service managers that exist and can be used to create a Hydra
Device for interfacing with for instance Bluetooth devices.

6.3.4.2 Hydra Device Manager

A Device Service Manager and a Device Device Manager is needed to create a Hydra Device. The

Hydra Device Manager is the base class for all Device Managers in Hydra. A device developer can
inherited from this class for creating their own device manager.

6.3.4.3 Device Device Manager

This is the documentation of a number of already existing device managers that a developer can

choose from or make use of to derive own functionality:

WeatherSensorDevice::AirPressureDevice
BasicPhoneDevice::BasicPhoneDevice

SwitchDevice::BasicSwitchDevice

Hydra::BlindDevice
BlueToothDevice::BlueToothDevice
SwitchDevice::EnhancedSwitchDevice
SwitchDevice::ExternalSwitchDevice
Hydra::GPSDevice
Hydra::MediaRendererDevice
Hydra::MedicalDevice
WeatherSensorDevice::RainSensorDevice
RFIDTagDevice::RFIDTagDevice
RemoteUPnPDevice::RemoteUPnPDevice
RemoteWSDevice::RemoteWSDevice
RFIDTagDevice::RFIDTagDevice
SmartPhoneDevice::SmartPhoneDevice
WeatherSensorDevice::ThermometerDevice
WeatherSensorDevice::WeatherSensorDevice
WeatherSensorDevice::WindmeterDevice
Hydra::ZigBeeCoordinatorDevice
Hydra::ZigBeeEndDevice

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 89 of 157 30/04/2010

6.3.4.4 Discovery Managers

A device developer creating his own Hydra Device might also need to provide a specific Hydra
Discovery Manager to allow the device to be discovered in a Hydra network. This part of the

documentation describes the existing discovery managers in Hydra which can be used directly by a
device developer or specialised for his own device type.

BluetoothDiscoveryManager
DiscoveryManager::DiscoveryManager
ExternalBlindDiscoveryManager
ExternalDiscoveryManager
GPSDiscoveryManager
RFIDDiscoveryManager
SerialPortDiscoveryManager

TellstickDiscoveryManager
UPnPDiscoveryManager
WSDiscoveryManager
ZigBeeDiscoveryManager

6.5 Hydra-Enabling a Device

This is a brief step-by-step description on how to Hydra-enabling a device using the .Net framework

and Visual Studio by Microsoft. (see chapter 8 for additional information about Hydra and .Net and
chapter 10 for links to the Hydra websites)

Step 1

Create Visual Studio Project

Figure 48: Create Visual Project

 Step 2

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 90 of 157 30/04/2010

Open C#-code file by clicking the ”Solution Explorer Tab” and then ”Right-click program.cs” and

selecting ”View Code”

Figure 49: Visual Studio – editing file

Step 3

Add Web References for a Device

Right-click ”References and select :

”Add Service Reference”/”Advanced”/”Add Web Reference”

 to get to the form.

URLs to be used for testing

DiscoBall: http://212.214.80.161:8080/3/BasicSwitchWS

Fan: http://212.214.80.161:8080/4/BasicSwitchWS

Light: http://212.214.80.161:8080/2/EnhancedSwitchWS

Thermometer: http://212.214.80.161:8080/ThermometerWS

Windmeter: http://212.214.80.161:8080/WindmeterWS

Treno: http://212.214.80.161:8080/7/BasicSwitchWS

../s
http://212.214.80.161:8080/3/BasicSwitchWS
http://212.214.80.161:8080/4/BasicSwitchWS
http://212.214.80.161:8080/2/EnhancedSwitchWS
http://212.214.80.161:8080/ThermometerWS
http://212.214.80.161:8080/WindmeterWS
http://212.214.80.161:8080/7/BasicSwitchWS

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 91 of 157 30/04/2010

Figure 50: Visual Studio (WebServices)

 Step 4

Overview of solution approach

 Connecting to NM to get a HID for the Application Device Manager

 Use the AppDevMgr to find HIDs for devices

 Create WS clients for the devices

 Create Event Listener

 Register Event Listener with Event Manager

 Inside the Event Listener implement the logic to turn on and off devices depending on

events.

 Test and Debug.

Step 5

Use NM status page to view NM contents

Connect to a Network Manager:

 NetworkManager.NetworkManagerApplicationService nm = new
NetworkManager.NetworkManagerApplicationService();

Step 6

Find the HID for an ApplicationDeviceManager

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 92 of 157 30/04/2010

Use the HID to create an endpoint for a SOAPTunnel;

ApplicationDeviceManager.ApplicationDeviceManager myAppDevMgr = new

torinotest.ApplicationDeviceManager.ApplicationDeviceManager();

string AppDevMgrHID =

nm.getHIDsbyDescriptionAsString("ApplicationDeviceManager:BLONDIE:StaticWS

");

myAppDevMgr.Url = "http://10.38.101.30:8082/SOAPTunneling/0/" +

AppDevMgrHID + "/0/hola";

Step 7

Use graphical DAC browser to find WSDL-file for device or endpoint.

Import and create WS clients in your program for device.

Use Application Device Manager to find the HIDs for the device (example PetersLight).

string discohid=myAppDevMgr.GetHID("","PetersLight");

Step 8

Test your interface with the device

Light. BasicSwitchWS db = new Light BasicSwitchWS();

 db.url="http://10.38.101.30:8082/SOAPTunneling/0/" + lightHID+ "/0/hola”

 db.TurnOn();

Step 9

 Create Event Listener

 Create Event Manager interface

 Create Network Manager Interface

 Create a HID for your event listener

 Subscribe to the event types you want to listen to

 EventManagerService em = new EventManagerService();

 NetworkManagerApplicationService nm = new

NetworkManagerApplicationService();

 string myhid = nm.createHIDwDesc("PhidgetEventStack", addresse);

 em.subscribeWithHID("phidgetsensor/79285/ValueChanged", myhid);

Step 10

 Start listening to events

 Processing incoming events, be sure to check the status of the device before turning on.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 93 of 157 30/04/2010

 PhidgetEventHandler.notifyResponse
EventSubscriber.notify(PhidgetEventHandler.notify request)

{...

 else if (request.@event[1].value == "Light_sensor")

 {

 Light. BasicSwitchWS db = new Light. BasicSwitchWS ();

 bool on = (db.GetSwitchStatus().ToLower() == "on");

 if (System.Convert.ToInt32(request.@event[2].value) <

200)

 {

 if (!on)

 db.TurnOn();

 }

 else if(on)

 {

 db.TurnOff();

 }

...}

Step 11

 Build Application

Figure 51: Build application

Step 13

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 94 of 157 30/04/2010

If needed for debugging: add a break point and start the execution

Figure 52: Adding breakpoint

Hint: Close the Form that pops up when application starts, to allow execution to reach the

breakpoint.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 95 of 157 30/04/2010

7. Integrated Development Environment – Java

This section provides tutorials on how to use each component of the Java (Eclipse) IDE, including a

general introduction to the whole IDE itself (where to find views etc).

7.1 Network Manager IDE

7.1.1 IDE connection

Using the NetworkManager for connecting the Hydra IDE to the middleware instance provides the

benefit of being able to access every Hydra device that is present in the global Hydra P2P network –
even those which were not accessible over plain TCP connections, for example because they are

located behind firewall restricting access to TCP sockets from the outside. There are also no special
security concerns about this connection as the communication is protected by the standard Inside

Hydra security mechanisms and accesses to the managers are controlled by the policy framework.

However, when accessing a Hydra device over the NetworkManager, a developer can only make use

of the functionality which the managers provide to the Hydra network. In many cases this is not
sufficient, especially when it comes to configuring the security or internal settings of the managers.

For example, a common task for a developer would be to modify access control policies. As the
developer‟s own access to the policy framework would be controlled by the policies, modifying the

very policy set that grants him access runs the risk of unintentionally locking out the developer from

Hydra devices and the policy administration service itself. So, an alternative way of accessing
managers directly at OSGi layer is required in some cases.

For this purpose we provide the possibility to connect the Hydra IDE to the middleware over R-OSGi

connections. After starting the IDE, application developers can choose which type of connection they
prefer using the eclipse dialog box under Window ! Preferences ! Hydra Middleware ! Connection. In

either case, they have to provide the address of the middleware instance to which a connection

should be established – either as a HID when using the NetworkManager or as a URL when using R-
OSGi.

7.1.2 Remote connection

The remote connection feature enables the Hydra IDE to develop software for Hydra middleware
without having a Hydra installation running locally while connecting to a remote working Hydra

installation. This allows the developer to run Hydra user applications on a device without having
Hydra middleware installed or running on it.

In order to configure the connection to the Hydra middleware in Eclipse, the developer has to select
in the file menu Window -> Preferences and from there select Hydra Middleware -> Connection

page (as seen in Figure 53 below).

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 96 of 157 30/04/2010

Figure 53: Hydra Middleware Connection configuration page

Once the remote connection has been configured, the remote connection can be established and

discarded by pushing the remarked button of the Hydra IDE toolbar as seen in Figure 54.

Figure 54: Remote connection button

The remote connection only works if both HydraMiddlewareAPI and HydraMiddlewareClients bundles
are running in the system. When connecting remotely, a set of functions provided by the

GlobalHydra IDEUtils class included at the package com.eu.hydra.main.global of the Hydra IDE
bundle are used. This class provides the following functions to ease the remote connection,

irrespective of the way used to establish the connection:

• connectToRemoteHydra(): this function connects to a remote Hydra instance. The

configuration preferences are taken from the preferences page, as already seen.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 97 of 157 30/04/2010

• getRemoteOSGiService(String serviceName): this function provides an object which will

be the instance of the required service. A developer can use this function in order to get an

instance of the service for using it. The returned object must be cast in order to be

compliant with the suitable interface.
The Hydra IDE provides to means for remotely connect to a Hydra installation: R-OSGi and the

Hydra NetworkManager.

7.1.3 Hydra Status and Configuration views

Another important feature of the Hydra IDE is the possibility of controlling the status and the
configuration of the Hydra Middleware (the Hydra managers) within the same Hydra IDE. A set of

views have been deployed in order to provide information about the Network and Event manager

status, so as to be a way of configuring the different managers adapted to the common
configuration system.

In particular, and referring to the Network Manager, the Network Manager UI bundle (from the SVN

at the /trunk/ide/eclipse folder) provides these views. This bundle must be run along with the Hydra
IDE bundle.

Then, when deploying these views, the developer has to go to Window -> Show view -> Other… in
the menu and then select Hydra Status and Configuration. Afterwards, the developer has access to

the view.

The Network Manager Status view provides information about the Network Managers and other HID

instances running in the Hydra network. It provides the same information as the Network Manager
section of the HydraStatus page accessible via the web browser, providing an HID, description, IP

and endpoint of all located hydra devices. The developer can select between showing the Network
Managers, the local HIDs (local Network Manager included) or the remote HIDs (remote Network

Managers included).

The view also provides a dynamic search system by typing on a text box, along with the possibility

of copying the information from the data table by right-clicking over the information of interest.
A screenshot of the Network Manager Status view can be seen in Figure 55 below.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 98 of 157 30/04/2010

Figure 55: Network manager status views

Then, the Event Manager Status view provides information about all subscriptions managed by the

local Event Manager in a similar way as is done in the Event Manager section of the HydraStatus

page. It provides information about the topic, endpoint, date and counter of all subscribed events on
a table, in a similar way as the Network Manager Status view does.

It also provides the same dynamic search system and the same data copying system as the Network

Manager Status view does. A screenshot of this view can be seen in Figure 56 below.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 99 of 157 30/04/2010

Figure 56: Event Manager Status view

The Hydra Configurator view provides a way of configuring the different Hydra managers previously
adapted to the common configuration system. Using this view it is possible to modify the

configuration of a manager in a dynamic way, being the case that these modifications are effective
from the moment they are sent to the system.

The Hydra Configurator view interface consists of a set of deployable bars, one used to apply all the
changes performed during the configuration process, the others devoted to the different managers

adapted to the common configuration system. Once deployed, the list of configurable properties and
options is shown, being possible to modify their values, written inside textboxes. A screenshot of the

Hydra Configurator view can be seen in the following Figure.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 100 of 157 30/04/2010

Figure 57: Hydra Configurator view

7.2 Trust Manager IDE

The Hydra TrustManager is responsible for evaluating the trust value of certificates, as they are sent
by Hydra devices upon establishment of a communication session, for example. The trust value

reflects how much the TrustManager (or the developer who configured it) relies on the authenticity
of the cryptographic key contained in the certificate. A trust value of zero means that there is no

evidence that a certain cryptographic key does actually belong to the device claimed in the
certificate‟s attributes. As a consequence, one cannot be sure with whom communication is taking

place – if such an untrusted key is used, communication might be protected against eavesdropping

but by no means can it be assured that one is not communicating with the attacker himself. So,
certificates with a trust level under a certain threshold (which can be configured by the developer)

must be considered as insecure.

The TrustManager GUI is a user interface to the TrustManager which is integrated into the general

Hydra IDE, based on the Eclipse RCP framework. It connects to the TrustManager and provides an
interface for controlling some of its features. By opening the TrustManager preferences dialog, a

developer is able to configure the connection from the TrustManager GUI to the actual manager.
After the connection settings have been made, the developer can open the TrustManager

perspective, thereby opening a list of supported trust models on the left of the screen and an editor

for the respective trust model on the right. As the TrustManager provides a plug-in mechanism and
loads any supported trust model at run time, the trust model list on the left is populated the first

time the perspective is opened. Each trust model comes with its own administration service (for
which access rules can be seperately configured) and with thus also with its own user interface. At

the moment, user interfaces have been implemented for the (trivial) Null trust model and the most-
used X509v3 model.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 101 of 157 30/04/2010

At first, after opening the Trustmanager perspective, developers can view the list of trust
certificates, i.e. the list of all certificates which represent a Certification Authority or which are

explicitly marked as “trusted”. For each of these certificates, details about its content can be

retrieved, including the cryptographic public key and the list of attributes which have been created
using the NetworkManager‟s createCryptoHID()-method (c.f.Figure 58). If a certificate is not trust

edanymore it can be deleted by using the context menu in the certificate list. The next tab of this
editor enables the uploading of certificates which should be marked as trusted. The TrustManager

accepts certificates in standard PKCS#12 format (i.e. .cer files), displays their content and adds the
respective certificate to the list of “root of trusts”, i.e. the certificate itself and all public keys which

have been signed with that certificate are considered to be trusted from now on (c.f. Figure 59). The

third tab of the editor can be used by developers in order to test which result the TrustManager
would generate for a certain certificate. By uploading a certificate file – again in PKCS#12 format –

into the TrustManager and clicking on the Validate button, the validation process is started and the
trust value for the uploaded certificate is evaluated. In the screen shot in Figure 60 a trust value of

1.0 is returned, which means that the tested certificate is fully trusted and Hydra devices using keys

signed with this certificate are accepted for communication.

Figure 58: TrustManager GUI showing the details of a X509v3 certificate

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 102 of 157 30/04/2010

Figure 59: Adding a new trust root to using the TrustManager GUI

Figure 60: Validating a certificate using the TrustManager GUI (Trust Manager IDE)

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 103 of 157 30/04/2010

7.3 Crypto Manager IDE

Crypto Manager GUI

The CryptoManager is a stand-alone manager providing various cryptographic operations such as

encryption, key management and handling of digital signatures. It is basically used in two ways: On
the one hand, the CryptoManager is automatically used by internal part of the Hydra middleware –

such as the security modules in the NetworkManager. On the other hand, the CryptoManager can be
used by application developers as a tool for applying cryptographic operations and managing keys.

The idea of the CryptoManager is to abstract away cryptographic keys and algorithms. Developers

using the CryptoManager only need to specify an “identifier” along with the message format. The
CryptoManager will then take care of selecting appropriate keys and algorithms. So, the

CryptoManager facilitates writing secure applications by encapsulating complex cryptographic
operations in an easy-to-use interface.

The GUI for the CryptoManager supports application developers to manage keys stored inside the
CryptoManager. The basic view shows a list of all stored keys providing details such as the

corresponding identifier and the key type (see Figure 61). Basic operations are key deletion and list
refresh (buttons on top of the list). A double-click on one of the RSA certificates opens a message

box which presents the certificate details.

Apart from managing existing keys the CryptoManager GUI makes it possible to invoke the

generation of new keys. The two buttons “Generate Symmetric Key” and “Generate Certificate”
trigger the CryptoManager connected to the IDE to start a key generation. The “Generate Symmetric

Key” button starts key generation immediately and presents the identifier of the new AES key as
result.

The “Generate Certificate” button opens a dialog which makes it possible to specify certificate

attributes and as optional a HID (see Figure 62). After finishing the wizard, the CryptoManager
generates a new RSA certificate and the wizard presents a message box with the identifier of the

new certificate.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 104 of 157 30/04/2010

Figure 61: CryptoManager View

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 105 of 157 30/04/2010

Figure 62: Certificate generation wizard

7.4 Context Manager IDE

The Context Manager IDE components provide the functionality for creating Context Specification
objects, that can be sent to the Context Manager, as described in the SDK section for the Context

Manager 5.7.1. It also provides views for runtime management of Context Managers, for retrieval of
installed context specifications etc. As well as Context Specifications, the IDE also supports the

creation of named Context Queries that can be stored in the Context Manager, and called by name

at runtime.

7.4.1 Context Specifications

As described in D12.8, Context Specifications can represent three different types of context -

Application, Device and Semantic, where Semantic contexts can also be broken down into different
types - Location, Environment and Entity. When creating a new Context Specification, the exact type

can be specified, along with the name of the context - the contextId. New contexts can be created
in the same manner as adding any other object in a project:

 New -> Other -> Hydra -> Context Specification

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 106 of 157 30/04/2010

Figure 63: Create Context Specification Wizard

This throws up a wizard, as shown in Figure 63 above, generating the empty context specification in

the workspace location specified. Double-clicking on the .ctx (Context Specification) file in the
workspace, opens up the file in the Context IDE Editor, in which the Context Specification can be

edited. As discussed in the SDK section, Context Specifications, and Context Query Sets are
persisted as XML, but transferred as objects using the methods described. The IDE editor provides

the ability to edit the three core facets of a Context Specification, these being:

 Context Definition

o Defines the properties of the context, as well as any data members

o Present in ALL context types
 Data Subscriptions

o Subscriptions for data from a data source, forwarded to the Data Acquisition

Component
o Only in Device contexts

 Context Rules

o A set of rules, types and functions that define the reasoning performed by the

context, in addition to the context-sensitive actions
o Present only in Application and Device contexts - not Semantic

Each of these is represented by a different tab in the Context Editor, in addition to a Source tab,

that shows the (un-editable) XML source for the Context Specification, as it is stored locally.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 107 of 157 30/04/2010

Figure 64: Context Definition page

The Definition page, shown in Figure 64 above, demonstrates the interface for defining the

properties and members of a context. Defined properties are no necessarily static, as they may be

updated based on reasoning performed by rules - for example, the "location" property of the mobile
phone above may be updated if some other rules detect its location as being elsewhere, or that it is

updated directly.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 108 of 157 30/04/2010

Figure 65: Data Subscription page

Figure 65, above, shows the Data Subscription page, that specifies a set of subscriptions to retrieve
the desired data made exposed by the data source - through either the PUSH or PULL protocols, as

handled by the Data Acquisition Component. The example shown demonstrates a PULL subscription,

featuring the attributes recognised by the PULL protocol, with the non-mandatory being greyed-out.

The functionalities of context-reasoning and interpretation, in order to perform context-sensitive
actions, is enabled by the set of context rules provided with the Device and Application contexts.

The Context Manager uses the DROOLS Rule Engine [4], to process these rules as well as to

maintain the modelled context from data acquired from data sources - Context Consumers. Context
Rules in a Context Specification contain several different parts that can be specified. These are:

 Imports

 Types

 Functions

 Rules

Context Rules provide the ability to declare inline types and functions that may be used in Rules for
a specific purpose. Any libraries referenced in these Rules / Functions / Types must be specified with

their fully qualified name (package name & class name), in the Imports, such that the Rule Engine

can recognise what they represent. Declared Types allow for Contexts to store certain data for
internal purposes, such as recording historical data. Declared Functions allow for Java-coded

functions to be defined and declared inline, that can be used in the rules themselves. Rules are the
individual rules entered into the Rule Engine. As previously mentioned, these are Drools formatted

rules - the core of which are “When” clauses and “Then” actions, along with additional Drools rule

attributes that can be associated with a rule, to alter how it is handled by the Rule Engine.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 109 of 157 30/04/2010

Figure 66: Context Rules - Imports and Types

Figure 66, above, shows part of the Context IDE interface for Context Rules, through which classes

can be imported (to use in types, functions or rules), as well as for the creation of types within a
context. In the example, the timestamp variable of the PastGPSLocation type, uses the Date type as

referenced in the imports. The fact role defines how the Rule Engine handles the type - the role of

event, as opposed to fact, declares that the type should be handled as an event, meaning that the
instance gets remembered temporally, such that it can be reasoned over as such.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 110 of 157 30/04/2010

Figure 67: Context Rules - Functions

Figure 67 above shows the Context IDE interface for creating Declared Functions in a Context
Specification. As previously stated, these are essentially Java-code functions, that can then be used

in Context Rules. The example function, extractGPSValue, could be used to extract the desired GPS
positional value from an acquired NMEA formatted string.

Figure 68: Context Rules - Rules LHS

Figure 68 above shows the IDE interface for creating the LHS (When) of Context Rules. These are
DROOLS DRL 'When' conditional statements, using the same syntax as described in the DROOLS

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 111 of 157 30/04/2010

documentation [4], short example below. Also shown, is the area for specifying rule attributes such
as no-loop and salience. The exact usage of these can also be found in DROOLS documentation, and

upcoming Hydra training materials. The featured rule will fire when the sensed temperature (in

Celsius) in the "Home" location, is below that of the threshold defined by the "ColdnessThreshold"
member of the "TempMonitoringApp" Application context, of which this rule is a part.

Very basic Drools rule:

rule "Primitive support"

when

 $c : Cheese($price : price)

then

 $c.setPrice($price * 2)

end

The firing of the LHS of the rule, results in the RHS actions, or the "Then" side, being triggered. The

Context Manager features several pre-defined actions, including:

 Fire External Event (to Event Manager)

 Fire Internal Event

 Call Web Service

 Store Context (to Storage Manager)

In addition to the predefined actions, the developer may also write their own "Then" code, allowing
for the full flexibility in authoring rules.

Figure 69: Publish Event to Event Manager Wizard

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 112 of 157 30/04/2010

Predefined actions are added, throwing wizards, such as shown in Figure 69 (after the PublishEvent
action has been chosen). Here, the recognised attributes of the action (both mandatory and non-

mandatory) are displayed, as with the Subscriptions. In the figure, the Event.Topic and

EventManager.PID attributes are provided, though the latter is not mandatory, as the Context
Manager can also be configured with a default Event Manager to publish events (as discussed in the

SDK section).

Additionally, a set of Parameters can be set, to specify the additional key-value data sent with the
Event, when it is published to the Event Manager. This can either be static values (see the location
parameter), or dynamic, using the values of the variables (from the LHS) provided - (the

tempCelcius parameter with the value of tempValue.

7.4.2 Context Queries

Context Queries can be configured in the Context IDE, and persisted locally as XML, as with Context

Specifications. They can be created in the same way also, as follows:

New -> Other -> Hydra -> Query Set

The Context Query Set editor contains two pages - one for any declared functions and imports

(utilising the same interfaces as the Context Specification editor). The other page is for the definition
of a set of queries, specifying the name, arguments, query code and output.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 113 of 157 30/04/2010

Figure 70: Context Queries

Context Queries, as shown in Figure 70, are pre-configured queries in the Context Manager that
return a set of data as specified by the query. These are referred to by a unique identifier (the

Query Name), and can take a set of arguments to the query, such that the actual results of the
named query may be dynamic, but the logic used in the query to retrieve the results remains static.

These queries are stored in the rule engine, as Drools queries, and are essentially just the When
(LHS) part of the rule, specifying constraints for collecting a set of data.

The example query, given in Figure 70, returns the encoded context state (as XML) of all Device

contexts of the type specified by the type argument, and with location matching that is specified by
the locationId argument.

7.5 Obligation Framework IDE

7.5.1 Obligation GUI

The Hydra middleware includes an Obligation Policy Framework which allows the execution of

actions upon the occurrence of certain events. Although it appears to be similar to the Context

Management Framework, both frameworks serve different purposes and are based on different
technologies: The Context Management Framework primarily works on a static fact base which is

built up from various data sources and integrated with the Hydra ontologies. The Obligation
Framework makes use of Complex Event Processing to recognise certain situations in highly dynamic

data streams such as sensor events.

In contrast to the Context Management Framework, it is not aimed at executing general-purpose

actions but rather at setting (security-relevant) configurations based on the current situation. As an
example, we will show how the Obligation Framework is used to set situation-specific access control

rights in the Hydra middleware.

The Obligation GUI is a user interface that is integrated into the Hydra IDE and allows developers to

control the Obligation Policy Framework in numerous ways. In this chapter, we describe the features
of the Obligation GUI and illustrate its use by a usage case in which “situation-aware” policies are

realised.

The Obligation GUI deals with the concepts Event, Action and Situation. An event is the definition of
a complex event pattern describing the occurrence of a critical incidence upon which a certain action

is required. The event pattern is described using the EPL1 language and refers to information that is

sent on logical event channels. An event channel represents a stream of events of a certain type,
such as temperature, humidity, network events, user interactions or events that have been retrieved

over the Hydra EventManager. Which event channels are available at run time depends on the kind
of plugins attached to the Obligation Framework and may thus vary. Every event type has a

property value which can be used to retrieve the content data of the event. In addition, event types

can provide further specific properties, further describing the event. For example, a temperature
event could provide the properties isFahrenheit and isCelcius while a network event could be

described by properties such as sourceIPaddress, packetSize, etc.

The developer can use the EPL syntax to define complex patterns of such events and then specify

an action that should be executed upon the occurrence of that event pattern. Actions are defined by
plugins in the Obligation Framework and can serve various purposes. In the use case example below

we will use actions only for logging the occurrence of an event, however, by adding further plugins
it would be possible to realise any other kind of action such as increasing the level of communication

security in untrusted environments, for example.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 114 of 157 30/04/2010

A Situation is defined by a starting and a stopping event. Once the starting event is detected, the

situation becomes active and stays it until the stopping event has been detected. The Obligation GUI

allows binding access control policies to such situations so that it becomes easy for Hydra
developers to specify which access rights should be applied in a certain situation.

In order to achieve this, a developer can make use of the five extensions to the eclipse IDE provided

by the Obligation GUI (cf. Figure 71):
o A Message Console

o An EventListener View

o A Situation View
o An EventListener Editor
o A Situation Editor

Figure 71: The Obligation GUI perspective. EventListener view on the left, message

console on the bottom and event editor in the middle.

We now illustrate how a developer can use these extensions to define two complex event patterns,

create a situation from them and then assign different access control policies to that situation,
thereby creating a “situation-aware” policy:

At first, the developer would open the “Obligation GUI” perspective in Eclipse. At the bottom of the

IDE screen he would then see the Message Console which simply displays information about the
Obligation GUI, such as the status of the connection between IDE and the Obligation Framework.

On the left is the EventListener View which lists the names of all complex event patterns and makes

it possible to activate or deactivate each of them. If no event patterns have been specified before,

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 115 of 157 30/04/2010

this list will be empty and the developer would click on the green “+” button in order to create a
new one.

The new event pattern will be opened in the EventListener Editor in the middle of the screen. Using
this screen the developer would now define the complex event pattern that indicates a change in

the system status which is to be reacted on. Let us assume the developer would like to react on the
(complex) event of a user leaving the home. This complex event would consist of a number of more

detailed events which he would describe using the EPL syntax in the respective text field. For
example, the absence of a user could be described (in a simplified manner) by the following rules:

 motion has been detected

 door has been opened, then closed

 no motion detected for about 2 minutes

The developer would now specify these rules in EPL, whereas the IDE supports him by displaying

the list of available event channels from which he could choose. In our example, the EPL query
could look as follows:

SELECT ‟userabsent‟ FROM
PATTERN [everyMotion (location. inside = true)
�> Door (action=’open’)
�> Door (action=’ close ’)
�> (NOT Motion (location .inside=true)
WHERE timer : within (2 minutes))]

If this event pattern is detected, the Obligation Framework will execute the action which has been

specified in the checkbox list below. We assume the developer only wants to log this event, so he
just checks the Logging action.

Note that – depending on the specified event pattern – high volumes of events can be triggered and

defining time-consuming actions to them may lead to significant performance losses in the

middleware. For example the event pattern “SELECT * FROM AllEvents” will generate a huge
amount of events in a very short time and any other action than simply logging these will result in

dramatic computation overhead in the middleware (not in the IDE, of course). Developers are
advised to limit the output rate of events by adding “output every 10 seconds” to their rule, for

example.

Now that the developer has finished defining this event pattern, he simply clicks on “Save” and the

event pattern in stored in the Obligation Framework in the Hydra middleware instance to which he is
connected. By activating the checkbox besides the new entry in the EventListener view, the event

pattern becomes activated (i.e. the event engine starts listening to events and triggers the specified
action, if necessary).

After having defined an event for users leaving the home, the developer would define another event
for the user arriving at his or her home, analogous to the previous event. Now two event patterns

would appear in the EventListener view: User leaves and User arrives. From these events the
developer would now define a new situation User away. For this, he would change to the Situation

View and click on the green button to create a new situation. The new situation would be created

and opened in the Situation Editor (Figure 72). In this editor, the developer would then at first
name the situation “User Away”, select “User left” as starting event and “User arrives” as the
stopping event. On the right the list of all available access control policies in the Hydra middleware

instance is displayed and the developer would be able to select those policies he wants to be active

in case nobody is at home – for example he could activate policies denying access to all devices
except the door lock service.

After the situation has been saved, the Obligation Framework in the Hydra middleware listens to the

defined event patterns, detects the specified situation and enables or disables the access control

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 116 of 157 30/04/2010

policies as set by the developer. These mechanisms now run solely in the middleware instance and
the IDE can be disconnected without interrupting the functioning of the Obligation Framework.

Figure 72: Situation editor (empty list of policies on the right)

7.6 Access Control Policy Framework IDE

The Hydra Policy IDE essentially corresponds to the Policy Administration Point in the XACML
processing model. The Policy IDE serves as both an end-user and developer-user interface to guide

and assist them in writing XACML 1.x policies, represented as XML documents, using a customised

schema-backed editor (in Eclipse) to provide content-assistance and runtime validation of policies
being authored. It also provides the ability to manage a user‟s PDPs on the Hydra network, with a

PDP browser that shows existing policies published to a PDP, and their status, allowing these to be
edited / deleted, and have new policies published to them.

The Policy Management aspect of the Policy IDE brings the ability to interface with existing PDPs on
the Hydra network, to manage the policies they have published to them, and their activity status.

The Policy IDE also provides the means to create local policy projects, for working on a set of

policies locally, without initially publishing them to a PDP. These policies can then be deployed to a
given PDP as desired. Figure 73 shows the Policy Management Dashboard, on the right-hand side of

the Eclipse IDE. This provides two functionalities - to either create a new policy, or to manage
existing policies.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 117 of 157 30/04/2010

Figure 73: The Policy IDE Dashboard

Choosing the second option, opens up the PDP Browser, that lists the various PDPs on the network,
which is shown in the central panel of the Eclipse IDE. Selecting a PDP here retrieves the list of

policies that are stored in that PDP‟s Policy Repository, shown in the Stored Policies section of the
PDP Browser listed by their PolicyId along with details of their activity status - either Active or

Inactive. Through this view, policies can be double-clicked, which downloads them from the PDP,
and opens them up in an XACML Policy Editor tab. Additionally, in this view, new policies can be

created and deleted, using the Context Menu shown in Figure 73, which is activated with a right

mouse-button click.

Selecting the “Create New Policy” option, from the Policy Management Dashboard (Figure 73),

creates a new policy with a base template XACML policy stub initialised for the user, as shown in
Figure 74.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 118 of 157 30/04/2010

Figure 74: Creating a new Policy

The Policy IDE allows for multiple different types of templates to be created to support a developer-

user in authoring policies for specific purposes. This template includes the root <Policy> element,
along with the key XACML 1.x-defined attributes of the policy - PolicyId and RuleCombiningAlgId.

PolicyId is the identifier of the policy, that is used to refer to the Policy externally, for retrieval and
management purposes, while RuleCombiningAlgId specifies the algorithm to use for combining the

different rules of the policy - for example, the algorithm ‟permit-overrides‟ designates that if any rule

defined in the policy returns the decision PERMIT, than that overrides any the result of any other
rules, and is returned as the final decision. In addition, the template shown has some extra

attributes defined in the root element, designating the XACML schema used to define the policy.

The Policy IDE uses a Content Assist Processor to provide a number of functionalities to the Policy

IDE, to assist in the creation and editing of XACML 1.x Policies. Content Assist is activated by

pressing the Ctrl and Space buttons together, which is the standard convention for requesting
content assist in the Eclipse development environment, which then lists a selection of targeted

proposals relevant to the point at which assistance is requested. Selection of a proposal can either
insert a pair of XML tags, with required attributes specified, or insert attribute or element values.

The functionalities include:

 XACML Attribute Assistance

 XACML Structure Assistance

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 119 of 157 30/04/2010

Figure 75: Content Assist for selecting Rule Combining Algorithm

Figure 75 demonstrates the Context Assist proposals for the RuleCombiningAlgId attribute of the

Policy element, with each proposal being accompanied by a brief description as to its purpose.

These proposals are retrieved from a local database of algorithms that are configured with the PDP.

Mostly, these are core XACML-defined algorithms, functions and attributes, but the Policy IDE can

also be informed of additional, non-standard functions and attributes, that are unique to the Hydra
environment, providing the ability to use components of the Hydra Middleware as input for making

access control decisions. As described previously, these additional functionalities are provided to the
PDPs through implemented PIPs, that register the attributes and functions of IDs (that they can

resolve) with the PDP, such that the ability to do so is then possible.

Figure 76: Content Assist selecting Data Type

Figure 76 shows another example of using the Content Assist to set the value of an XACML attribute

- this time the DataType attribute of the ResourceAttributeDesignator. The proposals given are taken
from the core XMLSchema, which defines the notations for referencing data types. Again, custom

data types can be created and supplied to the PDP through the PIP extension, which can then be
referenced in policies.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 120 of 157 30/04/2010

Figure 77: Content Assist in adding new root Policy XACML Elements

Figure 77 demonstrates using the Content Assist to add new elements to the policy. XACML 1.x

policies have three core elements - Target, Rule and Obligations. Target specifies the context of the
policy - the particular subject, resource or action it governs. In the example, the Target element

defines that the policy is valid for any requests with a Resource attribute with and id of
“hydra:policy:resource:pid”, having a value of “MyExampleResource.PID”. This id represents the

persistent id that is attached to the CryptoHID created to register the requesting service on the

network. Rule elements each specify a set of conditions that must evaluate to true for the defined
Effect of the Rule to be returned. Obligations specify a set of obligations that are returned to the

PEP depending on the decision returned. Figure 77 shows a request for content assistance
underneath the Target element. It gives two proposals, the Obligations and Rule elements, while

also showing proposals that are possible, but not required.

When adding new elements to the document, through Content Assist, any required attributes
specified in the XACML 1.x schema are also added, some with default values - if they are also

defined by the schema. For example, when adding a Rule element, the attributes RuleId and Effect
are automatically added. The possible values of the Effect attribute are defined in the XACML 1.x

schema as being only either Permit or Deny - anything else would cause an error (Figure 78), and as

such the value Permit is entered by default.

Figure 78: XACML policy with an invalid attribute value

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 121 of 157 30/04/2010

XACML policies authored using the Policy IDE are subject to validation by the XACML 1.x schema,
with any errors being reported with their location being underlined, and a tooltip that pops up with a

description of the error. This is demonstrated in Figure 78 with an invalid attribute value for the

Effect attribute. Typically, the validation errors will be due to structuring errors or missing elements.
To ensure schema validation, the schema being used must be specified in the root node of the

policy. This schema, which is automatically added into the root node of the policy on creation, is
internal to the Policy IDE, so only needs to be referred to by name in order for the system to use it.

Figure 79: XACML Schema Validation reporting errors

Figure 79 demonstrates the schema validation reporting errors with the XACML structure, as the

elements inside the Resources node of the Target element have been deleted. It reports that the

policy is not complete, and suggests what is missing.

7.7 Device Application Catalogue IDE

The Device Application Catalogue provides the integration of the DAC Browser in the Hydra IDE.

Using this view it is possible to connect to a local or to a remote instance of the DAC, retrieve and
show in real-time the Hydra device in the local area or in a remote network, and also use the DAC

discovery capabilities to create new Hydra Application.

As shown in Figure 80 the description of the device and the possibility to connect to the Wizard that

helps in the creation of a new Hydra Application can be seen. The Wizard is designed with a

Master/Details pattern, so selecting the device on the left, you can show the details on the right.

Right clicking on one or more selected devices, or by using the first icon on the top right the new

Hydra OSGi Plugin wizard menu using the selected devices can be accessed. On the upper right, the
icon with the arrow work as a start/stop button for start the DAC application in background

depending on its configuration. The configuration of the DAC view passes through the DAC

configuration preference page, showed in Figure 81. Here the nature of the DAC can be specified, if
it‟s local or remote. If it is local, the path of the executable must be specified, otherwise if it‟s a

remote DAC the URL of the remote DAC application needs to be provided. Any change on the
preference page will fire changes on the model and in the other plugins that are using the DAC data.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 122 of 157 30/04/2010

Figure 80: Device Application Catalogue View

The DAC bundle is composed of two main plugins: one charged with UI visualisation (Preference
page and DAC View) and the other, called model, charged of connection and data exchange to the

DAC, set the callback processes, and retrieves Hydra device information from the Device Application
Catalogue. The model provides end declares the following interface:

public interface IDacModel {

public void startDac();

public void stopDac();

public void setDacURL(String url,boolean local, String localPath);

public ObservableList getAllGateways();

public ObservableList getHydraDevice(String gateway);

public ObservableList getUnresolvedDevices(String gateway); }

One relevant thing developed in the DAC model bundle is that the used collection to store and

maintain the .Net DAC retrieved information is an ObservableList, which provides automatic firing

change event to any other bundle registered to this observable. Using Eclipse data-binding, any
plug-in that creates a dependence on this model within its views or form, is informed in real-time of

any changes from the DAC (discovered a new device, removed a device, changes on a device
description etc). This bundle is persistent and must be included in the Hydra IDE environment to

work correctly.

Figure 81 presents a screenshot of the DAC configuration preference page as part of the Device

Application Catalogue IDE.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 123 of 157 30/04/2010

Figure 81: DAC configuration preference page

7.8 Installing Limbo in IDE

After making the Limbo tool accessible from Eclipse (by registering the corresponding OSGi bundle)

the Limbo wizard supporting the user in the Eclipse GUI controlling Limbo must be installed.

The wizard is realized as an Eclipse plugin. It is stored in the plugin directory of Eclipse using the

following commands:

•LimboWizard → Export → Plug-In Development → Deployable plug-ins and fragments → Directory

→ local Eclipse plug-in directory.

After restarting Eclipse, the Limbo wizard can be activated by pressing the corresponding button
which is indicated by the red line in the subsequent figure:

Figure 82: Limbo wizard selection in Eclipse

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 124 of 157 30/04/2010

Using limbo in the IDE:

The Limbo wizard starting page is shown in the next figure:

Figure 83: Limbo wizard starting point

The entry fields have the following meaning:

• Container: the name of the Eclipse project processed

• wsdl file: the path to the WSDL file

• Limbo directory: the directory of the limbo tool

The next figure shows an example:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 125 of 157 30/04/2010

Figure 84: Limbo wizard options

The following appears after Next is pressed:

Figure 85: Limbo wizard, selecting output

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 126 of 157 30/04/2010

The entry fields have the following meaning:
• Language: JSE or JME

• Platform: for specifying the target platform: standalone or osgi

• Generation type: server, client or both

• Protocol: TCP, UDP, or BT

• Loghandler: activating logging

• Output directory: the output directory of the generated files. This defaults to the container

directory.

The next figure shows an example. Note the Finish button is enabled when the data has been
entered.

Figure 86: Limbo wizard, output directory

After pressing the Finish button the file limbo.txt is generated and subsequently executed.
Here comes the content of this file:

@echo off

REM limbodirectory=D:/Projekte/Hydra/limbo-0.1

REM language=jse

REM platform=standalone

REM generationtype=all

REM protocol=TCP

REM loghandler=false

REM outputdirectory=D:/Projekte/Hydra/runtime-EclipseApplication/Test

REM wsdlfilename=D:/Projekte/Hydra/runtime-

EclipseApplication/Test/resources/th03r.wsdl

cd D:/Projekte/Hydra/limbo-0.1

java -jar D:/Projekte/Hydra/limbo-0.1/limbo.jar -limbo.language jse -

limbo.platform standalone -limbo.generationtype all -limbo.protocol TCP -

limbo.loghandler false -limbo.outputdirectory D:/Projekte/Hydra/runtime-

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 127 of 157 30/04/2010

EclipseApplication/Test D:/Projekte/Hydra/runtime-

EclipseApplication/Test/resources/th03r.wsdl

Postprocessing

Limbo generates quite a lot of source files which have to be processed further. Subsequent to the
source 2 code generation, the generated files can be modified. As this is outside the scope of limbo,

this is not detailed here, but the reader should know this can be done by the tools available in
Eclipse.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 128 of 157 30/04/2010

8. Integrated Development Environment - .Net

This section provides tutorials on how to use each component of the Hydra .NET IDE, including a

general introduction to the whole IDE itself.

8.1 Creating a Basic Hydra Application

In this chapter the basic steps to create a Hydra application in a .Net environment are described and
how the Hydra SDK is integrated into the Visual Studio development environment is shown.

8.2 Creating a Hydra application from a template

In Visual Studio selecting “New Project” as seen below

Figure 87: Template view in Visual Studio

Under the Visual C# menu the Hydra category appears. Selecting the type of Hydra application that

should be develop, e.g. a basic Hydra Application.

Once the type of application is selected click OK - Hydra will create the necessary project files:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 129 of 157 30/04/2010

Figure 88: Auto generated files for Basic Hydra Application

The following files and references are automatically created:

 The main program file named “program.cs”

 A rule file for binding your devices to identifiers (PIDs). This file is called

applicationbindings.xsl

 A Web Reference to the Application Device Manager

 A Web Reference to the Network Manager (in file networkmanagerapplicaitonservice.cs)

 A Web Reference for creating WS clients for accessing basic Hydra devices

8.2.1 Initiating the Network Manager

The first step in any Hydra application is to initiate the Network Manager in order to be able to

communicate with other Hydra Managers and devices. This is done in the method

SetUpNetworkManager:

void SetUpNetworkManager(string url)

 {

 m_networkmanager = new NetworkManagerApplicationService();

 m_networkmanager.Url = url;

 System.Net.ServicePointManager.Expect100Continue = false;

 }

8.2.2 Initiating the Application Device Manager

The next step is to initiate the Application Device Manager. There are three things you need to do to

initiate the Application Device Manager:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 130 of 157 30/04/2010

 Retrieve the Hydra ID for the Application Device Manager from the Network Manager

 Use the HID to create an endpoint URL for the Application Device Manager

 Load the device bindings into the Application Device Manager (if there is no binding

provided a bindings file the Application Device Manager, will use default ways of making
bindings instead).

void SetUpApplicationDeviceManager(string gateway, string endpoint, string appname)

 {

 m_applicationdevicemanager = new ApplicationDeviceManager.ApplicationDeviceManager();

 //Use NM to find HID for Application Device Manager

string AppDevMgrHID =

m_networkmanager.getHIDsbyDescriptionAsString("ApplicationDeviceManager:" + gateway +

":StaticWS");

string[] DacHIDs = AppDevMgrHID.Split(' ');

AppDevMgrHID = DacHIDs[0].Trim();

 m_applicationdevicemanager.Url = endpoint + "/SOAPTunneling/0/" + AppDevMgrHID +

"/0/hola";

try

{

 //check if bindingfile is correct xml before sending to application device manager

 XmlDocument myDoc = new XmlDocument();

 string bindingrules = "";

 myDoc.Load("applicationbindings.xsl");

 bindingrules = myDoc.OuterXml;

 m_applicationdevicemanager.AddApplicationBinding(appname, bindingrules);

 }

 catch (Exception e)

 {

 }

}

At this point a connection to a NetworkManager is established and the DAC is initiated.

8.2.3 Working with devices

Once the Network Manager and Application Device Manager are initiated, working with devices can

be started. A Hydra Device can be used in an application by creating a Web Service client for it. The

web reference „HydraDevice‟ should be used.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 131 of 157 30/04/2010

Figure 89: Creating WS clients for device

A Hydra identifier is needed to create an endpoint URL for the device (assuming the base URL in the
variable “endpoint” is used) which is assigned to the identifier “PetersPhone” in the application

bindings file:

HydraDevice.HydraDeviceWS myHydraDevice = new HydraDevice.HydraDeviceWS();

 string myhid=m_applicationdevicemanager.GetHID("", "PetersPhone");

 if (myhid != "")

 myHydraDevice.Url = endpoint + "/SOAPTunneling/0/" + myhid + "/0/hola";

Once you have established a URL for the device you can now start consuming its Hydra Services.

This example only works with devices at a generic level, as Hydra Device and therefore only have

access to meta data services like “GetDeviceXml”:

string myXml = myHydraDevice.GetHydraDeviceXML();

8.2.4 Applications Bindings

The application bindings file (applicationbindings.xsl) is used to assign persistent and context

dependent identifiers to devices.

 The bindings are expressed as a set of xslt rules over the Hydra Device XML.

<binding>
<xsl:template match="upnp:device">
……….
<xsl:if test="upnp:deviceType='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1' or ….

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 132 of 157 30/04/2010

<xsl:if test="upnp:friendlyName='DiscoBall'">
 <hydraUDN>DiscoBall</hydraUDN>
 <locationdata>
 <building>CNet Office</building>
 <room>Main</room>
 <position>Table</position>
 </locationdata>

 </xsl:if>

 <xsl:if test="upnp:friendlyName='PetersLight' and hydra:gateway='DELL1'">
 <hydraUDN>DemoLight</hydraUDN>
 <locationdata>
 <building>CNet Office</building>
 <room>Main</room>
 <position>Table</position>
 </locationdata>
</xsl:if>

 <xsl:if test="hydra:gateway='Casa Domotica'">

 <hydraUDN><xsl:value-of select="upnp:friendlyName"/></hydraUDN>
 <locationdata>
 <building>Casa Domotica</building>
 <room><xsl:value-of select="upnp:friendlyName"/></room>

 </locationdata>

</xsl:if>

……….

</binding>

The hydraUDN is the Hydra Unique Device Name, which can be derived from any of the properties in
the Device XML, though normally it is set to the upnp:friendlyName. The binding combines the

hydraUDN with possible location (context) data, into a PID (Preferred Identifier) for the device.

Applying the binding rules to the Device XML results in the specific binding being added to the DAC
where it can be used by the application code.

The developer can define the application bindings by updating the bindings XML file (an associated
XML schema supports the editing). In any case the SDK also provides a default binding of devices,

based on the upnp:friendlyName and without context data.

8.3 Creating an Advanced Hydra Application

One of the most common uses of the Hydra middleware is to use it for monitoring and controlling

the energy consumption of physical devices.

8.3.1 Initiate Application

To create an Energy Application you follow the same steps as before:

 Select New Project

 Select HydraEnergyApplication template

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 133 of 157 30/04/2010

Figure 90: Energy Application Template view

The following files and references are automatically created:

 The main program file named “program.cs”

 A rule file for binding your devices to identifiers. This file is called applicationbindings.xsl

 A Web Reference to the Application Device Manager

 A Web Reference to the Network Manager (in file networkmanagerapplicaitonservice.cs)

 A Web Reference to the Event Manager (in file eventmanagerservice.cs)

 A Web Reference for creating WS clients for accessing basic Hydra devices.

 A Web Reference for creating WS clients for accessing Basic Switch and Enhanced Switch

devices.

 Web Reference for accessing the Energy services of Hydra devices.

8.3.2 Searching and finding for devices

Next step is to access and control some energy consuming devices. Under the “Web References”

menu two new references to “BasicSwitchDevice” and “EnhancedSwitchDevice” are shown.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 134 of 157 30/04/2010

Figure 91: Selecting web references to devices

These can be used to control a particular device, but finding the device is required. Setup the

Network and Application Device Manager is necessary as described in previous section (the code is
already in the program.cs file).

Once this is done, querying the Application Device Manager can be used to find the devices. The

knowledge of the Hydra Device XML structure and the standard XML query language “Xpath” is
needed.

The following XPath statement will match each device that is of type “basicswitchdevice”.

".//*[name()='deviceType' and .='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']”

If you use this statement as input to the method GetHydraURLsFromXPath of the

Application Device Manager you will get a list of all discovered and active devices in a

Hydra Network. Since a device might expose several web services you need to specify

which one you are interested in. In this case it is “hydraidStaticWS”. This method is a

shortcut compared with retrieving the HID and composing the URL as it was described

in the previous example.

public void TurnOnAllSwitchDevices()

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 135 of 157 30/04/2010

{

string basicswitches =

m_applicationdevicemanager.GetHydraURLsFromXpath(".//*[name()='deviceType' and

.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']", "hydraidStaticWS", "");

8.3.3 Invoking Device Services

The next step is to start the controlling of the devices. This code shows an example of how to turn

on all switches:

public void TurnOnAllSwitchDevices()

{

 string basicswitches =

m_applicationdevicemanager.GetHydraURLsFromXpath(".//*[name()='deviceType' and

.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']", "hydraidStaticWS", "");

 char[] splitchar = new char[1];

 splitchar[0] = ',';

 string[] switches = basicswitches.Split(splitchar);

 foreach (string switchurl in switches)

 {

 BasicSwitchDevice.BasicSwitchWS mySwitch = new BasicSwitchDevice.BasicSwitchWS();

 mySwitch.Url = switchurl;

 mySwitch.TurnOn();

 }

}

This example shows how to use the EnergyWS web service to calculate the current total effect for all

running devices:

public int GetTotalCurrentEffect()

 {

 int returnvalue = 0;

 string basicswitches =

m_applicationdevicemanager.GetHydraURLsFromXpath(".//*[name()='deviceType' and

.='urn:schemas-upnp-org:hydradevice:basicswitchdevice:1']", "hydraidEnergyWS", "");

 char[] splitchar = new char[1];

 splitchar[0] = ',';

 string[] switches = basicswitches.Split(splitchar);

 foreach (string switchurl in switches)

 {

HydraDeviceEnergyWS.HydraDeviceEnergyWS mySwitch = new

HydraDeviceEnergyWS.HydraDeviceEnergyWS();

 mySwitch.Url = switchurl;

 string effectstring = mySwitch.GetCurrentEffect();

 if (effectstring != "")

 {

 returnvalue = returnvalue + System.Convert.ToInt32(effectstring);

 }

 }

 }

8.4 Understanding the Hydra Device XML

Since all metadata and the state of a device is communicated using an XML structure it is

fundamentally important to understand this structure and how it can be used. Below is an example
of the Hydra Device XML for a device. The Hydra Device XML is an extension of the UPnP SCPD XML

(Service Control Point Document) vocabulary. Elements with the namespace “hydra” are the Hydra-
specific extensions.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 136 of 157 30/04/2010

<root xmlns="urn:schemas-upnp-org:device-1-0">
<specVersion>
 <major>1</major>

 <minor>0</minor>

 </specVersion>

 <device>
 <deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

 <hydraidDynamicWS xmlns="hydra">0.0.0.6189708676876140718</hydraidDynamicWS>
 <energywsendpoint xmlns="hydra">http://212.214.80.144:8080/hydradevice/8619ff3a-af98-44a9-85da-

7f5f18f7e562/energy</energywsendpoint>
 <hydraidStaticWS xmlns="hydra">0.0.0.6592261886889156134</hydraidStaticWS>
 <discoveryinfo

xmlns="hydra"><tellstickdevice><name>PetersLight2</name><vendor>Nexa</vendor><deviceid>2</
deviceid></tellstickdevice></discoveryinfo>

 <hydraidUPnPService_urn_schemas-upnp-org_memoryservice_1
xmlns="hydra">0.0.0.4695383175879738995</hydraidUPnPService_urn_schemas-upnp-
org_memoryservice_1>

 <networkmanager
xmlns="hydra">http://localhost:8082/services/NetworkManagerApplication</networkmanager>

 <hydraUDN xmlns="hydra">PetersLight2</hydraUDN>
 <standbytime xmlns="hydra">60</standbytime>
 <status xmlns="hydra">web service initiated</status>
 <hydraidStaticWSDescription xmlns="hydra">PetersLight2:StaticWS</hydraidStaticWSDescription>
 <hydraidUPnPService_urn_schemas-upnp-org_locationservice_1

xmlns="hydra">0.0.0.8817877591614169464</hydraidUPnPService_urn_schemas-upnp-
org_locationservice_1>

 <hydraidUPnPService_urn_schemas-upnp-org_energyservice_1
xmlns="hydra">0.0.0.410334127518851262</hydraidUPnPService_urn_schemas-upnp-
org_energyservice_1>

 <hydraWSEndpoint xmlns="hydra">http://212.214.80.144:8080/hydradevice/8619ff3a-af98-44a9-85da-
7f5f18f7e562</hydraWSEndpoint>

 <UPnPEndpoint xmlns="hydra">http://212.214.80.144:64277/</UPnPEndpoint>
 <hydraidUPnPService_urn_upnp-org_serviceId_switchservice_1

xmlns="hydra">0.0.0.7715272012937744631</hydraidUPnPService_urn_upnp-
org_serviceId_switchservice_1>

 <dynamicWSEndpoint xmlns="hydra">http://212.214.80.144:64277/</dynamicWSEndpoint>
 <wsendpoint xmlns="hydra">http://212.214.80.144:8080/0/EnhancedSwitchWS</wsendpoint>
 <hydraidHydraWS xmlns="hydra">0.0.0.713272519360667694</hydraidHydraWS>
 <DACEndpoint xmlns="hydra">http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>
 <hydraidUPnPDescription xmlns="hydra">PetersLight2:UPnP</hydraidUPnPDescription>
 <hydraidHydraWSDescription xmlns="hydra">PetersLight2:HydraWS</hydraidHydraWSDescription>
 <securityinfo xmlns="hydra"><securityInfo xmlns="hydra"><property

name="tellstick.api.version"><value>2.1</value></property><property
name="switch.mode"><value>2</value></property><property
name="EncryptionProtocol"><value>None</value></property></securityInfo></securityinfo>

 <hydraidUPnPService_urn_upnp-org_serviceId_1
xmlns="hydra">0.0.0.6339391984478104269</hydraidUPnPService_urn_upnp-org_serviceId_1>

 <hydraidEnergyWSDescription xmlns="hydra">PetersLight2:EnergyWS</hydraidEnergyWSDescription>
 <gateway xmlns="hydra">BLONDIE</gateway>
 <hydraidUPnP xmlns="hydra">0.0.0.3263501067198386232</hydraidUPnP>
 <hydraidEnergyWS xmlns="hydra">0.0.0.3952190387415366563</hydraidEnergyWS>
 <friendlyName>PetersLight2</friendlyName>
 <manufacturer>Telldus</manufacturer>
 <manufacturerURL>http://www.telldus.se</manufacturerURL>

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 137 of 157 30/04/2010

 <modelDescription>Remote switch</modelDescription>
 <modelName>Tellstick</modelName>
 <modelNumber>X1</modelNumber>
 <UDN>uuid:8619ff3a-af98-44a9-85da-7f5f18f7e562</UDN>

</device>
</root>

The following element is an example of a standard UPnP element. It specifies the device type:

<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

This element is an example of a Hydra-specific extension. It specifies the gateway where the device
is running:

 <gateway xmlns="hydra">BLONDIE</gateway>

There are a number of methods that allows for searching of devices in the network. These require

XPath expressions as parameter. This Xpath expression is evaluated against the Hydra Device XML
for each device to decide if the match the search criteria or not.

The various elements can be grouped into categories:

PID

The hydraUDN element represents the PID (Persistent ID) that has been assigned to this particular

device.

<hydraUDN xmlns="hydra">PetersLight2</hydraUDN>

Hydraids

The following elements represents the different Hydra IDs (HID) for different device services. The
hydraidStaticWS is the normal HID to be used, while hydraidHydraWS is the HID to access the

generic Hydra services of the devices.

Note the element hydraidUPnPService_, for each UPnP service a HID is created with the format

hydraidUPnPService_serviceid (where in the service id : has been replaced with _ as in

“hydraidUPnPService_urn_schemas-upnp-org_energyservice_1”)

hydraidStaticWS

hydraidDynamicWS

hydraidHydraWS

hydraidEnergyWS

hydraidUPnPService_

Endpoints

The endpoint elements represent the endpoint to the device service. Normally this should not be

used. Use the corresponding HID instead.

energywsendpoint

wsendpoint

dynamicwsendpoint

UPnPendpoint

Other Hydra elements

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 138 of 157 30/04/2010

The DACEndpoint element represents the DAC that has discovered and created the Hydra Device. It
“owns” the device

<DACEndpoint

xmlns="hydra">http://212.214.80.144:8080/ApplicationDeviceManager</DACEndpoint>

The gateway element represents the gateway where the device is running:

<gateway xmlns="hydra">BLONDIE</gateway>

UPnP elements

The following elements are standard UPnP elements

<deviceType>urn:schemas-upnp-org:hydradevice:enhanchedswitchdevice:1</deviceType>

<friendlyName>PetersLight2</friendlyName>

<manufacturer>Telldus</manufacturer>

<manufacturerURL>http://www.telldus.se</manufacturerURL>

<modelDescription>Remote switch</modelDescription>

<modelName>Tellstick</modelName>

<modelNumber>X1</modelNumber>

<UDN>uuid:8619ff3a-af98-44a9-85da-7f5f18f7e562</UDN>

8.4.1 Extending the Hydra Device XML

It is possible to extend the Hydra Device XML to incorporate your own meta data and state

information. Simply call the method SetProperty in the Hydra WS, then you can add properties to

the device which will be available in the Hydra Device XML and can be used as part of your search
expressions.

Calling myDevice.SetProperty(“myproperty”,”value1”), will create the following element in your
Hydra Device XML:

<myproperty xmlns="hydra">value1</myproperty>

You can then easily select devices in the network that has myproperty=”value1”.

For instance the following call with get an Hydra encoded URL to the Energy WS for the all devices

that has myproperty=”value1”.

m_applicationdevicemanager.GetHydraURLsFromXpath(".//*[name()='myPropety' and .=’value1']" ,

"hydraidEnergyWS", "");

8.5 SDK components

The SDK provides a collection of templates, classes and browser tools for development of Hydra

applications. The SDK, and the DDK, are intended as integrated components in the Hydra IDE, to be
instantiated on two available platforms (.net Visual Studio and Eclipse).

The chosen way of integration is by mean of templates and by embedding selected tools.

http://212.214.80.144:8080/ApplicationDeviceManager%3c/DACEndpoint

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 139 of 157 30/04/2010

8.5.1 Application Project Templates

The project templates for Visual Studio gives the developer a way of creating a Hydra application

without having to write the boiler plate code necessary to set up the environment and finding the

end points for interacting with Hydra managers.

There are a number of templates available which cater for some typical development scenarios. The

basic difference between templates is which managers are directly available and which boiler plate
code examples are provided.

8.5.2 HydraBasicApplication

Creates a standard no thrills project that connects to Hydra managers.

Managers

- ApplicationDevice Manager

- Network Manager

Device types

- Hydra Device

8.5.3 HydraEnergyApplication

This template creates a project that contains the code necessary to monitor energy consumption for
a number of devices.

Managers:

- ApplicationDevice Manager

- Network Manager

- Event Manager

- Context Manager

- Storage Manager

Device Types

- Basic Switch

- Enhanced Switch

8.5.4 HydraDynamicApplication

This template creates a project that deals with devices at type level instead of binding to individual
devices, for instance interacts with all BasicSwitch devices available in a Hydra network. This is

useful when writing general applications which determine their devices in run time.

Managers

- ApplicationDevice Manager

- Network Manager

Device types

- None

8.5.5 HydraSensorApplication

This template creates a project that works with sensors using Events and gives the developer the
necessary boiler plate code for adding which sensors and events that it should work with.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 140 of 157 30/04/2010

Managers

- ApplicationDevice Manager

- Network Manager

- Event Manager

Device types

- None

8.6 Tools integration

8.6.1 The DAC browser

The DAC Browser is also an integral component of SDK as part of the IDE as seen in Figure 92.

Figure 92: DAC Browser (upper right) in the IDE

It provides the same functions as the stand-alone version and in addition,

- Provides an IDE-view of all devices known to the Hydra Network

- Enables the developer to create proxies by selecting devices

8.6.2 The Device Ontology browser

Similar to the way developers can access the DAC, the Device Ontology is available in the IDE in a

seamless way. The Device Ontology tool is integrated the same way the DAC is integrated.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 141 of 157 30/04/2010

Figure 93: The web-based Device Browser

This means that a subset of the functions from the current web based ontology tools interface is
available from within the IDE.

8.7 SDK Class library for .NET

The SDK Class library contains a number of ready-to-use Hydra Devices Types with corresponding

web services, which are available to developers.

8.7.1 Using the .Net DDK tools

There are two main tools for creating device code for .Net in Hydra:

 Intel Service Author for UPnP Technologies

 Hydra .Net DDK tool

The example device that we will create in this tutorial is an OBEX device for a smart phone.

8.7.2 Using Intel Service Author for UPnP Technologies

This tool is used for creating the service methods and producing an SCPD that will be used as input
for the final code generation.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 142 of 157 30/04/2010

Figure 94: Producing SCPD window

The first step is to define the state variables that will be used by the service. State variables have to
be defined for all Input/output parameters used in the service. In this case there are a number of

state variables defined with their respective types.

The next step is to define actions, i.e. the methods that this service should support. This is carried

out in the “Actions” tab.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 143 of 157 30/04/2010

Figure 95: Action tab

There are a number of methods defined with their corresponding arguments. The methods are
added using the “Action Editor” which allows for adding arguments and defining in which direction it

is used.

Figure 96: Action Editor

Save the SCPD to file when finished for later processing in the Hydra .net DDK tool.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 144 of 157 30/04/2010

Figure 97: Save file window

8.7.3 Using Hydra .Net DDK tool

The actual code generation is carried out in the Hydra .Net DDK tool. It is also where the actual
configuration of device type and other settings are done.

The first step is to “Add Device” by right clicking in the tools left pane.

Figure 98: Add new device window

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 145 of 157 30/04/2010

The next step is to edit the meta data for the device, i.e., device name, type, description etc.

Figure 99: Window for setting name and other properties

Then one adds the service created in the previous section by right clicking on the device in the left

pane.

Figure 100: Adding service window

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 146 of 157 30/04/2010

Figure 101: Choosing a file in explorer

Now we have added the OBEX service and we can see all the methods in that service.

Figure 102: Obex service window

Finally generating the code for the Hydra device. Select the “File” menu and choose “Generate Hydra

Device”.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 147 of 157 30/04/2010

Figure 103: Generating a Hydra device dialogue

In the code generation dialogue the project name and optional Namespace for the generated code

needs to be set.

Figure 104: Code Generation Window

A complete Visual Studio project is created with the necessary Hydra references.

The Visual Studio project can be opened now.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 148 of 157 30/04/2010

Figure 105: Hydra .Net-IDE

The device code is already runable since all methods are stubbed. The code should be changed in

the stubs to carrie out the actual device communication. The location of the stubs that needs to be
changed is in “Device name”.cs, i.e. SmartPhone.cs in this example. But in this case we will start the

device by opening the “Debug” menu and selecting “Start debugging”.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 149 of 157 30/04/2010

Figure 106: Hydra .Net IDE

The running Hydra DAC tool shows our newly created device with all its services. The relevant Hydra

services: HydraService, EnergyService, LocationService and Memory service were created. It is
shown that the Device is properly discovered and has all the Hydra properties such as HID.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 150 of 157 30/04/2010

Figure 107: DAC with example SmartPhone device

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 151 of 157 30/04/2010

9. Summary

Having sufficient training material and documentation along with the development of the software

components is an ongoing process. The details given in this document reflect the final status of the

software during the period of the project.

The HydraMiddleware will become an Open Source project, which means that the development is

not finished yet and that programmers form around the world use this version as a basis on which to
build applications and make improvements to the middleware itself.

A known fact is that technology will change and protocols and standards will arise which have to be

integrated in the Hydra layer. That means that the development of the training is also given into the
hands of future Hydra developers. Nevertheless a solid base is needed to create easy to use

documentation materials.

Along with this document there will be other ways in which to obtain information about Hydra and

its application development as a software middleware which includes a Software development Kit, a
Device Development Kit and an Integrated Development Environment.

The Hydra training material outcome will also include websites, APIs, online-webinars, how-to videos

and slides for the different views and functionalities of Hydra.

This material is aimed at software developers as well as business managers who have to decide

which software they want to use and to base their products on.

The D12.9 is aimed at external developers who are not familiar with the process of using the

HydraMiddleware to build powerful, useful and beneficial applications on top of it.

With the support and help by all partners in the Consortium this training material was developed. It
was also used among the current Hydra developers to integrate their components with the core of

the Hydra functionality.

This document is limited to text and figures and can not represent the whole training material which

will be used to support third party developers and support decision makers in their choices.

The further reading section and link collection at the end of this document should be used as a

starting point to get familiar with the overall Hydra concepts and different solutions which were

extended during the entire process of the core components and middleware development.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 152 of 157 30/04/2010

10. References and further Reading

[1]
Brinkmann, A., Effert, S., and Gao, Y. (2009). D3.12 Updated Grid Architecture
Report. Technical Report, University of Paderborn.

[2]
Ingstrup, M., and Zhang, W. (2008). D4.8 Self-star properties DDK prototype and

report. Technical report, UAAR.

[3]
Al-Akkad, A.-A., Kostelnik, P., and Zhang, W. (2009). D4.10 Quality-of-service

enabled hydra middleware. Technical report, Fraunhofer FIT.

[4] Drools – Business Rules Management System. <http://labs.jboss.com/drools>

[5] eXist-db Open Source Native XML Database. <http://exist.sourceforge.net>

[6] OASIS - http://www.oasis-open.org

[7] Sun XACML Implémentation. <http ://sunxacml.sourceforge.net>

[8]
eXtensible Access Control Markup Language (XACML) Version 2.0 (2005) -

http://www.oasis-open.org/committees/xacml/

[9]
IBM, Web Services Security

http://www.ibm.com/developerworks/library/specification/ws-secure

[10]
W3C, XML Security Introduction

http://www.w3.org/2004/Talks/0520-hh-xmlsec/slide4-0.html

[11] http;//www.osgi.org/Links/DeveloperKits

[12]
The SENSORIA Development Environment, CASE Tool for SOA Development

http://home.mit.bme.hu/~rath/ppt/SDE.pdf

[13] http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[14] http://www.mono-project.com

[15] http://www.oscaf.org/nrl_ontolog]

[16]
http://protege.stanford.edu/plugins/owl/jena-integration.html

http://protege.stanford.edu/plugins/owl/api/guide.html

[17] http://msdn.microsoft.com/en-us/netframework/aa904594.aspx

[18] http://www.w3.org/Submission/OWL-S

[19] http://www.w3.org/2002/ws/sawsdl/

[20] http://www.uddi.org/

[21]
M. Kostoulas, M. Matsa, and N. e. a. Mendelsohn. XML screamer: an integrated

approach to high performance XML parsing, validation and deserialization. 15th

international conference on World Wide Web, pages 93–102, 2006.

[22] M. Shaw. Some Patterns for Software Architectures. Pattern Languages of Program

Design, 2:255–269, 1996.

 Badii, A., et.al. (2010). D12.8 D12.9 - Final External Developers Workshops Teaching
Materials. Technical Report, UR.

http://www.oasis-open.org/committees/xacml/
http://www.osgi.org/Links/DeveloperKits
http://home.mit.bme.hu/~rath/ppt/SDE.pdf
http://www.mono-project.com/
http://www.oscaf.org/nrl_ontolog
http://protege.stanford.edu/plugins/owl/jena-integration.html
http://protege.stanford.edu/plugins/owl/api/guide.html
http://msdn.microsoft.com/en-us/netframework/aa904594.aspx
http://www.w3.org/Submission/OWL-S
http://www.w3.org/2002/ws/sawsdl/

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 153 of 157 30/04/2010

 Ingstrup, M., and Zhang, W. (2010). D4.9 Embedded AmI components prototype.

Technical report, UAAR.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 154 of 157 30/04/2010

Further information about the Hydra Middleware Project

Hydra Website http://www.hydramiddleware.eu

Hydra Public Deliverables http://www.hydramiddleware.eu/articles.php?article_id=90

Hydra in Wikipedia http://en.wikipedia.org/wiki/Hydra_Project_%28EU_Project%29

CNet Demo http://hydra.cnet.se

http://www.hydramiddleware.eu/
http://www.hydramiddleware.eu/articles.php?article_id=90
http://en.wikipedia.org/wiki/Hydra_Project_%28EU_Project%29
http://hydra.cnet.se/

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 155 of 157 30/04/2010

11. Glossary

This chapter aims to provide a comprehensive understanding of important terms used in and derived

from the Hydra project. In addition, the terms listed in this chapter try to convey a sense of their

application and present the background of the fundamental concepts. Even if some of the
subsections seem to be a repetition of things already documented, this chapter can be seen as a

central point of access to a description of the Hydra terms. The definitions listed here have been
agreed on by the Hydra Consortium. (The terms are ordered from high-level to low-level)

Physical Device:

A “Physical Device” is a common device that offers some functions that affect the “physical world”.

Such functions could for example be providing light, heat, wind, open door, or reports physical

properties such as temperature, blood pressure, pulse, movements, etc. Hydra constitutes a
middleware that enables networking of physical devices.

Appliance:

An “Appliance” represents a physical device that is dedicated to a single purpose. Appliances refer to

more complex physical devices and are especially prominent in the field of home automation or

home entertainment.

Hydra-Compliant Physical Device:

A “Hydra-compliant Physical Device” is a physical device that can be Hydra-enabled. Hydra-
compliant physical devices divide into 5 different classes (see Section 3) that determine the

procedure to be used to Hydra-enable devices and integrate them into a Hydra network. In the

smallest class, such devices need to offer some external interface for communication and control.

Examples of such external interfaces supported by the Hydra middleware are Bluetooth, ZigBee, RF,

RFID, serial ports, USB, etc.

Hydra-Enabling a Device:

“Hydra-enabling a Device” means the process of making the functions of a Hydra-compliant physical
device available and controllable for other devices in a Hydra network. Depending on its device

class, three methods make such a device Hydra-enabled:

• Installing (parts of) the Hydra middleware on the device

• Using the Limbo tools to embed Web Services on the device and generate a Proxy

• Using a Proxy to represent the device on a Gateway

At the end of this process the functions of this device can be invoked using Web Services, and

metadata about the device is provided in the format and protocol required by Hydra.

Hydra-Enabled Device:

A “Hydra-Enabled Device” is a Hydra-compliant physical device that has successfully run through the

Hydra-enabling process. A Hydra-enabled device owns a software representation, i.e. a Hydra
Device, in a Hydra network and

• Can be discovered by other devices in a Hydra network

• Makes all or a subset of its functions accessible as Web Services

• Offers its Web Services either natively (embedded code) or through a proxy

• Supports UPnP and advertises its entry into a Local Area Network through UPnP
broadcasting

• Supports Hydra Generic Services and Hydra Energy Service.

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 156 of 157 30/04/2010

Hydra Device:

A “Hydra Device” constitutes the software representation of a Hydra-enabled device and its

functionalities, in order to enable access and control. The Hydra Device can either run as a Proxy for

the Hydra-compliant physical device on a gateway or it can run while embedded in the device. A
Hydra Device can obtain Hydra identifiers for its services (HID) and also application specific

identifiers. Furthermore, a Hydra Device implements the “Hydra Generic Services” and “Hydra
Energy Services”. For one physical device there might exist one or more Hydra Devices. A Hydra

Device might also incorporate services from several physical devices.

Semantic Device:

A “Semantic Device” represents a composition of one or more Hydra devices and constitutes an SDK

construct. A semantic device is dynamically bound to its Hydra devices at runtime. Therefore a
semantic device might only be partially instantiated at runtime. A semantic device is discoverable in

the same way as and also acts as any Hydra Device. The description of the semantic device is part
of the Hydra Device Ontology.

Gateway:

A “Gateway” is a physical device with IP capabilities, which manages a set of proxies for controlling
Hydra devices. A gateway must support Web Services and UPnP and should also be able to run

Hydra Discovery Managers. In addition, a gateway may also host other components of the Hydra
middleware.

Proxy:

A “Proxy” is a Hydra Device that consists of a software component responsible of communicating

with a physical device, understanding the technology used and the format of the data exchanged. It

is deployed on a gateway and represents the device to be controlled.

Bridge:

A “Bridge” represents a software component that resides inside a Gateway and translates any non-
IP communication into an IP based communication. It is used by Hydra-enabled devices with non-IP

capabilities to communicate inside the Hydra network.

Hydra Network:

A “Hydra Network” represents a network of Hydra Devices and applications that communicate with

each other using Web Services and IP communication on top of a Peer-to-Peer overlay.

Hydra Middleware:

The “Hydra Middleware” is a collection of interrelated components, i.e. Hydra Managers, that work

together to realise a platform of networked heterogeneous physical devices. The Hydra middleware
allows such devices to be part of an ambient intelligence environment.

Device Discovery:

The process “Device Discovery” covers several steps where a physical device is discovered,

semantically resolved and made accessible as a Hydra Device. In order for a device to be discovered
in a Hydra network, a definition of the device type must exist in the Hydra Device Ontology.

Hydra Manager:

A “Hydra manager” (or short “manager”) constitutes the major building blocks that make up the
Hydra middleware. A Hydra manager encapsulates a set of operations and data that realise a

specific functionality and is mostly subdivided into several internal components.

Hydra Generic Services:

The Hydra Generic Services are supported by all Hydra Devices and contain a set of meta-data

methods that can be used to query the device about its properties.

Hydra Energy Services:

Hydra D12.9 - Final External Developers Workshops Teaching Materials

Version 1.0 Page 157 of 157 30/04/2010

The Hydra Energy Services are supported by all Hydra Devices and provide methods to retrieve
information from the energy profile of the device and from the energy policy.

Hydra Identifier (HID):

A “Hydra identifier” (or simply “Hydra ID” or shorter “HID”) constitutes a unique identifier for every
Hydra Device, service or resource within a Hydra network. The Network Manager generates the HID,

is responsible for the matching between logical and physical identifiers and for the propagation of
this information to other peers of the Hydra network.

CryptoHID:

An application developer has the opportunity to assign his own CryptoHID to a certain Hydra Device.

This CryptoHID can directly be used throughout the application code and referred to when

expressing security, energy and other policies.

Session:

A “Session” traces the communication between elements of a Hydra network, in order to keep the
communication coherent. Sessions allow the maintenance of the state of each network element as

they communicate with each other. The Network Manager comprises a dedicated Session Manager

that creates and maintains the lifecycles of the session objects.

Ontology:

An “Ontology” is a representation of the knowledge of a formally defined system of concepts and
relationships. In addition, an ontology can contain inference to derive new knowledge and integrity

rules to assure its validity. Therefore, an ontology forms a network of information and logical
relationsships described through a formal language such as the Web Ontology Language (OWL).

Hydra Device Ontology:

The “Hydra Device Ontology” is an ontology that contains knowledge about device classes, their
properties and services offered.

Device Model:

A “Device Model” describes the properties and services that a certain device class offers. The Device

Model is expressed using the SCPD XML format of the UPnP standard.

Hydra Peer-to-Peer Architecture:

The “Hydra Peer-to-Peer Architecture” allows Hydra Devices in different local Hydra networks to

access and communicate with each other. This means Web Services calls can be executed remotely
over a P2P overlay.

