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Executive Summary

This deliverable documents the achievements of Hydra within the area of self management
until month 30. The following tasks have been achieved compared to the last deliverable
D4.3 (Ingstrup et al., 2008). They are listed in the order in which they are documented in
this deliverable:

• Clarification of self-management capabilities running on different type of devices (D0
to D4) as classified in deliverable D5.4. (chapter 1)

• A more thorough account of related work: The increased page and reference count
in the related work section is the result of a more detailed analysis of the relationship
between different types of adaptation and detection algorithms. (chapter 2)

• Three new cases which takes up the challenge of self-healing, self-configuration and
goal-management set out as targets for future work in deliverable 4.3 (Ingstrup et al.,
2008, p. 15). (chapter 3)

• A clarification of the overall architecture for self-management in Hydra. This describes
how the previous self-* prototypes have been integrated together with the new work,
how the self-management components collaborate with other Hydra components, as
well as frame our discussion of future work. (Chapter 4)

• The design and implementation of an architectural scripting language on top of OSGi,
which is used both for self-management, and for supporting the development and test
of systems in Hydra. (chapter 5)

• The initial specification of a testbed for self-management, including an implementation
of the ANT configuration tool to include the architectural scripting language operations.
(chapter 5)

• The realization of the three cases which exemplifies self-repair and self-configuration,
how QoS can be used to achieve self-adaptation given a particular quality goal. (chap-
ter 5,7, 9)

• An elaboration of the reasons for choosing OWL-DL1 and SWRL2 as the means for
achieving ambient intelligence in Hydra, together with the discussion of their weak-
ness. This is a reaction to review comments on why Hydra is choosing OWL-
DL+SWRL for ambient intelligence. We also published this result in a SASO 2008
paper. (chapter 6)

• A formulation of the self-management for pervasive service (SeMaPS) ontology set,
adding new ontologies (MessageProbe, QoS, Location, Time, Person, OSGiCompo-
nent, Connector, ArchitectureStyle) to SeMaPS ontologies. (chapter 6)

1http://www.w3.org/TR/owl-guide/
2SWRL: A Semantic Web Rule Language Combining OWL and RuleML. http://www.w3.org/Submission/SWRL/
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• A set of self-management rules is developed, which covers self-adaptation, self-
diagnosis, self-configuration, and QoS are considered in some of the rules. (chapter
7)

• The design of a solution for using probability in semantic ontologies based on the sur-
vey of current situations in handling probabilities in semantic web. (chapter 7 Section
7.5)

• Propose a self-management model and Hydra utility functions, based on the survey
for planning mechanisms. Genetic algorithm is promising to serve as the planning
mechanism in Hydra. (chapter 8)

• Five papers are published based on this task (SEKE 2008, SASO 2008 (two papers),
MRC 2008 workshop, IOT&S workshop), as in the Appendix.

The following sub-tasks of T4.3 remains outstanding but should be finished by month 36,
as according to the plan in the new DOW (V7.23):

• More planning algorithms need to be investigated, and implementation and evaluation
of the planning algorithms.

• Self-protection, in collaboration with WP7. In (Ingstrup et al., 2008) self-protection
was outlined as a point for future work. This is still not directly addressed with the
work in this deliverable. The current view in wp4 is that this should be implemented in
collaboration with wp7 because it is likely to involve security. With that said however,
the work on self-management documented in this deliverable is generic, and should
be as applicable to self-protection as to other branches of self-* functionality.

• Further enhancements to SeMaPS ontologies and rules development for scenarios
arisen during the project goes, and more through evaluations for self-adaptation, self-
configuration.

• Integrating the Semantic and CPN versions of Flamenco, probably will be assumed by
the efforts on Goal management layer as it is more interesting as per the capabilities
of self-management in Hydra.

• The testbed for self management must be specified in more detail, particularly by for-
malizing the procedure for adding support for new devices. Because only one device
is currently supported, the addition of support for one or more additional platforms is
needed to inform this work and verify the current design. In addition to this, the speci-
fication of interfaces for pluggable self-* components is needed, along with adaptation
of the current prototypes to exemplify this.

The role of this deliverable in Hydra Self-management is a challenging research area
for pervasive computing. This deliverable lays out a solid foundation for how we achieve
self-management goals in Hydra, to achieve the vision of Ambient intelligence. The work
is based on extensive survey on existing related work, and our former deliverable D4.3
(Ingstrup et al., 2008). Specifically, this deliverable serves for Hydra:

• Elaborating of a semantic web based self-management approach for Hydra, based on
self-management ontologies SeMaPS, in which OWL-DL and SWRL are used.

Version 2.0 8 of 133 29 December, 2008
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• An extensive ontologies set SeMaPS (including a set of self-management rules cover-
ing full spectrum of self-management features) could be used by other work packages
for context modeling and context reasoning, and other self-management purposes.
SeMaPS is serving as knowledge base for self-management in Hydra.

• An approach for pervasive system test bed build up and related prototypes can be
used for testing self-management features.

• An prototype platform for semantic web based self-management serves as foundation
for the implementation of full self-management features, and approach for planning is
proposed.

Version 2.0 9 of 133 29 December, 2008
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1 Introduction

This deliverable consists of a set of software prototype components for the Hydra middle-
ware. The deliverable is a prototype and a report. For the prototype part we give a summary
of the components that have been developed. The report details the research contributions
in which these prototypes play a role.

The purpose of this deliverable is to present the research into self-managing techniques
and how it has contributed to the Hydra middleware. In addition, this deliverable should work
as a basic introduction for developers to start using the self-management components. More
technical details on other components can be found in other deliverables: Limbo details are
in Deliverable D4.2 (Hansen et al., 2007), and details on preliminary work on self-diagnosis
with Flamenco including the agriculture scenarios used in Flamenco components are given
in D4.3 (Ingstrup et al., 2008).Deliverable 12.5 (Fernandes et al., 2008) contains a tutorial
of ASL-ANT.

1.1 Components Overview

The following components are provided as a result of the work documented in this deliver-
able.

• ASL/ANT: An implementation of architectural scripting which extends ANT so it can be
used to set up distributed configurations of services.

• ASL/Self-*: A bundle for the Equinox OSGi platform that partially implements the com-
ponent control layer of the 3L architecture adopted for Hydra self-management. It
allows reconfigurations to be executed on this platform.

• SeMaPS ontologies, serve as the knowledge base for self-management in Hydra, in
which both static and dynamic contexts are modeled, and complex contexts are mod-
eled with SWRL.

• Self-management rules set, including new rules for self-diagnosis, self-adaptation,
self-configuration.

• Updated Flamenco/SW (Semantic Web based self-management component) with en-
hanced capabilities for self-diagnosis, and rule grouping features are used to improve
flexibility and performance.

1.2 Deployment of self-management components

In Hydra, devices are classified into 5 categories as in D5.4 (Sperandio et al., 2007), namely
D0 to D4 devices as shown in Table 1.1. In the last column, we listed possible deployment
of self-management components. Currently, our work is mainly concentrated on making the
self-management component work on powerful node like the D3, D4 devices, which have
almost unlimited resources for exploring self-management. In reality, if a device can run
JVM (version 1.6), then there should be no problem for running self-management compo-
nents. For some storage and CPU limited devices, they can partially running only the SWRL
reasoning (using Jess1).

1http://herzberg.ca.sandia.gov/
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Table 1.1: Devices classification in Hydra

Type Description Self* components

D0 Non-HED. Specific communication
protocol (BT, ZigBee). Need of a proxy
in D4

NA

D1 Non-HED. WS support (use of Limbo). ASL/Self*, Partial or full rules set
and SWRL reasoning

D2 HED. Specific communication protocol.
Need of a bridge (dedicated or in D3-
D4)

ASL/Self*, Partial or full rules set
and SWRL reasoning

D3 HED. Bridge hosting ASL/Self*, partial or full SeMaPS
ontologies, Partial or full rules set
and SWRL reasoning, partial of full
Flamenco

D4 Gateways. Proxy and bridge hosting ASL/Self*, full SeMaPS ontologies,
full rule sets, full Flamenco
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2 State of the art

In this chapter we consider the state of the art in self managing systems. Firstly we introduce
the concept of self managing systems and describe the method used to survey existing work.
The next section discusses the overall conceptual and architectural basis for autonomic
computing. It works as a foundation based on which we can discuss concrete adaptation
techniques. Next, in section 2.3,2.4, 2.5 we go through the qualities reliability, performance,
and usability using each as a perspective from which to discuss autonomic techniques.
Finally, in section 2.6 we conclude on the state of the art from the perspective of Hydra
and draws out the implications that motivate the work presented in the remainder of this
deliverable.

2.1 Introduction

A self managing, or autonomic, system is one in which technology is deployed specifically
for the purpose of managing other technology (Dobson et al., 2006). There are several
reasons why this is appealing. Firstly, as systems become more complex the effort required
to manage them grows. Building a system specifically to ease this task and automate parts
of it reduces the need for human intervention. Therefore it makes it practically possible to
build more complex systems. The trend for the past couple of decades indicates that this is
required.

Secondly, the dynamism characteristic of pervasive, ubiquitous and mobile computing
makes it increasingly untenable to build systems that only work when a set of statically fixed
assumptions are true. Thus a system must be able to adapt itself or be adapted to a change
of circumstance.

We propose to cast the challenge of autonomic computing in terms of the qualitative re-
quirements such as for reliability, security, usability etc. Focusing on the qualitative aspects
of a system largely leaves out the functional aspects. This is deliberate, because detecting
and accommodating a change in the functional requirements of a system is a considerably
harder problem to automate. Building a system that does the right thing for a user is already
hard to do for highly trained human developers, so automating it seems intuitively hard.
Another and more pragmatic reason for leaving out techniques to accommodate changing
functional requirements is that to our knowledge there is very little to survey in this area.
The dynamism of functional requirements is a research problem addressed by the end-user
development research community.

A key challenge in realizing an autonomic system is the detection of when the auxiliary
managing logic should be activated and what it should do to handle a detected problem.
We can understand this challenge in terms of the relationship between the requirements
to a system on the one hand, and whether the system’s operation conforms with these
requirements on the other. The autonomic control logic should then be activated when there
is a current or predicted discrepancy between desired and actual operation of the system.

Discrepancies between actual and desired operation can arise because users’ require-
ments to the system may change, or because changes in the environment may mean that
another configuration of the system is needed to meet a stable set of requirements. Depend-
ing on the design philosophy used in a system, a change in the environment, the conditions
under which a system provides its functionality, will often manifest itself as a fault or error
in the system. Therefore the avoidance of or recovery from errors is the goal of a particu-
larly important class of autonomic techniques, which help to further improve reliability and
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availability of a system.

2.1.1 Related Work

Other researchers have surveyed areas related to autonomic computin (Sterritt et al., 2005;
Dobson et al., 2006; Nami and Bertels, 2007; Elkhodary and Whittle, 2007). Sterrit et
al. (Sterritt et al., 2005) gives a broad overview of the field. Reza and Bertels (Nami and Ber-
tels, 2007) focus on the historical development and current challenges of the area. Dobson
et al. (Dobson et al., 2006) provide a comprehensive survey of autonomic communications.
Elkhodary and Whittle (Elkhodary and Whittle, 2007) survey approaches to adaptive secu-
rity. In contrast to this earlier work, we focus on particular techniques for diagnosis and
subsequent adaptation, and we do so from an architectural perspective.

2.1.2 Survey Method

In autonomic computing several techniques exist that aim to improve certain quality at-
tributes of a system. We want to position these techniques and concerns relative to each
other, and map points at which they are synergies and conflicts between them.

To enable comparison of techniques we must describe those of their properties that are
relevant to assessing their compatibility. Two techniques are compatible if the assumptions
they make do not conflict, and more so if they make the same assumptions. For instance,
a technique assuming a service oriented architecture is arguably easier to combine with a
second technique that makes the same assumption, and conversely, may be difficult to com-
bine with one that is not service oriented, but instead relies on e.g. CORBA. The challenge
of combining or reusing various techniques is closely related to that of making reusable
software components.

Garlan et al. (Garlan et al., 1995) have shown that a crucial reason why reuse is often
hard is that components made for reuse often make incompatible architectural assumptions.
While our unit of analysis is in the first instance more general than a particular implemented
component, we believe that architectural assumptions made by particular algorithms are
equally important to their combination and reuse. Therefore our taxonomy is also concerned
with the architectural assumptions made by each technique.

Software architecture is about the structure or structures of a system (Bass et al., 2003b)
and how these affect its quality attributes. Our perspective in this survey is architectural
because we classify the diagnosis and adaptation techniques according to the architectural
assumptions they rely on, and the quality attributes they help improve. This approach helps
elicit the information necessary to compare the different techniques, and in particular, it may
aid in assessing how compatible two techniques are.

The inclusion critera for the techniques in our survey have been:

1. The soundness of the work, including, importantly, whether it has been evaluated.

2. The scope of the technique. If the technique applies only to a very narrow set of
circumstances and are unlikely to be reused outside those circumstances, then it is of
lesser importance to the readers of a survey.

3. The subset should be representative. Due to limits in space and the large body of
work that exists, we cannot include every technique. However we have strived to
keep the subset selected representative of state of the art. Thus many of the included
techniques aims to improve reliability, because a disproportional number of techniques
focus on this compared to other quality attributes.
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4. The diversity of techniques. While the surveyed subset of techniques should be repre-
sentative, it is also important to reflect in the survey the breadth of the techniques that
exist. Reading a survey should be for inspiration as much as for reference.

A summary of the surveyed techniques and their properties is shown in table 2.1.

2.2 Conceptual and Architectural Basis of AC

Parashar and Hariri (Parashar and Hariri, 2005) describe four types of challenges for re-
search in autonomic computing:Conceptual challenges concerning how we understand au-
tonomic systems, including models and abstractions of them; the Architectural challenges
of what architecture can enable self-management at various levels of granularity, locally or
globally and so they can be specified, implemented and controlled in a predictable and ro-
bust manner; Middleware challenges about what core services are needed to support real-
ization of autonomic systems subject to particular and perhaps varying quality requirements;
and finally Application challenges that are concerned with the programming, development
and maintenance of concrete autonomic applications.

These four distinct concerns of autonomic computing form a cascading categorization:
systems that differ in their conceptual approach are likely to be more different than those
within the same conceptual category but with different architectures; and systems within
both the same conceptual and architectural categories but with different middleware designs
are likely to be more similar still, and so on.

With respect to these four categories, our concern in this section is to lay out the concep-
tual and architectural basis for the subsequent discussion of more middleware and applica-
tion related issues from the perspective of our three chosen qualities, reliability, performance
and usability.

2.2.1 Conceptual perspective

There has been at least two main conceptual approaches to building autonomic systems.
One is inspired by traditional AI with the explicit representation and interpretation of plans
as a basis for action, e.g. the 3-layer architecture by (Kramer and Magee, 2007a). The other
major conceptual approach is to build systems without any explicitly represented overall
plan, e.g. inspired by the decentralized control in ant colonies (Labella et al., 2006), or
by evolution as an adaptation mechanism (Goldsby et al., 2007). This is based on the
observation that complex self-managing systems in nature, e.g. bodies made of organs,
cells etc. are build this way and are known to work well(Babaoglu et al., 2006; Dobson et al.,
2006). However it is difficult to engineer these kinds of systems(Ottino, 2004).

Although these two approaches are conceptually different it does not follow that they are
mutually exclusive in a given system architecture. It is an open topic how these two ap-
proaches can be combined. However, the human nervous system that provide some of the
inspiration for the vision of autonomic computing (Parashar and Hariri, 2005) encompasses
both high level cognitive explicit/conscious planning as well as relying on lower level more
emergent properties for self management and healing.

A third conceptual approach to autonomic systems is based on the system model used
in control theory (Diao et al., 2005). The sub-taxonomy for conceptual approaches to self
management is shown in figure 2.1.
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Figure 2.1: The major conceptual approaches to building self managing systems.

2.2.2 Architectural perspective

Kramer and Magee (Kramer and Magee, 2007a) recently proposed a reference model for
self-managed systems based on an interpretation of Gat’s three layer architecture for au-
tonomous robotics (Gat, 1998a). This model for self-management of software systems con-
trasts earlier approaches based on Sense-Plan-Act architectures (Gat, 1998a) which have
also been used in self-management systems (such as by (Garlan and Schmerl, 2002; Ar-
shad et al., 2004; Garlan et al., 2004)).

Kramer and Magee argue that handling self-management on an architectural level is
appropriate in terms of level of abstraction and generality (as does (Dashofy et al., 2002;
Oreizy et al., 1999; Garlan and Schmerl, 2002; White et al., 2004; Garlan et al., 2004)
and others) and casts Gat’s three layer architecture in terms of conceptual layers of a self-
management system, illustrated in figure 4.1:

Component Control Layer. This layer includes sensors, actuators, and simple control
loops. In a self-managed system, this layer consists of elements that perform ap-
plication functions (“control loops”), reporting of state to upper layers (“sensors”) and
facilities for creating, changing, and deleting elements (“actuators”). Techniques used
at this layer includes context awareness (Dey et al., 2001; Gu et al., 2005; IST Amigo
Project, 2006), reflection (Maes, 1987; Ingstrup and Hansen, 2005), architecture dis-
covery (Schmerl et al., 2006) or other forms of monitoring (Snodgrass, 1988) that
enable programmatic retrieval of data about the environment and the system itself.
Such input is vital to adaptation and reconfiguration algorithms, both to detect when
they should be initiated and to provide the sense-data they operate on.

Change Management Layer. Based on state reported from the Component Control Layer,
the Change Management Layer executes precomputed plans and change the ele-
ments in the Component Control Layer. If a conditions is met for which a plan does
not exist, a new plan may be requested from the Goal Management Layer.

Goal Management Layer. This layer creates new plans based on high-level objectives (e.g.
a service level agreement for the system) of the running system. Often compute-
intensive re-planning is done. Examples of work in this layer include (Srivastava et al.,
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Figure 2.2: Three Layer Architecture Model for Self-Management

2004; Ranganathan and Campbell, 2004)

A conceptual model such as this leaves open how a particular set of deployed runtime enti-
ties relates to each layer. In an agent based architecture such as advocated by e.g. (Weyns
and Holvoet, 2007), for instance, each agent could implement all layers and use a decentral-
ized algorithm with no overall explicit plan for achieving autonomic properties at the systemic
level. This also matches the model used in a component based framework proposed by Liu
et al. (Liu et al., 2004), in which each (agent-like) component is rule based and specified
through behaviour rules and interaction rules. In these two cases each component is itself
self managing, a requirement also stated by (White et al., 2004).

In another interpretation, there may be a centralized planner implementing the goal man-
agement layer. Even with such a choice of runtime architecture the plan generation could be
biologically inspired. For instance by letting plans be state-machines that, given a particular
set of input events (sensed data) generate a particular stream of output events (actions),
plans could be generated with some form of evolutionary method for plan selection such as
in (Goldsby et al., 2007).

2.3 Reliability

Reliability is “the capability of the software product to maintain a specified level of perfor-
mance when used under specified conditions” (iso, 2001). This includes fault tolerance and
recoverability. Several techniques in AC helps further reliability in that they seek to either
tolerate, avoid or recover from faults.

In the GAIA meta-operating system for pervasive computing (Chetan et al., 2005; Ran-
ganathan et al., 2003; Roman et al., 2002) fault tolerance is achieved using a fail-stop fault
model (Schneider, 1984). Each application sends out a heartbeat message, the absence of
which indicates a fault that prompts GAIA to infer, based on context information, an appro-
priate device on which that application may be restarted (Chetan et al., 2005).

In several infrastructures for pervasive computing, user tasks or service compositions are
explicitly represented and thus serve as the object of reconfiguration and monitoring for auto-
nomic techniques (Sousa et al., 2006; Garlan et al., 2002; Amundsen and Eliassen, 2008).If
a service required by a particular task becomes unavailable, an alternative is searched for
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Figure 2.3: The quality attributes and strategies used to characterize each technique.

using service discovery, and chosen possibly subject to various constraints expressed in the
composite specification.

Baresi et al. (Baresi et al., 2007; Baresi and Guinea, 2007) in a similar venue demon-
strates a framework for making web service compositions adaptable. It provides monitoring
facilities that can collect data from dedicated probes and analyze it against specified con-
straints. This way the dynamic selection of services at runtime can be guided by higher level
constraints inferred based on e.g. context information. For instance, the choice of what ser-
vice is used for placing telephone calls can be made based on a user’s location. This way,
a specified level of performance can be maintained under specified conditions, but leaving
greater flexibility to specify those conditions.

Ahmed (Ahmed et al., 2007b,a) detects faults based on the rate of change in a sensed
property. For instance if the rate of change of allocated memory in a given period is higher
than a set threshold, an error is reported. However it is unclear what the accuracy of this
heuristic is and which kinds of faults it is most appropriate for.

A number of other approaches for dealing with errors exist that have not been tried in a
pervasive computing scenario, but which nevertheless may inspire future work in this area.
Kiciman et al. (Kiciman and Wang, 2004) describe an algorithm to infer generalized correct-
ness constraints on a system’s configuration so that instead of diagnosing and resolving a
particular problem that may arise, a problem can be characterized at a higher level as simply
deviation from a correct configuration, and the solution is similarly to reconfigure the system
to reach a known correct configuration. Aggarwal et al. (Aggarwal et al., 2004) suggests a
way to reduce the risk of failure for the often error prone process of reconfiguration. It is
based on data about the health of a system collected after certain operations are performed
on it. They provide an algorithm that can analyze this data and suggest healthy sequences
of operations that achieves a certain desired configuration.
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2.4 Efficiency

Efficiency is the capability of a software product to “provide appropriate performance, relative
to the amount of resources used, under stated conditions” (iso, 2001). This includes time
behaviour which has to do with response and processing time and throughput.

Ruth et al. (Ruth et al., 2006) experimented with transparent autonomic migration and
adaptation of virtual computational environments. A virtual computational environment, VIO-
LIN, is composed of virtual machines connected by virtual networks, which yields increased
flexibility because of the high degree of decoupling it enjoys from the underlying physical in-
frastructure. They found that by combining migration of virtual machines between hosts with
dynamic memory and CPU allocation to each an improvement in performance (execution
time) of between 39 and 47 percent was achieved.

Zhang et al. (Zhang et al., 2007a) present an automated approach for locating perfor-
mance problems by applying probabilistic inference to monitored service response times.
They use a Bayesian network to model how end-to-end response times are linked to service
elapsed (response) times. Their evaluation by simulation demonstrate significantly better
accuracy than problem localization by random guessing. Their evaluation on a real world
system shows that the cost of monitoring is negligible compared to performance gains avail-
able if the identified problems are solved, which may not always be possible.

Walsh et al. (Walsh et al., 2004) describe the use of utility functions to optimize resource
allocation in a two-level architecture. A data center architecture consists of a set of applica-
tion environments. Resources must be allocated globally among these environments, and
locally within them. Allocations at both levels are performed by optimizing a utility function
that attributes a value to a particular resource allocation. A resource arbiter manages the
global allocation among application environments. Each application environment allocates
resources locally within itself according to an application specific utility function. To accom-
modate change locally within the application environments or globally among them.

2.5 Usability

Usability is the capability of a system to be “understood, learned used and attractive to the
user when used under specified conditions” (iso, 2001). This quality is different from the
previously considered reliability and performance in that it is unclear it can be measured
using a sensing system.

There has been some work on the human factors of autonomic systems that can inform
the design of concrete autonomic applications (Lightstone, 2007; Barrett et al., 2004; Ander-
son et al., 2003). Lightstone (Lightstone, 2007) offers a set of concrete guidelines for self
managing applications, including that they should never undo the explicit choice of an ad-
ministrator, that they must always enable users to switch off autonomic behaviour, and that
they should never force a user to make a choice simply because the developers could not.
Barrett et al. (Barrett et al., 2004) performed ethnographic studies of systems administrators
and emphasize the need for enabling awareness by operators, support them in rehearsal
and planning activities and aid them in managing multitasking, interruptions and diversions.
Anderson et al. (Anderson et al., 2003) goes further than Barrett et al. and explores the
potential for autonomic computing to be made accountable, concluding that this is a matter
of careful design.

If we return to the two main conceptual approaches mentioned in the beginning, the case
for a biologically inspired approach to autonomous systems is alluring, however there are
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also unresolved issues with respect to usability. Since no system is likely to be completely
autonomous, a human operator must be able to step in and handle problems the system
is unable to deal with itself. In such cases, it is crucial that the human operator is able to
inspect the system and make sense of what is going on. When the system is based on
explicitly represented plans and actions they are arguably easier to inspect than if they, in
a sense, are not there. The importance of building systems so operators can make sense
of them extends well beyond the handling of problems, and includes general awareness as
pointed out by (Barrett et al., 2004). The concern for understandability is noted by Chen et
al. (Chen et al., 2004) who uses decision trees as a representation around which to base
their failure detection mechanism, based on machine learning, because they arguably are
easier to make sense of than other options.

In their seminal paper on autonomic computing, Gane and Corbi (Ganek and Corbi,
2003) describe five degrees of autonomy in which increasing the degree of autonomy cor-
responds to requiring higher-level functionality in Kramer and Magee’s reference model.
Ganek and Corbi describes the division of labour between the autonomic features of the
system and the human operator as divided along the high-level–low-level continuum. That
means, in terms of the Kramer and Magee model, that a system administrator for many sys-
tems retain at least partial responsibility for higher level planning and execution tasks. Some
of the tasks Barrett (Barrett et al., 2004) found are necessary to support can be character-
ized as high-level planning and execution tasks, however awareness may arguably extend
to lower levels of the system as well.

2.6 Implications for Hydra

Our brief overview of detection and adaptation techniques has implications for further re-
search in the area. Although many different techniques and architectures have been pro-
posed more research is needed into how particular techniques relate and what is required
to combine them. Most of the papers encountered in this survey are quite focused on a
particular goal, purpose or technique in isolation. But a real-world system cannot be just re-
liable, efficient, secure or usable, but instead must meet a set of qualitative requirements in
combination. A good understanding of how different techniques can be combined arguably
becomes even more important when the set of qualitative requirements and the conditions
for meeting them vary dynamically, as is the case for self-managing systems.

In Hydra we have addressed this challenge at the following points which we document in
the remainder of this deliverable:

• In order to be able to combine techniques, the assumptions each technique makes
must be explicit. Chapter 6 documents how the semantics of architectural elements
can be modelled so as to enable that.

• A QoS ontology (along with some metrics) is proposed (section 6.3) which can make
the internal qualities(e.g. performance) of a system subject to computational reasoning
and therefore useful to self-management.

• We introduce an overall approach to self-management based on utility functions to
enable high-level reasoning about self-management. This is described in chapter 8.
Utility functions deal with the interactions among different techniques, and helps en-
sure that all possible dimensions of e.g. as number of possible reconfigurations is
considered before one is chosen. By considered is meant that various aspects of sys-
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tem QoS and state are modeled in our ontologies and are used as input to computing
a utility function.

• Analytical work like the analysis in this chapter must be combined with experimental
work on building real systems. However self-management in a pervasive system is
difficult to experiment with. Therefore we have developed an architectural scripting
language which can help set up complex configurations of a system, and describe
the changes it undergoes at runtime. This is documented in chapter 5. It eases
experimentation with systems that are complex to set up by automating the test part of
iterative development. In additon, scripting an experiment makes it easier to document
in a reproducible way.
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3 Self-* scenarios

We describe three cases where self-* functionality is useful. The cases are used in the re-
mainder of this deliverable to exemplify the technical work that has been carried out. These
scenarios extends the work of self-diagnosis scenarios (Ingstrup et al., 2008) to try to incor-
porate full scope of self-management.

3.1 Case 1: Repairing interface mismatches through re-
configuration

This scenario is from the Building automation domain covered by Hydra, which illustrates
architecture based self-configuration (which can be considered as self-healing in this case)
in that a problem with the components configuration is detected and repaired using the
architectural concepts of services, interfaces and components.

Scenarios. Smith is a fan of new technologies and he has a smart personal assistant to
automatically schedule sport/social appointments with friends based on his schedule and
preferences. He has also a Smart Home system, which is equipped with self-managed
heating and ventilating systems. While he is abroad for vacation, his home security system
automatically turned on to the highest security level when detecting he is far away from
home. While he is in a hotel, his home ventilating system detects an error through self-
diagnosis. He is notified with an SMS on his mobile and he acknowledges that message
to initiate a self-repairing process. A new service to resolve this error is found from a third
party service provider, and begins to download some new software. Not surprisingly, the
new service does not exactly match his system, and the problem is detected and resolved
by invoking an adaptor service to seamlessly integrate the new service with the existing
system.

Solution. To solve this problem, cases of interface-mismatch must be detected. When the
interface mismatch has been detected, an attempt to repair it can be made.

3.2 Case 2: Reliability improvement through monitoring
and rebinding of failing services

In the agricultural scenario (Ingstrup et al., 2008), the reliability of the control and monitoring
system for the pig sty can directly affect the health of the pigs and therefore the profit of the
farm. The following scenario is adapted from (Ingstrup et al., 2008).

Scenario. Bjarne is an agricultural worker at a large pig farm in Denmark. His daily rou-
tines include taking care of one of the slaughter pig stables, maintaining equipment, and
helping with various jobs on the farm as needed.

To help him in his tasks, he carries around a PDA. The PDA has two primary functions.
First, it allows him to record information about the tasks he carry out, such as medicating
pigs and repairing machines, as well as making additional notes utilising context awareness
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to record as much information as possible automatically. Secondly, it provides him with an
interface to the farm monitoring system, where he can see and respond to alarms. The
monitoring system is developed and based on the Hydra middleware. Many of the alarms
are just notifications to show him that a problem has been fixed by the self-management
subsystem of Hydra.

Solution. A major source of unreliability is failures. Whatever the cause of failures may
be, their effect in a service oriented architecture such as found in Hydra based systems is
often that one or more services become unavailable.

The contract between a service provider and its clients are captured in the interface
description of that service. Therefore the clients of a failing service may remain operational
during service failure if a replacement service with the same interface can be discovered
and bound to those clients.

Therefore, enabling the system to detect the failure of services and subsequently re-
bind the clients of failing services can help improve reliability which is an important quality
attribute in the agricultural domain.

3.3 Case 3: A scenario for self-adaptation considering
Quality of Service (QoS)

This scenario is used to show the adaption when there are multiple services utilizing differ-
ent web service transportation protocols (currently SOAP over TCP or SOAP over UDP). We
have tested that SOAP over UDP has better throughput over wireless network (e.g. Wifi net-
work), and over the mix between wireless and wired network as shown in D5.9 (Sperandio
et al., 2008).

Scenarios. Smith is now at his office and working using a notebook. He has some new
songs from his favorite singer stored on his home PC. Now he wants to listen to these songs
while working. Therefore he starts his Hydra based Smart Secretary to help him download
the songs to his notebook. It is detected that both a Wifi connection and a Wired connection
are available for the Smart Secretary, and download the songs within 10 seconds using the
wired connection.

The other day, he is on a business trip in the airport. While waiting for the flight, he gets
an emergency call from his colleague and is asked for uploading 50M bytes data to a server
as soon as possible. The Hydra based application searched for Internet service, and two
services are found. One is Wifi, 15$/hour, 1Mb/s, reliability of connection is 96%. The other
choice is fiber cable Internet service bar, 50meters away, 60$/hour, 1000Mb/s, reliability is
100%. He is recommend option 2 in this situation as the data should be reliably upload to
his company and as fast as possible.

Solution. To achieve the above scenario, QoS should be considered and the utility of a
service should be considered in order to provide satisfying services, especially when there
are multiple choices. For the above scenario, SWRL rules are used to help make choices
based on the QoS requirements, the current network contexts in both Smith’s office and his
home. The Smart Secretary automatically switches to use SOAP over UDP based download
service in this case based on the utility functions.
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In the coming sections, we will demonstrate how to enable the above scenarios with
the support from SeMaPS ontologies (including SWRL rules), and an architectural scripting
language. An SWRL rule is developed to decide whether Smith is far away from home as a
complex context. Another rule is used for detecting interface mismatch during the installation
of a third party service for resolving this error, and an adaptor is added to the configuration to
resolve the mismatch. And self-adaption rules based on QoS requirements are developed,
and more self-diagnosis rules are developed.
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4 The Hydra Self-* architecture

The Hydra architecture for self management follows the logical three-layer architecture
(henceforth referred to as the 3L architecture) for self-managing systems proposed by
Kramer and Magee (Kramer and Magee, 2007b) as adapted from Gat’s three-layer ar-
chitecture for robots (Gat, 1998b).

Figure 4.1: Three Layer Architecture Model for Self-Management

The 3L architecture is logical, and does not detail deployment, module or runtime views
of a self-managing system. In addition to detailing these views, the Hydra architecture for
self management achieves the following design objectives:

• The architecture should decouple the concerns individuated by the 3L architecture,
and support runtime reconfiguration of itself, that is, the components responsible for
goal management and execution should be dynamically pluggable.

• The existing functionality of Hydra managers must be leveraged to make the imple-
mentation lightweight and particularly targeted to Hydra systems.

• The previous survey shows that the current understanding how to combine techniques
for optimizing particular quality attributes is poor, so the architecture should support
an organized way to deal with system quality attributes and QoS.

• It must be easy to experiment with different self-management techniques, because the
Hydra middleware during the project’s lifetime should serve as a research platform.

4.1 Decouple syntactic and semantic layers of abstraction

From the three layers we can observe that there is a distinction between different layers of
abstraction, or perspectives.

In the component control layer we view the system as consisting of services, compo-
nents, devices and other concepts in the Hydra context. These entities can be manipulated
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in a generic way, e.g. services and devices can be started and stopped, and components
can be deployed to devices. The semantics of these operations are independent of what the
services, components or devices do, their purpose in the particular application. Therefore
the component control layer can be said to have its own self-contained semantics.

The Change Management layer is about managing changes, and to understand what
this layer does we need only the generic concepts such as SWRL rules (in the case of Fla-
menco/SW). These are also the only concepts we rely on in the Hydra middleware’s imple-
mentation of this layer. In a concrete application there will of course be application specific
rules, but the notion of a rule itself is generic for all applications built with Flamenco/SW.

The Goal Management layer of the Hydra self-* middleware can likewise be understood
and implemented in a generic way, using only generic concepts such as goals and plans.
Again, a specific application will of course have domain specific instances of these concepts,
specific goals such as “maintain 90 percent availability of service X”.

To make the middleware generic, we need to maintain a separation of these generic
semantics, those particular to Hydra software, from the application specific semantics of
particular instances of services, plans, and goals. At the same time we must recognize that
the manipulation of, e.g., the services in a particular application can be specific to those
services if, for instance, two services cannot be restarted independently. The advantage
of the 3L architecture is that application specific constraints on one level, e.g. services in
the Component Control layer can be captured by instances at the level above. So if two
services cannot be started in random sequence, that can be modeled using specific rules in
the Change Management layer, or as application specific constraints of the plan generation
in the Goal Management layer. This separation of different levels of abstraction is used in
our implementation of each layer.

4.2 Overview of the Hydra Semantic web based Self-* Ar-
chitecture and used tools/artifacts in different layers

The current implementation of the 3L architecture consists of a number of components,
some of which are described in this deliverable, including the SeMaPS ontologies and self-
management rules, Flamenco/SW for monitoring and reasoning, and the ASL scripting host
which implements low-level manipulation of components. In addition to this, the web ser-
vices generated with the Limbo compiler (Hansen et al., 2007) are able to generate service
calling stubs in order to know the run time architecture of a underlying system and then
conduct diagnosis for service fail. This is detailed in a published paper (Zhang and Hansen,
2008a).

Figure 4.2 shows the high level components used in Hydra self-* architecture to achieve
self-management, where the dependencies of components will be detailed in Chapter 9.
The interaction of different layers are through eventing via the Event Manager, therefore we
have eventing clients for the different layers.

For the Component Control layer, we are using Limbo to generate service message
calling stub code in order to report run time service calling (ServiceMessage component, in
corresponding to MessageProbe ontology introduced in Chapter 6 ), and also generate state
machine code (StateMachine component, in corresponding to StateMachine ontology intro-
duced in Chapter 6) in order to conduct state based diagnosis at run time. Also resources
are going to be monitored at run time, and OSGi components (as the Hydra component
model) are monitored to check their architectural constraints. To enable the action of com-
ponent loading and unloading, and managing the test bed, we have an architectural script
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language and a corresponding ASLhost bundle that achieves this.
The Change management layer will be responsible for listening to events reported from

the Component Control layer e.g. device state changes, and service calling, which will then
trigger the execution of self-management rules. Therefore in this layer, the components are
relying on the SeMaPS ontologies and SWRL rules.

The Goal management layer adopts the utility function based planning detailed in Chap-
ter 8. Planning is a process for multi-objective selection of best candidates of services and
plans, for example to achieve lowest cost, and at the same time better throughput with good
performance, in a global manner. We are going to use a Genetic algorithm as the underlying
planning algorithm in the Goal management layer.
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Change Management
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Plan Requests
Change Plans

Request/Reply Events

State Change Events
Request/Reply Events

(e.g. Component adaption commands for ASL host)
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Figure 4.2: An overview the overall architecture and components for achieving self-
management goals

4.3 The self-* architecture in relation to the Hydra archi-
tecture

In this section, we will clarify the relationship of the self-* architecture with respect to the
Hydra software architecture, based on its current situation of both of them. Ideally every
manager should have this architecture to be a kind of self-management manager itself,
and self-manage component can act as a supervising manager to coordinate the high level
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actions. Currently, the self-* architecture extends the hydra architecture as documented in
deliverable D3.9 (Eisenhauer et al., 2008) in a number of respects. Here we describe them
according to which layer they stem from.

The component control layer:

– poses a requirement to services by requiring them to be able to report their state and
service calling messages; This is automatically achieved when using the Limbo com-
piler to generate web services for event publishing via the Event Manager, including
the generation of state machine code (with Limbo state machine plugin), and service
message probes code (with Limbo Probe plugin).

– the ASL interpreter+actuator does not as such pose requirements to the architecture,
but to the component model and platform it is implemented on. Not all component
models support the manipulation of programs in terms of components, services etc.
Some may not allow dynamic rebinding.

– In an ideal situation, the context manager should monitor the underlying context
changes, and report to every Hydra manager of the current usage contexts, and then
this Hydra manager will itself adapt to the current situation by taking consideration of
the current QoS requirements from the QoS manager, which monitors the QoS at-
tributes. Put the Network manager as an example, the context manager detects that
battery is low, Network manager should disable some of its feature, or switch to JXME1

version of it (not available currently and is under investigation by TID). In this respect,
the Hydra architecture should be improved in the future.

Change Manage layer:

– in order to reason about self-adaption, self-configuration and other self management
activities, it is necessary that services and components explicitly declare their depen-
dencies, and also its specific interface dependency details, like interface signatures.
We could then make use of the set of architecture ontologies to reason whether the
current configuration is correct or not.

– as said, it is advantageous that every manager has its own self-management archi-
tecture including the change management layer as explained in the last item of the
Component control layer.

Goal management layer:

– As the goal management layer is supposed to be computationally heavy, therefore it is
reasonable that only the self-management component (Flamenco) has this layer, while
other managers have only the basic Component control and Change management
layers. In this case, the current Context manager needs also to be extended to cover
this, to fully support the contexts outlined in Chapter 6, and delivery these contexts
properly.

– One of the most important features of the self-management extensions to the architec-
ture is that self-* features can modify the quality attributes of a system when a given
goal is chosen. Therefore this may require that QoS manager need to monitor the
changes of QoS attributes and report that accordingly.

1https://jxta-jxme.dev.java.net/
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4.4 Connections with other Hydra components

Self-management components need to collaborate with other Hydra components. Take the
case of scenario number 1 given in chapter 3, Figure 4.3 shows how the layers in the archi-
tecture should interact (in a high level view). The Hydra Discovery manager need to discover
the needed service, and there found components needs to be bound/unbound, the ASL bun-
dle would do executed that as specified in a script. The interactions of the self-management
components themselves will be elaborated in Chapter 9.

Figure 4.3: The interactions of the component control layer and the change management
layer for scenario 2.

Hydra is proposing the semantic-web based self-management approach. For the avail-
ability of OWL/SWRL APIs reasons, the self-management is using Protege-OWL/SWRL
APIs, and Ontology manager is using Jena. Ideally the ontology manager should act as the
single point for ontologies, therefore we need to work on that Ontology manager covers the
full set of SeMaPS ontologies.

Context manager should be the source of the triggering of the self-management, as
self-management highly depends on contexts (especially the run time contexts, device re-
sources, user preferences etc.). But currently it could not achieve this as none of these
contexts are available in the Context manager, and we heavily rely on the Hydra Event man-
ager as shown in Figure 4.2 for the achieving of self-management.

QoS manager has the close relationship with self-management, which should report
to the self-management component of the monitored QoS as required. The planning layer
need to get what are the required QoS parameters for certain situation then, planning for the
selection of services (for self-adaptation, self-configuration) (e.g, by evaluating the utility), for
service composition evaluation by evaluation different plans for combinations of services, for
deploying services on node based on different resources, for self-optimization plans, all with
the QoS considerations. This will be detailed when the design and implementation of the
QoS manager are ready.
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5 Architectural script language design,
implementation and its applications

The past decade of research in software architecture description has been prolific (Med-
vidovic and Taylor, 2000), but only in so far as the modeling of static aspects of software
architecture is concerned. While this work has proved fruitful, a number of recent trends
suggest a growing need for the ability to model dynamic aspects of architectures. We sug-
gest architectural scripting as a way to express changes to an architecture.

An architectural script consists of sequences of operations on a runtime architecture,
such as deploying a binary component to a device or instantiating a service from a binary
component. We term this set of operations the architectural scripting language, or ASL.

Architectural scripting serves two purposes in Hydra and helps achieve the design ob-
jectives set in section 4:

• It is a useful way to describe and reason about the reconfigurations that a self-
managing system may perform. Thus an interpreter+actuator for architectural scripting
provides part of the implementation of the component control layer in the 3L architec-
ture adopted for Hydra self-*.

• To ease both the initial setup and ongoing management of concrete test-
scenarios/configurations in our testbed for autonomic computing. Thus it makes it
easier to experiment with self-* systems by automating part of the configuration setup
required to actually run a distributed prototype.

Architectural change has received little attention, and therefore it is worthwhile to be
clear about how we have chosen to conceptualize it. In section 5.1 we formalize our notion
of architectural change as consisting of a series of discrete steps, and highlight the features
of our conceptualization.

Next, we will elaborate two applications of architectural scripting within Hydra: a testbed
for autonomic computing and an implementation in the Component Control layer. In sec-
tion 5.2 we describe implementation of ASL operations that have been made in ANT as a
first step towards making a testbed for autonomic computing. In section 5.3 we describe
how architectural scripting forms part of the implementation of the component control layer,
implemented as a service in the equinox OSGi platform.

5.1 Modeling architectural change

We model changes to an architecture as consisting of a series of discrete atomic steps
which we term operations. Operations can be combined to achieve particular changes to an
architecture. Table 5.1 shows a catalog of the operations that makes up ASL.

Operations and Architectural entities. An architecture is represented as set of typed
entities where the set of types is T = {Component,Connector,Service, Inter f ace,Device}. The
parameters of an operation are handles, named variables which can be resolved in an im-
plementation dependent way to identify precisely one entity in the architecture.

The namespace of parameters is organized in two hierarchical scopes, with devices
constituting the top level and components the subordinate level within which services are
uniquely identifiable. Hence, to resolve (find the unique identity) a service-handle which
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operation name (parameters)

deploy_component (component, device)
undeploy_component (component, device)
start_service (service, component,device)
stop_service (service, component, device)
start_device (device)
stop_device (device)
bind (service, interface, connector, interface)
unbind (service, interface)
print_status (device)

Table 5.1: The operations supported in the ANT extension for architectural scripting. The
operation print_status does not have any effect on the architecture so it is only provided for
the convenience of the programmer.

should be started, it is necessary that the start_service() operation takes as parameters the
component the service is found in, and which device that component is deployed to.

Atomic execution. Operations come from the set shown in table 5.1. It is important to
note that all the operations which have an effect on the architecture (that is, all of them
except print_status) come in pairs such as start_service and stop_service where the effect1 of
one is reversible by the effect of the other. That is significant because it enables roll-back of a
partially executed script, as required for atomic execution of a distributed script implemented
with two-phase commit.2

Semantically correct operation sequencing. Semantic dependencies can exist among
operations. An operation that starts a service will logically be dependent on whether that
service has previously been deployed. According to the principle of separating layers of
abstraction (in this case syntactic and semantic) ASL does not explicitly include any facil-
ities for ensuring execution in accordance with semantics of components, except that the
operations are synchronous and executed in non-overlapping sequence. When applied in
self-management, ASL will implement the component-control layer only, and rely on the se-
mantic tools for ensuring that only correct scripts are submitted to it. When applied for testing
and configuration setup, the dependencies among groups of operations can be enforced by
correct distribution of operations among a set of interdependent ANT-tasks.

Abstract format of an architectural script. The format of an architectural script is shown
below using an abstract syntax. The syntax is abstract because it may exist in one of two
concrete forms:

1. When used for test/configuration management, a script is written in the ANT XML
format using the ANT-bindings provided by the testbed.

2. When used for self-management, a script is an instance of the java class ASLScript
send to the ArchScriptHost service.

1if any: deploying a component that is already deployed has no effect, so it should not be attempted undone by
undeploying the component

2Atomic script-execution has not been implemented in the present prototype.
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The syntax of an architectural script follows the following grammar:

<script> := <operation>*
<operation> := <opname><parlist>
<opname> := "init_device",

"start_device",
"stop_device",
"init_component",
"deploy_component",
"undeploy_component",
"init_service",
"start_service",
"stop_service",
"print_status",
"bind_services",
"unbind_services"

<parlist> := <parameter>+
<parameter> := String

In order for a script to be semantically correct, a handle to a component, service or
device must be initialized before it is used. Currently we do not support control-structures
like a conventional programming language. It is possible to use control-structures in ANT.
Experience applying the language will guide future extensions.

5.2 Architectural scripting for test/configuration setup

We apply architectural scripting to manage the setup of particular configurations of dis-
tributed systems, and we have done so by extending the well-known tool ANT with the ASL
operations. This is useful because:

• Tools like ANT and Make are convenient, but only cover the development-time—or the
module view in architectural terms; they are not specifically geared towards helping
set up and run complex deployments of a system.

• For experimental researchers in software engineering, using a scripted routine to run a
program can help ensure reproducibility of experiments. That may not be an issue for
standalone applications, but it is more and more often the case that experiments con-
cern several interacting components/services, and are distributed. This is specifically
the case in Hydra.

• For testing, an architectural script provides an operational way to describe test sce-
narios, e.g. a failing device can be modeled by stopping a device and starting it again.

In building the prototype we have pursued a design which can evolve into a testbed for
distributed self-* systems. This is briefly described below.

5.2.1 Towards a testbed for distributed/self-* systems

When testing software in a distributed system, it is cumbersome to set up the test environ-
ment. For autonomic computing this problem is aggravated because an additional feature
that is important to test for autonomic systems is their capability to deal with changing con-
figurations (due to e.g. failing devices). Architectural scripting is part of the solution to this
because it provides an operational way to describe the behaviour of a testbed by defining,
for instance, when a simulated device fails.
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ASL ontology OSGi platform

device JVM running equinox
component bundle jar-file
service running bundle
interface service-interface
connector a set of running bundles

Table 5.2: Mapping the abstract ontology of the testbed to the OSGi platform.

A testbed for autonomic computing can be easier to experiment with than a real system
in several ways. Firstly, it can abstract away some details that would be required in a real
prototype, and which are tedious or otherwise expensive to deal with, but which may not
be relevant to the goal at hand. This may be setup of particular devices whose software
interface is instead provided by a simulated or virtual device. Secondly, it can provide a
library of frequently used building blocks, such as routing algorithms, adaptation strategies
or similar. Thirdly, it may allow greater control of experimental parameters, thus making it
easier to perform experiments in a way that is reproducible.

In the current prototype focus has been on implementing the ASL operations in ANT, for
the Equinox OSGi platform. However the design is made in such a way that it needs minimal
modification in order to support new platforms/types of devices, because that is a priority in
the current stage of Hydra. The prototype only relies on Equinox specific functionality for
starting the platform; the implementation of all other operations than start_device rely only
on the OSGi standard.

Concretely, the ANT-tasks are implemented in terms of an abstract architectural ontol-
ogy shown in figure 5.1. This ontology is in fact can be modeled by importing the Device
ontology, and the set of architecture ontologies detailed in Section 6.4. These concepts
are mapped to specific platforms when the ASL operations are executed on specific archi-
tectural entities. For OSGi, the mapping is as shown in table 5.2 according to the OSGi
specification. The start_service operation supports passing key-value lists of string based
parameters. A virtual device is a programmatic object in the memory of a physical device.

Figure 5.1: The abstract ontology guiding the testbed’s logical structure.

For testing, a device may be purely virtual, such as a simulator, or virtual machine. The
only device currently supported is the Equinox OSGi platform running on the JVM; it is an
example of a virtual device. A component is a binary unit of distribution. A service is a unit of
runtime software accessible by other services. A Service provides one or more interfaces.
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Figure 5.2: A module view in UML. It shows the organization of the ASL code base.
The boxes drawn with dotted lines denote how the packages are distributed onto eclipse
projects/SVN modules

5.2.2 Testbed implementation with ASL

In the prototype each operation is implemented as a task in ANT, following the standard pro-
cedure described in the ANT manual 3. This way, invocations of operations can be grouped
together according to what goal they achieve. In architectural scripting, we can make a
target in such a way that it ensures the satisfaction of a constraint on an architecture. For
instance, a target could be to ensure a particular service is running. That target, in turn,
might depend on the deployment of the component from which that service is instantiated.
Deploying that component would in turn depend on building the source-code, and so on.
In this way our notion of architectural scripting may be seen as an extending the applica-
tion of ANT to cover the whole life cycle of architectural elements, including programming,
deployment, and runtime.

The classes providing an ANT task for each ASL operation are programmed against the
abstract ontology, and a parameter is used to select the implementations particular to a
given platform.

Module view. Figure 5.2 is a module view showing the organization of the ASL codebase.
The ASL codebase consists of the following packages:

testbed.ontology This package defines as interfaces the basic concepts used in the on-
tology of ASL; it includes component, device, service. The set of operations mak-
ing up ASL are mapped to methods on these interfaces; most of them, such as de-
ploy_component are methods on the Device class.

aslcore defines the classes representing a script instance, the operations, the interpreter
of a script and the interpretation context which is responsible for registering how par-
ticular (e.g. component-) identifiers are bound to entities in the actual, running system.

3http://ant.apache.org/manual/index.html
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Figure 5.3: An example deployment of a distributed scripting host. Each device has a local
engine which executes a script on the entities deployed to that device. The distributed
scripting host will interpret a script which operates on a set of entities distributed across a
range of devices, in this case three.

testbed defines the classes making up the testbed; currently it only supports the Equinox
OSGi platform. It provides device specific implementations of the Service, Component
and Device interfaces found in the testbed.ontology package.

operations_osgi defines the classes necessary for introducing the ASL operations as ANT
tasks.

Runtime and deployment view. When used as a test/configuration management tool,
ASL is used through the ant bindings. These are distributed in terms of a jar-file providing
the classes that plugs into ANT, and an ANTscript which sets up the ASL tasks and defines
them for use in the targets of a build file.

Figure 5.4: A runtime view showing what configuration may result when an ant script is
executed to start a new device. The new device is an instance of the Equinox OSGi platform.
The ANT tasks communicates with the platform using a custom RPC connector.
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Tool support for ANT based architectural scripting As applications written in osgi often
depends on a host of other bundles, the number of bundles that has to be installed can grow
quickly. Given the verbose format of the ANT XML format in this case, we provide a simple
tool to generate ASL scripts. Given a directory for a set of jar-files that are osgi bundles,
it will generate the init_component, deploy_component and init_service operations, that is,
the basic setup for installing the bundles and starting them.

We label the generator ’relaxed’ because it does not guarantee that the generated series
of operations will work in the actual system. Making such guarantees is possible if we
represent all dependencies among components, services, devices etc. However in practise
most third-party bundles does not obey that requirement. Such an assumption is unrealistic
for most real-world systems and, moreover, because the tool aims to assist rather than take
over the task of writing an architectural script the tool is useful even when the conditions
for correct script generation are not met. In such cases the tool can produce the bulk of he
script code, which can then be tweaked manually so that it sets up the initial configuration
in a way that respects all actual dependencies, whether they are explicit or not.

Please refer to the tutorial on architectural scripting found in Deliverable 12.5 (Fernandes
et al., 2008) for details of how to use the ASL extensions to ANT.

5.3 Architectural scripting for self management

To apply architectural scripting in self management, an API must provide an implementation
of the ASL operations. In the current prototype, the interface through which the ASL runtime
is accessed is a service with the following interface:

public boolean executeScript(String script);
public boolean executeScript(ASLScript script);

The second method takes a parameter which is a parsed script; it is functionally equiv-
alent to the first but has better performance when the same script is executed repeatedly
because it allows parsing to be done one time only.

In the previous Section 9.1.1, an example was given which showed how the runtime
elements in the overall architecture interact to realize the first of our scenarios. Continuing
that example, the following is a script as it might be used in the scenario. The services s1,
s2, s3 are the client, the failing provider and the valid replacement service respectively.

init_service(s1,"eu.hydra.hellouser");
init_service(s2,"eu.hydra.helloprovider1");
init_service(s3,"eu.hydra.helloprovider2");
unbind_services(s1,s2,"eu.hydra.asl.interfaces.Hello");
bind_services(s1,s3,"eu.hydra.asl.interfaces.Hello");

Initially, the three service-handles are defined. The first argument names the handle,
the second names the implementation-specific string used to identify the service. For the
Equinox OSGi platform, that is the symbolic name of the bundle.

In this case, no device is specified as scope for the services, so the local host is as-
sumed. In general, distribution of a system among several nodes has implications for how to
execute reconfigurations. A script is assumed to apply to one device only, so that the script-
ing host service only executes operations whose execution (though not necessarily effects)
are local to the device it is deployed to. The reason why that assumption is made is twofold:
First, it simplifies the scripting host service significantly so that it can remain light-weight and
still be used on small devices. Second, it does not incur an inherent cost of functionality,
since an interpreter for a distributed script can be built on top of a set of local scripting hosts,
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as shown in figure 5.3. In particular, scripts written in the ANT extension are distributed
according to this scheme.

This section documents the structure of the current implementation of ASL, in terms of
the module view of the source code, a deployment view which shows how ASL is set up for
use with either ANT or in for self-management. Finally, a runtime view shows the runtime
components and connectors.

Runtime view. used for self-management, the ASLocalHostBundle must be used. A run-
time view of that is shown here:

Figure 5.5: A runtime view showing the dependencies of the ASHostLocalBundle to other
bundles. The dependencies to Axis and the EventManager are optional because the bundle
can in principle be use as a pure OSGi service. The Axis bundle enables the ASL host
bundle to make the interface available as a web service.
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6 Ontologies for self-management

Self-management is intrinsically complex. It is important to know the underlying contexts
for triggering self-management activities, and then take the quality of service into consider-
ation for these activities. Therefore, the underlying contexts, the knowledge for the contexts
including QoS, are very important. The application of semantic web ontologies is arguably
the most promising approach for context modeling and reasoning when compared to its
counter parts, and is therefore chosen as our context modeling approach in relation to self-
management (Zhang and Hansen, 2008a) .

To achieve self-management, the dynamism should be considered as a pervasive sys-
tem is dynamic in nature. This dynamism should be considered in context ontologies. Also
from the architecture point of view, a software system should remain stable and consistent
after the self-management actions. That is to say, they should follow necessary architectural
constraints. All this knowledge is considered in our self-management ontologies, which we
call Self-management for Pervasive Service (SeMaPS) ontologies.

6.1 Why adopt OWL-DL and SWRL

OWL and SWRL adopt the Open World Assumption (OWA). It asserts that knowledge of
a system is incomplete, which means that if a statement cannot be inferred from what is
expressed in the system, it still cannot be inferred to be false. In the OWA, statements
about knowledge that are not included in or inferred from the knowledge explicitly recorded
in the system may be considered unknown, rather than wrong or false in the closed world
assumption. The OWA applies to the knowledge representation where the system can never
be known to have been completely described in advance, which is quite consistent with the
characteristics of pervasive computing systems, as pervasive systems are intrinsically open
and dynamic. Therefore it is natural to apply the open world assumption to the pervasive
computing system where the characteristics of OWA can be utilized to build the concept
of open world software (Baresi et al., 2006). We envision that semantic web based self-
management is advantageous for achieving self-management goals (Zhang and Hansen,
2008a).

6.1.1 Justifying OWL-DL and SWRL strengths

Table 6.1 shows the comparisons of various context modeling languages, including XML,
RDF(S), OWL, and SWRL. As we can see from the table, OWL has the most powerful
capabilities for modeling, and SWRL can additionally express constraints which are not
easily expressed in OWL. We have chosen OWL-DL as the basic for ambient intelligence
because:

• The key to self-management is knowledge of the underlying systems, OWL-DL is pow-
erful for knowledge modeling for both dynamic knowledge and static knowledge

• Open and extensible as needed, and also inter-operable in the Internet scale as re-
quired for real life pervasive systems

• Formal description logic and inference is decidable, able to provide reasoning capabil-
ities in open world settings with usable and acceptable performance
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• (De facto) standard, well-adopted by pervasive computing projects (for example
Amigo1, MUSIC2) for achieving context-awareness

• Potentials to make use of semantic web service (OWL-S) to automatically invoke and
compose web services

Table 6.2 shows the rule comparisons currently available in terms of standardization,
tool support and relationship with OWL. As we can see, there are many choices for rule
languages. But when taking account of their maturity and tool support, and its adoption
among the reasoners, it is obvious SWRL should be chosen because:

• It is expressive enough to allow both global and local constraints span across multiple
concepts and concept properties (relationships)

• It is is decidable using DL-Safe rules (rules written only on known instances in ontolo-
gies)

• SWRL is OWL specific, and is basically a combination of OWL and RuleML

• It is De facto rule standard for semantic web rule specification

• It is extensible with new built-ins, and rules can be parameterized and changed dynam-
ically at run time, and executed as rule groups to resolve rule conflicts and improve
performance (shown in our evaluations)

Table 6.1: Feature comparisons of different context modeling languages

XML DTD XML Schema RDF(S) OWL SWRL

Bounded lists X
Cardinality constraints X X X

Class expressions (unionOf, complementOf) X
Data types X X

Enumerations X X X
Equivalence (properties, classes, instances) X

Formal semantics (model-theoretic & axiomatic) X
Inheritance X X

Inference (transitivity, inverse) X
Qualified constraints X

Reification X X
Global Constraints across multiple properties and instances X

mix classes and properties directly X

Table 6.2: Feature comparisons of different rule languages

SWRL WSMLRule WRL SWSLRules ERDF
rules

RuleML R2ML

Relationship with
OWL

OWL extension NA translate to a sub-
set of OWL

NA RDF NA NA

Standardization W3C submission NA W3C submission W3C submis-
sion

NA NA NA

Tool support Pellet3, RacerPro4

...
IRIS5, MINS6 NA NA Jena7 DR-

Device8
NA

1http://www.hitech-projects.com/euprojects/amigo/
2http://www.ist-music.eu/
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6.1.2 Weaknesses of OWL-DL and SWRL

The disadvantage of OWL-DL and SWRL is that operations (such as queries) are com-
putationally complex which may cause a performance bottleneck. Therefore it is impor-
tant to measure performance to check whether it is suitable for the usage to achieve self-
management goals. Another disadvantage is that SWRL is limited to unary or binary re-
lationships, rules may become verbose for human readers, although SWRL is primarily in-
tended for machine processing.

SWRL (and OWL) support monotonic inference only, which does not support negation
as failure as it would lead to non-monotonicity. SWRL does not support disjunction either.
But it is not hard to work around this. For example, RacerPro native rule language offers
NAF negation and classical negation as well. “True” disjunction is offered for concept/class
query atoms and role/object property query atoms, and “union” (of sub-query results) for
arbitrary queries.

6.1.3 Basic introduction to OWL-DL and SWRL

To facilitate the reading of this deliverable, we will briefly introduce SWRL, and OWL-DL
syntax, though SWRL is already introduced in former deliverable e.g. D4.3 (Ingstrup et al.,
2008).

OWL-DL is the description logic SHOIN with support of data values, data types and
datatype properties, i.e., SHOIN(D). The DL syntax and its corresponding OWL meaning is
shown in Table 6.3, and the details of DL can be found in (Nardi and Brachman, 2003).

> Super class of all OWL classes
N1 v N2 N1 is sub-class or sub-property of N2
C1 v ¬C2 Class C1 and C2 are disjoint
C1 ≡ C2 Class C1 and C2 are equivalent
C1 t / u C2 Union/intersection of Class C1 and C2
> v ∀P.C Range of property P is C
∀/∃P.C allValuesFrom/someValuesFrom restriction
= / 6 / > nP.C cardinality/minCardinality/maxCardinality

Table 6.3: Summary of OWL syntax

SWRL is a W3C recommendation for the rule language of the Semantic Web, which
can be used to write rules to reason about OWL individuals and to infer new knowledge
about those individuals. A SWRL rule is composed of an antecedent part (body), and a
consequent part (head). Both the body and head consist of positive conjunctions of atoms. A
SWRL rule means that if all the atoms in the antecedent (body) are true, then the consequent
(head) must also be true. SWRL is built on OWL DL and shares its formal semantics. In
our work, all variables in SWRL rules bind only to known individuals in an ontology in order
to develop DL-Safe rules to make them decidable. SWRL provides built-ins such as math,
string, and comparisons that can be used to specify extra contexts, which are not possible
or very hard to achieve by OWL itself. In a SWRL rule, the symbol “∧” means conjunction,
“?x” stands for a variable, “→” means implication, and if there is no “?” in the variable, then it
refers to a specific instance.

6.2 SeMaPS ontology structure

Some ontologies (Device, HardwarePlatform, Malfunction, StateMachine) are discussed in
D4.2 (Hansen et al., 2007) and D4.3 (Ingstrup et al., 2008). We briefly mention them here
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to make the description complete. A first draft of the QoS ontology is briefly discussed in
D4.5 (Scholten and Shi, 2008). We present a more comprehensive version here, but may
improve it in future as the project progresses.

The SeMaPS ontologies have some unique features compared to the existing pervasive
computing ontologies, these include:

• Incorporation of user-centered concepts, such as user hobby and habit information,
user preferences.

• Incorporation of runtime and dynamic context. A StateMachine ontology is used to
model device runtime status and then is used to conduct state-based diagnosis. A
MessageProbe ontology is used to report service calling relationships in order to know
network conditions and device aliveness. Other ontologies are also involved in the
modeling of dynamic context.

• Complex contexts that span multiple instances and properties, which are not express-
ible by OWL-DL ontology itself are described by SWRL, which adds more expressive
capabilities to OWL and is extensible through built-ins.

• Semantic modeling of dependability of middleware, especially the self-recovery related
concepts and properties in ontologies, which support decisions in the self-diagnosis
process using theoretical reasoning.

The relationships between the SeMaPS ontologies are illustrated in Fig. 6.1.
The Location ontology models where events happen, in which Set-based, Semantic-

based, and Graph-based modeling of location are encoded in a separate ontology based
on (Flury et al., 2004). The Time ontology models time and date related knowledge, for
example the time zone concept, which is developed based on OWL-Time9.

The Person ontology encodes the majority of the user-centered concepts. It contains
information about a person’s hobbies like sport (with badminton, tableTennis and soccer as
instances), color (e.g skyblue), music (various styles such as CountryMusic and RocknRoll)
and also mood (happy, normal) descriptions. Depending on a user’s mood, he/she may
want to listen to different kinds of music, for example listening to country music if the user is
in a happy or in normal mood.

The Device ontology is used to model equipments in pervasive computing, including Soft-
warePlatform and HardwarePlatform. It presents Device (as a concept) type classification
(e.g. mobile phone, PDA, Thermometer), which is based mainly on the device classification
in Amigo project ontologies (IST Amigo Project, 2006). To facilitate self-diagnosis, there is
a concept called System to model a system composed of devices to provide services. A
corresponding object property hasDevice is added, which has the domain of System and
range as Device. The Device concept has a data-type property currentMalfunction which is
used to store the inferred device malfunction diagnosis information at run time.

The HardwarePlatform ontology defines concepts such as CPU, Memory, and so on, and
also relationships between the devices (in the Device ontology), for example hasCPU. This
ontology is based on the hardware description part from the W3C deliveryContext ontol-
ogy10. Power consumption concepts and properties for different wireless network are added
to the HardwarePlatform ontology to facilitate power-awareness, including a batteryLevel
property for monitoring battery consumption at runtime.

9http://www.w3.org/TR/owl-time/
10Delivery Context Overview for Device Independence. http://www.w3.org/TR/di-dco/

Version 2.0 41 of 133 29 December, 2008



Hydra

Device

SoftwarePlatform StateMachineHardwarePlatformService Malfunction

Service Malfunction
Invocation

MessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

DeviceRule

<<import>>

Person Agent

Location

SetBased

SemanticBased

GraphBased

Schedule

Network

Time

QoS

<<import>>

OSGiComponent

<<import>>

Security

<<import>>

ProcessModel
<<import>>

MessageProbe

<<import>>

ArchStyle Atomic

Connector

Composite

Connector

ArchRule

Connector

Figure 6.1: Structure of SeMaPS ontologies
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The device Malfunction ontology is used to model knowledge of malfunctions and re-
covery resolutions, it also provides classification of device malfunctions (for example, Bat-
teryError ). The malfunctions are classified into two categories: Error (including complete
device failure) and Warning (including function scale-down, and plain warning), according
to its severeness. There are also two other concepts, Cause and Remedy, which are used
to describe the origin of a malfunction and its resolution.

Three different classes of schedule are modeled in the current Schedule ontology,
namely Appointment, Meeting and Course, which have object properties participant and
holdLocation, and datatype properties starts and ends, denoting the time for the scheduled
event to start and end, respectively. This information is used to schedule appointments, for
example a sport appointment.

A more detailed but simplified view of the SeMaPS ontologies is depicted in Figure 6.2.

Figure 6.2: Partial details of the SeMaPS ontologies facilitating self-management

6.3 QoS ontology

QoS refers to a level of a service that satisfactory to some user, which is not necessarily the
best level of service, but the one meeting the user requirements, which is then described by
Service Level Agreement (SLA). For Hydra, as a pervasive middleware, QoS should cover
some fundamental elements, including transportation network characteristics, power and
energy consumption, and underlying service properties. At present stage for this deliver-
able as per the requirements for self-management, we list the following elements as the
necessary QoS parameters that should be considered:

• Bandwidth, or throughput

• Latency
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• ErrorRate

• Availability, including both network availability, and service availability

• Reliability

• Security

• Accuracy (of measurement, operation)

• Speed (of operation, service)

• PowerDrain (of service execution, of operation)

• Cost

The dynamism of the Latency and Speed can be calculated with the MessageProbe (also
called IPSniffer for historical reasons) ontology. As shown in rule MessageCallRelationship,
it calculates the round trip calling for a service, service execution time (speed of service),
and build the invocation relationships between processes. This rule first retrieves all the
messages that are supposed to be a complete round trip call from a client to the service,
then calculates the related information using SWRL built-in functions.

Rule: MessageCallRelationship
ipsni f f er : messageID(?message1, ?messageid) ∧
ipsni f f er : messageID(?message2, ?messageid) ∧
ipsni f f er : messageID(?message3, ?messageid) ∧
ipsni f f er : messageID(?message4, ?messageid) ∧
abox : hasURI(?message1, ?u1) ∧
abox : hasURI(?message2, ?u2) ∧
abox : hasURI(?message3, ?u3) ∧
abox : hasURI(?message4, ?u4) ∧
swrlb : containsIgnoreCase(?u1, ”clientbegin”) ∧
swrlb : containsIgnoreCase(?u2, ”servicebegin”) ∧
swrlb : containsIgnoreCase(?u3, ”serviceend”) ∧
swrlb : containsIgnoreCase(?u4, ”clientend”) ∧
ipsni f f er : messageSourceIP(?message1, ?ip1) ∧
ipsni f f er : ipaddr(?ip1, ?ipa1) ∧
ipsni f f er : ipaddr(?ip2, ?ipa2) ∧
ipsni f f er : hasMessage(?process1, ?message1) ∧
ipsni f f er : hasProcessID(?process1, ?pid1) ∧
ipsni f f er : messageTargetIP(?message1, ?ip2) ∧
ipsni f f er : initiatingTime(?message1, ?time1) ∧
ipsni f f er : messageSourceIP(?message2, ?ip3) ∧
ipsni f f er : messageTargetIP(?message2, ?ip4) ∧
ipsni f f er : ipaddr(?ip3, ?ipa3) ∧
ipsni f f er : ipaddr(?ip4, ?ipa4) ∧
ipsni f f er : messageTargetPort(?message2, ?port2) ∧
ipsni f f er : hasMessage(?process2, ?message2) ∧
ipsni f f er : hasProcessID(?process2, ?pid2) ∧
ipsni f f er : initiatingTime(?message2, ?time2) ∧
ipsni f f er : messageSourceIP(?message3, ?ip5) ∧
ipsni f f er : messageTargetIP(?message3, ?ip6) ∧
ipsni f f er : ipaddr(?ip5, ?ipa5) ∧
ipsni f f er : ipaddr(?ip6, ?ipa6) ∧
ipsni f f er : messageTargetPort(?message3, ?port3) ∧
ipsni f f er : hasMessage(?process3, ?message3) ∧
ipsni f f er : hasProcessID(?process3, ?pid3) ∧
ipsni f f er : initiatingTime(?message3, ?time3) ∧
ipsni f f er : messageSourceIP(?message4, ?ip7) ∧
ipsni f f er : messageTargetIP(?message4, ?ip8) ∧
ipsni f f er : ipaddr(?ip7, ?ipa7) ∧
ipsni f f er : ipaddr(?ip8, ?ipa8) ∧
ipsni f f er : messageTargetPort(?message4, ?port4) ∧
ipsni f f er : hasMessage(?process4, ?message4) ∧
ipsni f f er : hasProcessID(?process4, ?pid4) ∧
ipsni f f er : initiatingTime(?message4, ?time4) ∧
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temporal : duration(?d1, ?time1, ?time4, temporal : Milliseconds) ∧
temporal : duration(?d2, ?time2, ?time3, temporal : Milliseconds)→ ipsni f f er : invoke(?message1, ?message2) ∧
sqwrl : select(?ip1, ?ipa1, ?pid1, ?ipa2, ?port2, ?pid2, ?d1, ?d2)

QoS ontology (actually it is a set of ontologies) formally defines the above important QoS
parameters. It also contains properties for these parameters, such as its nature (dynamic,
static) and the impact factor. There is also a Relationship concept in order to model the re-
lationships between these parameters. The QoS ontology is developed based on the Amigo
QoS ontology (IST Amigo Project, 2006) and OWL-Q ontology (Kritikos and Plexousakis,
2007). It simplified the OWL-Q ontology in which we adopted its QoS specification idea, and
included our listed parameters.

QoS ontologies include a QoSSpec ontology which defines QoS offers and requests as
required by SLA. A QoSSelection class is used to define a list of <metric, weight> entries,
in which a web service requester can weight the metrics of his interest. QoSSpec is used
to specify the actual QoS description of a web service. The QoSSpec ontology is shown
in Figure 6.3. Another important ontology is the QoSMetric ontology as shown in Figure
6.4. It defines all the network performance parameters used to measure the quality of a
network, and other parameters listed in the beginning of this section. It also defines the
functions used to calculate a metric, including the boolean functions, aggregation functions,
and arithmetic functions.

Figure 6.3: QoSSpec ontology (Partial)

6.4 Software architecture ontologies design

6.4.1 Semantic architectural styles

The semantic models for popular architectural styles are developed based on published
work. For example, the models for a Client-Server style, a Pipe-Filter style are based
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Figure 6.4: QoSMetric ontology (Partial)

on (Garlan et al., 2000), a Publish-Subscribe style, and a Peer-to-Peer style are based
on (Clements et al., 2003), and other work on software architectural styles (Shaw and
Clements, 1997) (Bhattacharya and Perry, 2005) in which topology constraints are clearly
specified. In general, the ACME (Garlan et al., 2000) specification for an architectural style
is developed first, and then the specification is transformed into the OWL model.

One of the important issues for semantic architecture modeling is to model software
architecture constraints, which are design decisions behind the rationale of architectural
styles. There can be three different types of architecture constraints:

• Static structural parts in an architectural style. This will make sure that an architectural
style has correct types of components, connectors, roles, and ports. For example,
a Repository Style should have at least one Repository component which has port
Provide, at least one Access connector that has roles Provider and User.

• Dynamic connections between structural parts, including topological constraints (Bhat-
tacharya and Perry, 2005) (Shaw and Clements, 1997). That is to say, how a com-
ponent, connector, role, and port are connected with each other. For example, the
Repository Style has a “Star” control topology and data topology, the port Provide in
the Repository component should be connected to the role Provider in the Access
connector.

• Externally visible properties of the structural parts (Bass et al., 2003a). This includes
some quality attributes, such as performance, fault tolerance, feature combination con-
straints, and also some functional properties, for example the required software and
hardware platforms to run a component.

OWL-DL is strong in modeling vocabularies and their relationships in a formal way. It
provides good capabilities for specifying the first constraints where architecture vocabular-
ies are modeled as concepts and/or properties. Additionally, component and connectors can
be annotated with functional and nonfunctional properties to resolve the third type of con-
straints. There are also cardinality and universal/existential constraint constructs in OWL-DL
to specify constraints for the second type of constraints, mainly local constraints. To specify
global constraints and other types of constraints that are beyond the capabilities of OWL-DL,
we are applying SWRL to enhance constraint specification capabilities.
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Additionally, when we build the ontology for architectural styles, their quality attributes
and application domains as classified in (Niemelä et al., 2005) are considered in order
to facilitate a designer in choosing the right style to achieve the required quality require-
ments. For example, the Pipe-Filters are used in situations where data stream processing
is needed, and has Simplicity, Reusability, and Maintainability as its quality attributes.

According to the definition and nature of an architectural style, it can be considered
as a whole-part relationship with its composed components, connectors, ports, roles, and
properties. Therefore an architectural style can be modeled with whole-part relationship
modeling using OWL11.

List: architectural style using OWL-DL
ArchitecturePart v >
Component v ArchitecturePart
Connector v ArchitecturePart
Port v ArchitecturePart
Role v ArchitecturePart
Property v ArchitecturePart
> v ∀hasPort.Port
> v ∀hasRole.Role
> v ∀hasProperty.Property
> v ∀hasArchitecturePart.ArchitecturePart
> v ∀hasComponent.Component
> v ∀hasConnector.Connector
hasComponent v hasArchitecturePart
hasConnector v hasArchitecturePart
ArchStyle v >
ArchStyle v ¬ArchitecturePart
ArchStyle v ∀hasArchitecturePart(Component t Connector t Port t Role t Property)

The following is the specification for a Publish-Subscribe style, in which there are three
types of components: Publisher with port Publish, Subscriber with port Subscribe and Pub-
SubCore with port Notify, and uses Event as the connector, in which we do not model its
role. There should be at least one port for each component. The Event connector is the
same class as in the AtomicConnector ontology, and may need an additional Distributor
connector to work in distributed computing environments

List: Publish-Subscribe style using OWL-DL
PubSubComponent v Component
Publisher v PubSubComponent
Subscriber v PubSubComponent
PubSubCore v PubSubComponent
PubSubComponent ≡ (PubSubCore t Subscriber t Publisher)
PubSubEvent v Connector
PubSubProtocol v PubSubConnector
Event ≡ PubSubProtocol
PubSubPort v Port
Noti f y v PubSubPort
Publish v PubSubPort
Subscribe v PubSubPort
Publisher v ∃hasPort.Publish
Publisher v> 1hasPort
Subscriber v ∃hasPort.Subscribe
Subscriber v> 1hasPort
PubSubCore v ∃hasPort.Noti f y
PubSubCore v> 1hasPort
PublishSubscribe v ArchStyle
PublishSubscribe v ∀hasArchitecturePart(
PubSubComponent t PubSubConnector
t PubSubPort t PubSubRole t Property)

11http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
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6.4.2 Semantic OSGi Components

The OSGi component ontology is based on the OSGi’s Declarative Service specification
(OSGi Alliance, 2007). It specifies the Component (as a concept) dynamic status, for ex-
ample whether it is enabled, and also static characteristics such as its reference to other
service, its implementation interface, and services provided. As we are going to illustrate
the SWRL rules using OSGi component as examples, Figure 6.5 shows partially the details
of the OSGi component ontology for facilitating understanding of SWRL rules developed for
OSGi components validation.

Figure 6.5: OSGi component ontology (Partial)

We adopted OWL-S 1.2 Pre-Release12 as the basis for the semantic models for tradi-
tional component services and web services, because OWL-S is a de facto standard for
semantic web service. The ServiceProfile ontology can be used to categorize services for
better service matching. Services are modeled as processes (in the Process ontology) in
which input, output, precondition, and results are used to describe a service. An atomic
process models an action a service can perform in a single interaction, whereas a simple
process is an abstraction mechanism to provide multiple views of the same process. Having
a look at the component models of OSGi, every operation in a component can be modeled
as an atomic process, and then a simple process for the whole component is composed of
these atomic processes using the realizedBy object property in the Process ontology.

Now we exemplify how to use the Process ontology to model component services. Ta-
ble 6.4 shows component dependencies for the Limbo pervasive service compiler (Hansen
et al., 2008), following a Repository style. There is one Repository component and four
Repository clients. The Limbo Repository component has five operations which are defined
as five atomic processes in the Process ontology, where the return types are modeled as
process Outputs, and method signatures are modeled as Inputs. An instance of SimplePro-
cess is defined which is composed with these five AtomicProcesses correspondingly. In
these Repository Client components, instances of SimpleProcess for each operation are
defined in a similar way. If there is a reference from the Repository Client to the Repository
component in a method, the atomic process for this method will have a Participant instance
which should be the Repository component. The inputs of this atomic process will contain

12http://www.ai.sri.com/daml/services/owl-s/1.2/
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both the signature of the referenced operation together with its return type, and method sig-
nature of itself. A rule called Rule: check_OSGi_Reference_Details is show in Section 8.3.2
is an example to show how this works.

Repository operations Limbo UPnP State
Machine

Probe

URI getOntologyURI() Y Y
Definition getWSDL() Y
File getWSDLFile() Y Y
HashMap<String,String>
getLimboConfiguration()

Y Y Y

URI getHydraOntologyExten-
sion (File wsdlFile)

Y

Table 6.4: Limbo component references

In this way, all component models are enhanced with capabilities for knowing their im-
plementation details, which provides a unified way for modeling the details of component
services, including service dependencies among components, which can be used at run-
time to conduct validations of architectural styles and configurations. This way of modeling
component details is the key to find the correct component when there are multiple compo-
nents where interfaces should be matched.

An important benefit of these semantic component models are that they are clarifying the
relationships between some of the concepts for different component models, which can fa-
cilitate the usage and understanding of these component models. For example, the concept
of OSGi component Reference is a subclass of ComponentRequiredService, and Fractal13

Binding is a subclass of ComponentReference.

6.4.3 Semantic Connectors

Although there are a number of classifications for software connectors in literature, the one
from Mehta (Mehta et al., 2000) is arguably the most accepted and provides a comprehen-
sive list of connectors, which is used as the basis for our semantic connector model. All the
eight type of connectors, including Procedure Call, Event, Linkage, Distributor, Arbitrator,
Stream, Data Access, and Adaptor are modeled in the AtomicConnector ontology as shown
in Figure 6.6.

Figure 6.6: Atomic connector model (Partial)

Connectors can be composed to form a composite connector, for example, 13 different
types of distribution connectors are explored for highly distributed data intensive systems

13http://fractal.objectweb.org/
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by Mattmann (Mattmann, 2007). In his dissertation, details on how these connectors are
composed with properties are specified in XML DTDs. We encode all this knowledge in our
connector models. For the modeling of a composite connector where the order of connectors
matters, we use OWL sequences as proposed in (Drummond et al., 2006). From (Mattmann,
2007), we can say that a basic distribution connector is composed with three connectors in
this order: Data Access, Stream, and Distributor. This is a basic distribution connector, and
a SOAP14 connector is one specialization of it where a SOAP procedure call is first involved.

In practice, connectors are not always a first class citizen in design and implementation.
Therefore connectors may not easily be spotted and may be mixed with components, and
are not easily separated from components. In this case, we will allow that components
are directly connected with other, rather than through an artificial connector, which may
unnecessarily make the understanding and modeling more complicated.

Now we can apply the these models to practical usage. The Hydra Event Manager (as
introduced briefly in (Zhang and Hansen, 2008a)) is using a Publish-Subscribe architectural
style, and it has three typical components for this style as introduced in Section 6.4.1, and is
using Event as connector with SOAP as the distribution and transportation connector. This
is summarized in Table 6.5. Typical description logic reasoning can then be utilized to check
whether this model for the Hydra Event Manager is consistent or not using RacerPro15, and
it turns out to be consistent.

architectural style Publish-Subscribe
Component model Web service

Component-Port
EMPub - publish
EMSub - subscribe
EMCore - notify

Connector-Role EMEvent - publisher, subscriber
EMSOAP - transportpub, transporsub

Table 6.5: Hydra Event Manager model

6.5 Dynamic context modeling in SeMaPS ontologies

As said in the beginning of this chapter, it is very important to know dynamism of the underly-
ing pervasive system for achieving self-management. The dynamism includes the following:

• Device and system run time status. It is a common sense that embedded devices are
designed and running as state machines, therefore we could make use of this idea
for achieving self-management. For example, self-diagnosis according to the states of
devices.

• Service calling relationships. It is important to know whether certain devices are avail-
able or not, which could be achieved by initiate a service call to a device and detecting
whether its response time is within the scope of expectation or not. It is also benefi-
cial to know a system run time architecture in order to decide whether the system is
running in a way following certain architecture constraints. The building of run time
architecture could be achieved by monitoring service calling relationships.

• Components run time states. Components and connectors are the underlying soft-
ware unit to implement services. They should follow the specified architecture con-

14http://www.w3.org/TR/soap/
15RacerPro version 1.9.2Beta. http://www.racer-systems.com/
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straints, and also we could change the system configuration by loading/unloading or
enabling/disenabling components/connectors.

To model device state changes, a StateMachine ontology is developed based on (Dolog,
2004), with many improvements to facilitate self-management: the State concept has data-
type property isCurrent to indicate whether a state is current or not for the purpose of device
monitoring, a doActivity object property is added to the State in order to specify the corre-
sponding activity in a state, and also a data-type property hasResult is added to the Action
(including activity) concept in order to check the execution result at runtime, together with
three extra data-type properties to model historical action results in order to conduct history
based self-management.

To model the invocation of services, a MessageProbe ontology is developed to model the
monitoring the liveness of a computing node, and to facilitate the monitoring of QoS, such
as the request/response time of a corresponding service call. The SocketProcess concept
is used to model a process running in a client or service, and SocketMessage to model
a message sent between client and service. There is also a concept called IPAddress,
which is related to Device with a property hasIPAddress in the Device ontology. The object
properties invoke, messageSourceIP, and messageTargetIP are used to build the invoking
relationships, and data type property initiatingTime is used to model the time stamp for a
message.

The key to view a software component and connector in a configuration for a pervasive
system is to understand the services a component and connector can provide and which
they require in order to function. This is modeled by a Service ontology (using a service
profile) and a ProcessModel ontology (using a service process model), the same idea as in
OWL-S16 ontologies for semantic web services. The Service ontology and ProcessModel
ontology are used at runtime to conduct self-configuration and self-adaptation, potentially
based on quality-of-service requirements (supported by the QoS ontology).

In summary, the dynamic contexts are modeled with runtime concepts and properties
in the related ontologies, mainly the StateMachine ontology, MessageProbe ontology, Mal-
function ontology, Component ontology, QoS ontology, Service and ProcessModel ontology,
and other concepts and properties in the Device ontology, such as currentMalfunction and
System. The currentMalfunction will be used to store the current diagnosis information for
the malfunction case, System is used to dynamically model a device joining and leaving and
to reflect the composition of a system.

6.6 Complex context specification with SWRL rules

SWRL can be used to develop complex contexts (Zhang and Hansen, 2008b). For scenario
1 in Chapter 3, We can specify a farAwayFromHome context ( e.g. 100 miles away from
home using the GPS distance calculation formula17). Then this new context can be used
to take actions, for example, if the GPS location of Smith is 100 miles away from his home,
his home surveillance system will switch automatically to the highest security level with all
cameras turned on.

Rule: FarAwayFromHome
person : hasHome(?person, ?home) ∧
person : inLocation(?person, ?coord1) ∧

16http://www.w3.org/Submission/OWL-S/
17How to calculate the distance between two points on the Earth. http://www.meridianworlddata.com/Distance-

Calculation.asp
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loc : hasCoordinates(?home, ?coord2) ∧
coord : latitude(?coord1, ?lan1) ∧
coord : latitude(?coord2, ?lan2) ∧
swrlb : subtract(?sub1, ?lan1, ?lan2) ∧
swrlb : multiply(?squaresublan, ?sub1, ?sub1) ∧
swrlb : multiply(?par1, ?squaresublan, 4774.81) ∧
coord : longitude(?coord1, ?long1) ∧
coord : longitude(?coord2, ?long2) ∧
swrlb : subtract(?sub2, ?long1, ?long2) ∧
swrlb : multiply(?squaresublong, ?sub2, ?sub2) ∧
swrlb : multiply(?par2, ?squaresublong, 2809) ∧
swrlb : add(?parameter, ?par1, ?par2) ∧
swrlm : sqrt(?distance, ?parameter) ∧
swrlb : greaterThan(?distance, 100) ∧
→ sqwrl : select(?person, ?home, ?distance) ∧
f arAwayFromHome(?person, “true”)
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7 Self-management rules based on SeMaPS
ontologies

7.1 Self-diagnosis rules

Monitoring and diagnosis rules are the basis for the diagnosis service and can be developed
based on the introduced SeMaPS ontologies. Besides the rules shown in deliverable D4.3
(Ingstrup et al., 2008), we have developed more rules for self-diagnosis, for example the
following rule for wind meter (used in the weather state prototype developed by CNet)
diagnosis:

Rule: Windmeter_PowerDown
device : Windmeter(?device) ∧
device : hasStateMachine(?device, ?statemachine) ∧
statemachine : hasStates(?statemachine, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?result) ∧
statemachine : actionResultTimestamp(?action, ?time) ∧
statemachine : historicalResult1(?action, ?result1) ∧
statemachine : historicalResult2(?action, ?result2) ∧
statemachine : historicalResult3(?action, ?result3) ∧
statemachine : timeStampResult3(?action, ?time3) ∧
swrlb : subtract(?temp1, ?result, ?result1) ∧
swrlb : subtract(?temp2, ?result1, ?result2) ∧
swrlb : subtract(?temp3, ?result2, ?result3) ∧
swrlb : abs(?a1, ?temp1) ∧
swrlb : abs(?a2, ?temp2) ∧
swrlb : abs(?a3, ?temp3) ∧
swrlb : add(?a, ?a1, ?a2) ∧
swrlb : add(?b, ?a, ?a3) ∧
temporal : duration(?dura, ?time, ?time3, temporal : Seconds) ∧
swrlb : equal(0, ?b) ∧
swrlb : greaterThanOrEqual(?dura, 30)→ sqwrl : select(?b) ∧
sqwrl : select(?time, ?time3, ?dura) ∧
device : currentMal f unction(?device, error : PowerDown) ∧
device : currentMalProbability(error : PowerDown, ”90%”)

If within 30 seconds, the measured value for wind meter remains the same, then most
probably the power supply for the wind meter is down, with the probability of 90%.

7.2 Self-configuration rules

To resolve the problem that often causes the ventilating system down in Smith’s home in sce-
nario 1 of Chapter 3, a third party service component is found online when the SmartHome
system is trying to search for a solution. The following rule is used to detect interface mis-
match and resolve this mismatch by adding a connector to the current configuration.

Here in order to simplify the writing of rules (the reason being that current Protege SWRL
APIs can not parse rdf:literal as in the OWL-S 1.2 pre-release), we changed the range of the
data type property parameterValue to xsd:string defined in the OWL-S Process ontology. To
correctly justify a reference, the component package and component name, method name,
method signature including data type and order, and return type, should be consistent in
both referencing and referenced components. Using the service details as provided by the
ServiceProfile and Process ontologies, we can then retrieve the details of the services and
its method signatures.
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For an OSGi component, if it has a reference which has a cardinality of the form “1.”
(at least one reference to other services), then there must be a component providing that
required service. In a referencing component, the references to another component is mod-
eled in the hasInput datatype property in the ProcessModel ontology, in the format “compo-
nent name(including package name)+operation name#input types with orders$return type”.
Then this information is compared with that from the referenced component with respect to a
specific interface. If they are not exactly matched, then the references are invalid. Addition-
ally, if a connector resolving the interface mismatch exists (its instance is adaptConnector1
as in the OSGiComponent ontology), we can then infer that an adaptor connector needs to
be added to the current configuration in order to correctly match the references, shown in
the last line of the rule.

Rule: OSGi_InterfaceMismatchResolution
CurrentCon f iguration(?con) ∧
hasComponent(?con, ?comp1) ∧
osgi : componentName(?comp1, ?compname1) ∧
osgi : re f erence(?comp1, ?re f 1) ∧
osgi : cardinality(?re f 1, ?car1) ∧
swrlb : containsIgnoreCase(?car1, “1.”) ∧
osgi : inter f ace(?re f 1, ?inter1) ∧
osgi : inter f aceName(?inter1, ?name1) ∧
hasComponent(?con, ?comp2) ∧
architectureRole(?comp2, ?role2) ∧
osgi : service(?comp2, ?ser2) ∧
osgi : provide(?ser2, ?inter2) ∧
osgi : inter f aceName(?inter2, ?name2) ∧
osgi : componentName(?comp2, ?compname2) ∧
swrlb : equal(?name1, ?name2) ∧
component : componentServiceDetails(?comp1, ?pr1) ∧
service : presents(?pr1, ?prservice1) ∧
pro f ile : has_process(?prservice1, ?process1) ∧
process : realizedBy(?process1, ?aprocess1) ∧
process : hasInput(?aprocess1, ?input1) ∧
process : parameterValue(?input1, ?ivalue1) ∧
component : componentServiceDetails(?comp2, ?pr2) ∧
service : presents(?pr2, ?prservice2) ∧
pro f ile : has_process(?prservice2, ?process2) ∧
process : realizedBy(?process2, ?aprocess2) ∧
process : hasInput(?aprocess2, ?input2) ∧
process : name(?aprocess2, ?proname2) ∧
process : hasOutput(?aprocess2, ?proout2) ∧
process : parameterValue(?input2, ?ivalue2) ∧
process : parameterValue(?proout2, ?ovalue2) ∧
swrlb : stringConcat(?str1, ?compname2, “ + ”) ∧
swrlb : stringConcat(?str2, ?str1, ?proname2) ∧
swrlb : stringConcat(?str3, ?str2, “#”) ∧
swrlb : stringConcat(?str4, ?str3, ?ivalue2) ∧
swrlb : stringConcat(?str5, ?str4, “$”) ∧
swrlb : stringConcat(?str6, ?str5, ?ovalue2) ∧
swrlb : equal(?ivalue1, ?str6) ∧
swrlb : substringBe f ore(?temp1, ?ivalue1, “ + ”) ∧
swrlb : equal(?temp1, ?compname2) ∧
swrlb : substringA f ter(?temp, ?ivalue1, “ + ”) ∧
swrlb : substringBe f ore(?op, ?temp, “#”) ∧
swrlb : equal(?op, ?proname2) ∧
swrlb : substringA f ter(?temp2, ?ivalue1, “#”) ∧
swrlb : substringBe f ore(?inputtype, ?temp2, “$”) ∧
swrlb : notEqual(?inputtype, ?inputtype2) ∧
swrlb : substringA f ter(?returntype, ?ivalue1, “$”) ∧
swrlb : equal(?ovalue2, ?returntype)
→ sqwrl : selectDistinct(?comp1, ?comp2, ?inputtype, ?inputtype2)
∧ sqwrl : select(“Input type mismtach: invalid references”)
∧ sqwrl : select(“An adaptor connector is Needed”)
∧ hasComponent(?con, adaptConnector1)

This inferred results are then published to the event manager, and listened by the ASL-
host service, to bind the “AdaptConnetor1” into the current configuration.

Version 2.0 54 of 133 29 December, 2008



Hydra

7.3 Self-adaptation rules

In corresponding to the identified scenarios of case 3, we design the following rule to adapt
the system to choose wired connection as the underlying Internet service. The rule is as
followed in which we are making use of the QoS ontology set, in which we do not need to
consider the cost of the service as it is not important in this situation.

Rule: SpeedReliabiltyPriority
hasPer f ormance(?net1, ?trans f er1) ∧
hasReliability(?net1, ?r1) ∧
QoS : hasMetric(?trans f er1, ?metric1) ∧
QoS : Value(?metric1, ?value1) ∧
hasPer f ormance(?net2, ?trans f er2) ∧
QoS : hasMetric(?trans f er2, ?metric2) ∧
QoS : Value(?metric2, ?value2) ∧
hasReliability(?net2, ?r2) ∧
swrlb : greaterThan(?value1, ?value2) ∧
swrlb : greaterThan(?r1, ?r2)
→ sqwrl : select(?net1, ?net2, ?trans f er1, ?metric1, ?value1)
∧ isCurrent(?net1, ”true”)

This rule selects the underlying network that has better connection, at the same time
higher reliability. And then this rule will make the selected network as the current with by set-
ting its isCurrent property to “true”. In reality, as there may be conflicting QoS requirements
and priority scheme, SWRL rules itself could not achieve the resolution of the conflicting
choices. In this case, we need a planning mechanism to resolve such a situation, which is
detailed in Chapter 8.

7.4 Architectural styles and configurations validation at
runtime

Due to the open and dynamic nature of pervasive computing and Internet scale computing,
software components providing services can join and leave a system at anytime, hence
component configurations can be changed more often than those running in closed world
environments. This naturally requires that these new configurations should be valid and still
follow certain architectural styles. That is to say, we should dynamically validate component
configurations and architectural styles.

We assume that components and connectors are annotated with their roles in an archi-
tectural style. It does not matter which and how many roles they can play. This can be
achieved at design time to designate the nature of a component and connector. For exam-
ple, in a Repository style, a Repository component and Repository Client component. We
also assume that details of components (for example, following the specification of a certain
component model) and connectors (for example, following the details as classified in (Mehta
et al., 2000) (Mattmann, 2007)) are known when they are going to be validated for certain
configuration. This may seemingly contradict to the OWA, but it is reasonable as a start-
ing point towards an open world software architecture. As component and connectors may
change at runtime, we would check that the new configuration is still following a designated
architectural style. Therefore, if there are the required components and connectors, the
number of component/connectors are meeting constraints and other requirements, and the
components/connectors are correctly referenced with each other, then these components
are following an architectural style.

Figure 7.1 shows a general approach for architectural styles and configurations valida-
tion using SWRL rules. Firstly, there should be components/connectors corresponding to
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SelectArchStyle

Check architecture elements and their numbers

Check architecture elements reference relationships
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Identify service mismatch

New configuration suggestions

Figure 7.1: Architecture validation activities

an architectural style (maybe connectors are not used explicitly for some situations). This
will ensure that a specific configuration following an architectural style has the correspond-
ing architecture elements. The total number of the component/connectors should be the
same as these ones under consideration (or larger when a component/connector plays
multiple architecture roles if simply sum the figures got from SWRL queries for the com-
ponents/connectors numbers).

Then these components/connectors need to be correctly referenced by each other. For
example, a Repository client should be connected to a Repository component, not neces-
sarily directly connected to, but possibly with a connector as an intermediate element. This
will also make sure that the correct topology will be respected (in the Repository style, it
is a “Star” topology as said). If there is a Repository that has no reference(s), then it is a
dangling component, which may need to be deactivated. In OSGi, this can be achieved by
setting its enabled property to “false”. If there is only one Repository component, and it is
a dangling component, then it is an invalid configuration. As component services may not
be exactly matched, for example interface signature mismatch, the mismatches should be
identified according to the semantic details of components and services.

Some other property constraints for an architectural style should be checked, such as
quality of service requirements, software/hardware platform constraints, and other contex-
tual constraints. For example, some feature combination may not be valid, for example, an
OSGi server on a JME platform may be not a valid combination at present stage.

Using the Equinox DS service, we can easily get the whole list of component/connector
instances to be validated. After checking the valid references, invalid references, and
possible mismatches between components/connectors, then we can get a list of compo-
nents/connectors for a valid configuration. If there are mismatches, we can get some sug-
gestions to resolve the mismatches through rule inferring, and may help to add new compo-
nents/connectors into the current configuration.
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7.5 Probability handling in diagnosis

7.5.1 Survey on probability in semantic web

When conducting diagnosis, it is not always possible to ascertain that an error is 100%
comes from a certain source, it is an uncertain situation in essence. The existing semantic
web languages are based on classical logic which is inadequate to represent uncertainty.
Therefore, quite some research remains to be done in in improvving the semantic web
technologies’ ability to handle uncertainty.

PR-OWL (COSTA and LASKEY, 2006) is an OWL ontology for describing first order prob-
abilistic models, which models Multi-Entity Bayesian Networks (MEBN) that define probabil-
ity distributions over first-order theories in a modular way. MEBN is supposed to be capable
of representing and reasoning about probabilistic information about any sentence in first-
order logic by compiling it into a Bayesian Network. However, as the connection between a
statement in PR-OWL and a statement in OWL is not formalized, it is unclear how to per-
form the integration of ontologies that contain both formalisms (Predoiu and Stuckenschmidt,
2008).

BayesOWL (Ding et al., 2006) is a probabilistic extension of propositional logic which
allows including probabilistic mappings between different ontologies into the inference pro-
cedure. It is an approach for representing probabilistic information about class membership
within OWL ontologies, and not probabilistic expression based on properties. Therefore its
big limitation is that it can not represent probabilistic information on any relations except
the subsumption relation. Therefore we may conclude that PR-OWL has better expressive
capabilities than BayesOWL.

There are many others approaches for example extending RDF as surveyed in (Predoiu
and Stuckenschmidt, 2008). For the Hydra purpose, we need to make the probabilistic
capabilities work on the rule level, therefore neither of the current approaches are suitable
for us. There is a work on adding fuzzy reasoning capabilities to SWRL called f-SWRL (Pan
et al., 2005). f-SWRL is designed to improve the situation that SWRL fails at representing
vague and imprecise knowledge and information. f-SWRL can be used in diagnosis to
express the probability, but the problem of it is that it remains at the theoretical study phase
and no tools are available to support this.

Therefore for the moment we propose a simple solution to build directly the probability
into SWRL rule by a datatype property currentMalProbability as illustrated in the following
rule. This approach is also adopted by Amigo project.

7.5.2 Diagnosis with probability

In the agriculture scenarios, we need to monitor that the flowing of the feeding of food
mixed in some silos using pressure sensors and light sensors. The pressure sensor detects
the speed of the silos with original food material, and the light sensor is used to monitor
whether the food is pumped into a feeding silo which should detect that the light is dark
when the pumping process started. Otherwise, there is something wrong (with the following
probabilities) as shown in the rule. In this situation, the possibility of pipe broken is “70%”,
and the possibility of silo broken is much less which is “30%”.

Rule: Silo_DiagnosisProbability
device : PressureMeter(?device) ∧
device : hasStateMachine(?device, ?statemachine) ∧
statemachine : hasStates(?statemachine, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?result) ∧
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statemachine : historicalResult1(?action, ?result1) ∧
statemachine : historicalResult2(?action, ?result2) ∧
statemachine : historicalResult3(?action, ?result3) ∧
swrlb : add(?tempaverage, ?result1, ?result2, ?result3) ∧
swrlb : divide(?average, ?tempaverage, 3) ∧
swrlb : subtract(?temp1, ?result, ?result1) ∧
swrlb : subtract(?temp2, ?result1, ?result2) ∧
swrlb : subtract(?temp3, ?result2, ?result3) ∧
swrlb : add(?temp, ?temp1, ?temp2, ?temp3) ∧
swrlb : lessThan(?temp, 0.0) ∧
device : LightSensor(?device2) ∧
device : hasStateMachine(?device2, ?statemachine2) ∧
statemachine : hasStates(?statemachine2, ?state2) ∧
statemachine : doActivity(?state2, ?action2) ∧
statemachine : actionResult(?action2, ?result22) ∧
abox : isNumeric(?result22) ∧
swrlb : lessThan(?result22, 45)→ device : currentMal f unction(device : Pipe1, error : PipeBroken) ∧
device : currentMalProbability(error : PipeBroken, ”70%”) ∧
device : currentMal f unction(device : Silo1, error : SiloBroken) ∧
device : currentMalProbability(error : SiloBroken, ”30%”) ∧
sqwrl : select(”silodiagnosis”)

7.6 Discussion

SeMaPS ontologies cover a relatively complete set of knowledge for self-management, in-
cluding all dynamic information of pervasive systems, for example runtime device states.
SWRL is very flexible and powerful to develop self-management rules based on the SeMaPS
ontologies. The development of OWL/SWRL ontologies is supported by Protege1. A devel-
oper will find it relatively easy to develop SWRL rules as the user interface for SWRL rule
development is user-friendly.

1protege homepage. http://protege.stanford.edu/ and Protege-SWRL tab: http://protege.cim3.net/cgi-
bin/wiki.pl?SWRLTab

Version 2.0 58 of 133 29 December, 2008



Hydra

8 Semantic software architecture enabled and
QoS based planing

8.1 Survey on planning techniques for the Goal manage-
ment layer in pervasive systems

It has shown that the traditional AI planning techniques could be used in pervasive comput-
ing for self-management purposes (Arshad et al., 2003)(Arshad et al., 2007; Ranganathan
and Campbell, 2004), in which STRIPS-planning is used as policy engine to generate plans.
It was pointed out in (Alia et al., 2006) that this approach will not scale well, especially in
open systems. From the performance figures in (Arshad et al., 2007), we can see that
the planning performance is not very good. This makes the traditional planning based ap-
proaches unsuitable for planning under strict time constraints.

Pervasive middleware has already adopting some techniques for high level planing. For
example the CARISMA middleware (Capra et al., 2003), which applied a sealed-bid auc-
tion approach used in micro-economic to dynamically resolve policy conflicts during context
changes. The middleware acted as auctioneer to collect bids from applications and then
deliver the one with the required quality of service one where utility functions are computed
during this process in order to decide who wins among the conflicting policies.

The MUSIC project 1 is applying utility functions for achieving the planing of self-adaption
(Alia et al., 2007)(Rouvoy et al., 2008). The overall utility function is a weighted sum of a
set of dimensional utility functions, where the weight corresponds to the importance of each
QoS dimension preferred by a user. Early filtering of non-recommended or infeasible options
is applied in order to improve the performance for planning. In reality, this important factor
should be dynamic instead of static as very often the preferences can not be met.

The utility function used in Aura is composed of three parts: configuration preferences,
supplier preferences, and QoS preferences. Then it will find the best match between user’s
needs and preferences for a task, and the environment’s capabilities. The focus of Aura is to
calculate in real time near-optimal resource allocations and re-allocations for a given task.
For the service oriented computing as targeted by Hydra, service level agreement (SLA)
should be considered for this kind of resource optimizations.

Software agents are beginning to be applied for the achievement of self-management
capabilities, evidenced by the first international Agents for Autonomic Computing Workshop
AAC 2008 2. Software agents based negotiation and optimization are used to achieve self-
adaptation and self-optimization for power networks 3. The application of software agents
for self-diagnosis is well recognized, for example by Utton in (Utton, 2008) and also in his
PhD thesis. In this work, the negotiation for fault diagnosis is based on the hybrid of FIPA
Request and FIPA Propose protocols4. In the service oriented environments, we believe
that the FIPA Contract Net and Iterative Contract Net protocol are more suitable where .

The BDI (Belief-Desire-Intention) model was invented because of the slow performance
of pure planning systems which make planners less usable in dynamic environments. An
exploration of applying BDI (Belief-Desire-Intention) agent for self-adaptation is discussed in
(Morandini et al., 2008), which explicitly model goals, plans and their relationships. It shows

1http://www.ist-music.eu/
2http://www.iids.org/aac-2008/
3http://www.cs.vu.nl/ warnier/Papers/aac08.pdf
4http://www.fipa.org/repository/ips.php3
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that adaptation requirements naturally fit for the BDI agent architecture. It also shows that
high level transformation from self-adaption requirements to BDI agents implementation can
be automated but the existing tool support should be extended to support model building.
The goal types, faults, and recovery activities lack formal definition though, and should be
integrated to the proposed framework. This work would be greatly enhanced if it is integrated
with semantic web technologies to improve the goal, plan, and other activity semantics.

Genetic Algorithms (GAs) are beginning to be used for planning in self-management
(Rouvoy, 2007). In MUSIC, GA is proposed for service composition and deployment, as GA
is a powerful approach for multi-objective optimization. From (Rouvoy, 2007), we know that
this idea is still at investigation phase, but we think GA is promising in the planning layer as
GA potentially can rapidly locate good solutions, even for difficult complex search spaces.
However the implementation and evaluation of the fitness function of GA is an important
factor in the speed and efficiency of the algorithm.

To summarize the survey, we can see that in the service oriented computing environ-
ments like Hydra, the achievement of the Goal management layer should consider the fol-
lowing aspects:

• Dynamically calculating the utility of self-management activities according to dynamic
contexts. These dynamic contexts are the key to trigger various corresponding self
actions. This also means that the context model should reflect the dynamism needed
to achieve self-management.

• Explicitly modeling the semantic of goals are necessary to unambiguously interpret
them and then take actions. This can also improve the capabilities of the handling
of self actions. For example, if we know the exact meaning of a self-healing goal,
although the healing service may not exist locally, the self-healing can then resolve
the situation with a service matching with remote self-healing services.

• The underlying system architecture should remain stable and should not dramatically
changed. For example, if the underlying system is following a Repository style, it
should not violate the constraints of the repository style (e.g. there should exists at
least one repository component) after finishing related self-management actions. Of
course it is another case if it is designed to change the architectural styles.

• Although the traditional planning algorithms have high complexity and therefore poor
performance, Gat’s original paper on the 3L architecture explicitly designates such
algorithms as suitable for the planning layer. In the interest of maintaining good per-
formance for the Hydra self-* managers, however, we will initially focus on approaches
that promise better performance.

In the following sections, we will first formulate the self-management model, and then we
will show the Hydra utility functions considering these dynamic contexts, and our algorithm
used for achieving self management goals.

8.2 Hydra Self-management model

An adaptivity model is proposed in (Alia et al., 2007), which is defined as a tuple composed
of components and plans. From the survey of BDI agents based planning, it is also
advantageous to explicitly consider the goals in the self-management model. Considering
the service orientation nature of Hydra, we propose a self-management model (SeM) of a
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pervasive service system as:

SeM = (A,G,P,S,Q,C,U)

where A represents the set of underlying software architecture and architecture style
of the pervasive systems, G stands for self-management goals set, P represents the
plans set for achieving a goal, S represents the underly services set under a plan, C
represents context dimensions, Q represents underlying QoS dimensions, U represents
utility function for achieving a goal in the current context with a set of services in a plan, by
considering QoS requirements, and the system should also meet architectural constraints
after self-management activities.

Now we will elaborate the context dimensions, utility function definition, and QoS dimen-
sions.

8.2.1 Context dimensions

We have proposed the needed context types and context models in (Zhang et al.,
2007b)(Zhang and Hansen, 2008a). In summary, for user contexts, user social network,
user preferences, user habit, and user mood should be considered; for resource contexts,
CPU, memory, operating system, storage, libraries, and battery (power) information should
be included; for environment contexts, network connections, location, time, and possibly
temperature, humidity and other physical measurements for the surroundings should be
considered; for security, encryption, key etc. should be considered. They can be formulated
as followed:

User = Social + Pre f erences +Habit +Mood

Env = Network + Location + Time + Physical

Res = CPU +Memory + Storage +OS + Library + Battery

Sec = Encription + Key + Virtualization

Now we formulate the contexts C as followed:

C = (User,Env,Res,Sec)

where User represents user contexts, Env stands for environment contexts, Res stands for
resource contexts, and Sec represents security contexts.

8.2.2 Hydra Utility function

Utility function is promoted as the practical, easy-to-use, principled way of expressing the
high level objectives in self-management (Kephart and Das, 2007)(Pyrros Bratskas, 2008).
Various utility functions are proposed for different domains, for example data center re-
source allocation (Kephart and Das, 2007), and MADAM5 and MUSIC utility functions for
mobile applications (Alia et al., 2007)(Pyrros Bratskas, 2008). Taking into the consideration
of Hydra, the utility function should consider the service orientation characteristics, and also
dynamism of pervasive systems.

5http://www.ist-madam.org/
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Assume that QoS dimensions Q are defined by a vector of n property dimensions as
followed:

Q = [q1, q2, q3, ...., qn]

and for each QoS dimension qi, there is an associated weight Wqi to express its sig-
nificance, and a service S is characterized by a set of properties P (maybe defined in meta
data):

P = [p1, p2, p3, ...., pm]

These properties can be atomic for example response time, round trip time (RTT), net-
work latency. Some of the properties are defined by these atomic properties, for example
reliability.

Utility functions are in general n-dimensional functions taking as arguments values from
an n-dimensional utility space (Alia et al., 2007). Therefore it is reasonable to apply a sim-
plified approach, which defines an overall and aggregated utility as a weighted sum of the
set of utility functions across contexts, user preferences, and service properties, in order
to reduce the complexity and improve planning performance. This is also adopted by the
MADAM project and MUSIC project.

The dimensional utility function associated to the QoS dimension qi can be defined as:

F(qi) = f (c1, c2, c3, ..., c j, ..., cl) + f (p1, p2, p3, ..., pk, ..., pm)

where f (c j) stands for the utility dependent on contexts, and similarly, f (pk) represents
utility dependent on service properties.

In some situations especially those unexpected, the weighting of one or some QoS di-
mensions may become the most dominating ones, with the others less important. Consid-
ering the case in Section 3.3, we can see that reliability, bandwidth are the most important
QoS parameters, while cost is a trivial parameter in this case. Therefore we can say that the
weight of a QoS dimension depends on context.

Then the aggregated utility for a given service s in a plan p (∀p ∈ P) for achieving a goal
g (∀g ∈ G) qualified by the QoS dimension Q is:

U(s) =
n∑

i=1

Wqi ∗ F(qi), where ∀s ∈ S

This function should be maximized when choosing one of the services under consider-
ation from a set of available services, or adaption should go ahead with the one that can
maximize the utility of the whole application. At the same time, the total amount of required
resources from these selected services should not exceed the available resources.
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8.3 Planning within pervasive services environments in
Hydra

To reduce the problem space for planning, it is important to filter out some irrelevant or low
usability candidates. Here a candidate refers to a service or a set of services (or compo-
nents who implement the service). In Hydra, currently the preparation of adaptation is at
design time. Take an example of the adaptation of network connection as in scenario three,
the services using wired or wireless connections are designed and ready to use when the
services are in the current configuration. In addition, Hydra is adopting the service oriented
architecture. Therefore, all planning work finally comes to the questions of choosing a set of
services that can accomplish the current self-management work, for example self-healing,
self-adaption actions. For the case of rule conflicting, we will handle it separately for different
self-management purpose. For example, if there are multiple diagnosis rules triggered, then
the one has the highest probability may win.

In Hydra, we propose two types of filtering: service characteristics filtering, and architec-
tural constraints filtering.

8.3.1 Service filtering based on service characteristics

The early filtering will reduce the problem domain in order to improve the efficiency for
planning. The following means of early filtering are applied:

• Service category filtering. For example, a service component for error resolving of
battery drains too quickly is under the category of “LiIonBatteryDiagnosis”, under par-
ent level of “BatteryDiagnosis” service. We can easily pin point to the needed self-
diagnosis service if needed with the help of this classification.

• Service property filtering. After we get the set services of the needed category, say set
Sc, Sc can be further filtered according to some static service properties, for example,
required operating system, CPU, and required libraries. This filtering can also be
working in a dynamic way, for example, the minimum memory requirement for running
a service, can be checked against the available resources. Now we can get another
services set Ss.

8.3.2 Architecture based filtering

There are two steps to achieve the architectural based filtering: filtering based on compo-
nent reference relationships, and filtering based on other constraints. Here we use Limbo
(our web service compiler developed in Task T4.2) as a case study, because Limbo is well
documented.

• All components are correctly referenced, no dangling components

Limbo is using the OSGi component model and Repository style, the rule
“check_OSGi_Reference_noDetails” retrieves all Repository components in the cur-
rent configuration. If a component has a reference which has cardinality of the form
“1.” (at least one reference to other service), then there must be a component providing
that required service. This step is actually not necessary if an OSGi DS implementa-
tion is used as it is checked by the framework.
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Rule: check_OSGi_Reference_noDetails
archstyle : CurrentCon f iguration(?con) ∧
archstyle : hasArchitecturePart(?con, ?comp1) ∧
osgi : componentName(?comp1, ?compname1) ∧
osgi : re f erence(?comp1, ?re f 1) ∧
osgi : cardinality(?re f 1, ?car1) ∧
swrlb : containsIgnoreCase(?car1, “1.”) ∧
osgi : inter f ace(?re f 1, ?inter1) ∧
osgi : inter f aceName(?inter1, ?name1) ∧
archstyle : hasArchitecturePart(?con, ?comp2) ∧
architectureRole(?comp2, ?role2) ∧
archstyle : archPartName(?role2, ?rolename) ∧
swrlb : equal(?rolename, “Repository”) ∧
osgi : service(?comp2, ?ser2) ∧
osgi : provide(?ser2, ?inter2) ∧
osgi : inter f aceName(?inter2, ?name2) ∧
osgi : componentName(?comp2, ?compname2) ∧
swrlb : equal(?name1, ?name2)
→ sqwrl : selectDistinct(?comp1, ?comp2)

Assume that we have two Repository components loaded by DS and the two compo-
nents are implementing two Repository interfaces that differ only with the last opera-
tion:

URI getHydraOntologyExtension (File wsdlFile);
URI getHydraOntologyExtension (String wsdlFile);

Limbo needs to be bound to the Repository interface that has the signature as the first
method. The Eclipse Equinox DS bundle binds Limbo to the first Repository compo-
nent that has the lowest bundle id, without respecting the interface signature it has.
If it is bound to the correct Repository, then Limbo can run successfully. But if the
Repository with the lowest bundle id is the one that provides the same method but
with a String parameter, Limbo will not work.

The solution to this is to provide more semantic meaning to the DS service
to facilitate making choices for such situations. The OSGiComponent ontology
and the Process ontology can help with fully specifying valid OSGi component
references taking into interface signatures consideration. This rule is named
“check_OSGi_Reference_Details” as follows.

Rule: check_OSGi_Reference_Details
archstyle : CurrentCon f iguration(?con) ∧
archstyle : hasArchitecturePart(?con, ?comp1) ∧
osgi : componentName(?comp1, ?compname1) ∧
osgi : re f erence(?comp1, ?re f 1) ∧
osgi : cardinality(?re f 1, ?car1) ∧
swrlb : containsIgnoreCase(?car1, “1.”) ∧
osgi : inter f ace(?re f 1, ?inter1) ∧
osgi : inter f aceName(?inter1, ?name1) ∧
archstyle : hasArchitecturePart(?con, ?comp2) ∧
architectureRole(?comp2, ?role2) ∧
archstyle : archPartName(?role2, ?rolename) ∧
swrlb : equal(?rolename, “Repository”) ∧
osgi : service(?comp2, ?ser2) ∧
osgi : provide(?ser2, ?inter2) ∧
osgi : inter f aceName(?inter2, ?name2) ∧
osgi : componentName(?comp2, ?compname2) ∧
swrlb : equal(?name1, ?name2) ∧
component : componentServiceDetails(?comp1, ?pr1) ∧
service : presents(?pr1, ?prservice1) ∧
pro f ile : has_process(?prservice1, ?process1) ∧
process : realizedBy(?process1, ?aprocess1) ∧
process : hasInput(?aprocess1, ?input1) ∧
process : parameterValue(?input1, ?ivalue1) ∧
component : componentServiceDetails(?comp2, ?pr2) ∧
service : presents(?pr2, ?prservice2) ∧
pro f ile : has_process(?prservice2, ?process2) ∧
process : realizedBy(?process2, ?aprocess2) ∧
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process : hasInput(?aprocess2, ?input2) ∧
process : name(?aprocess2, ?proname2) ∧
process : hasOutput(?aprocess2, ?proout2) ∧
process : parameterValue(?input2, ?ivalue2) ∧
process : parameterValue(?proout2, ?ovalue2) ∧
swrlb : stringConcat(?str1, ?compname2, “ + ”) ∧
swrlb : stringConcat(?str2, ?str1, ?proname2) ∧
swrlb : stringConcat(?str3, ?str2, “#”) ∧
swrlb : stringConcat(?str4, ?str3, ?ivalue2) ∧
swrlb : stringConcat(?str5, ?str4, “$”) ∧
swrlb : stringConcat(?str6, ?str5, ?ovalue2) ∧
swrlb : equal(?ivalue1, ?str6)
→ sqwrl : selectDistinct(?ivalue1, ?comp1, ?comp2, ?str6) ∧ sqwrl : select(“valid references”)

Limbo can generate pervasive service code for JME/JSE/OSGi platforms, with client
and/or server as options, and also UPnP descriptions for services and devices. Some
of the generation combinations are not meaningful. For example, if a UPnP component
is in the component list, and the generation type is only for a web service client, then
this combination is not valid as the UPnP service is only meaningful in the server. This
can be specified with the following rule.

archstyle : CurrentCon f iguration(?con) ∧
archstyle : hasArchitecturePart(?con, ?comp1) ∧
osgi : implementation(?comp1, ?imp) ∧
osgi : implementationClass(?imp, ?class) ∧
swrlb : containsIgnoreCase(?class, “UPnPComponent”) ∧
limboGenerationType(?con, ?type) ∧
swrlb : equal(?type, ”Client”)
→ sqwrl : selectDistinct(?con, ?comp1, ?imp, ?type) ∧
sqwrl : select(“invalid client generation with UPnP backend”)

• Architectural style constraints are followed.

Limbo can generate pervasive service code for JME/JSE/OSGi platforms, with client
and/or server as options, and also UPnP descriptions for services and devices. Some
of the generation combinations are not meaningful. For example, if a UPnP component
is in the component list, and the generation type is only for a web service client, then
this combination is not valid as the UPnP service is only meaningful in the server. This
can be specified with the following rule.

archstyle : CurrentCon f iguration(?con) ∧
archstyle : hasArchitecturePart(?con, ?comp1) ∧
osgi : implementation(?comp1, ?imp) ∧
osgi : implementationClass(?imp, ?class) ∧
swrlb : containsIgnoreCase(?class, “UPnPComponent”) ∧
limboGenerationType(?con, ?type) ∧
swrlb : equal(?type, ”Client”)
→ sqwrl : selectDistinct(?con, ?comp1, ?imp, ?type) ∧
sqwrl : select(“invalid client generation with UPnP backend”)

After filtering with the architectural constraints, we can get a services set Sa.

8.3.3 Applying Utility functions

We now take the scenario 3 as an example to show the usage of utility functions. Three
QoS dimensions are considered, namely bandwidth, reliability, and cost. We list the value
of QoS parameters as in Table 8.1. Let WR, WB and WC represent the weights for reliability,
bandwidth, and cost respectively, and the value of the weights are shown in Table 8.2, in the
range of 1 to 10. Table 8.3 lists the utility functions for the three dimensions, defined as a set
of coefficient values where each coefficient specifies the utility value for a QoS dimension.
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Network reliability bandwidth cost
Wired 1 1000Mbs 60$/hour
Wireless 0.96 15Mbs 15$/hour

Table 8.1: values of QoS parameters

Network WR WB WC

Wired 10 10 1
Wireless 3 3 8

Table 8.2: QoS dimensional weights

As we can see from Table 8.2, for the wired connection, its reliability and bandwidth are
two most important factors, which are at the same time equally important, while the cost is
much less important. The aggregated utility is shown in Table 8.4.

Now we show the whole planning process as in Figure 8.1. Each filtering results in a set
of services, which is a subset of the set before applying the filtering. For example, after the
property filtering, we get a set Sp, which is then filtered with architectural constraints, and
then we can a set of Sa, as a subset of Sp.

S

Sc

Sp

Sa

Sf

SeviceCategoryFiltering

SevicePropertyFiltering

ArchitecturalFiltering

ApplyingUtiltyFunction

Figure 8.1: Planning process and the resulted service sets

For the final step of utility based filtering, we would also explore the application of genetic
algorithms introduced in the next section.

8.4 Genetic Algorithm for planning

In the former section, we proposed the Hydra utility functions, which can synthesis multiple
objectives, such as lowest cost, highest reliability and throughput in a simple way. The
problem with this approach are the difficulties on the proper and precise selection of weights
or utility functions to characterize a situation.

Genetic algorithms (GAs) (Mitchell, 1996) are a popular meta-heuristic that is particularly
well-suited for this class of problems, which is a subclass of evolutionary algorithms (EAs).
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Network f (R) f (B) f (C)
Wired 10 9 2
Wireless 4 4 8

Table 8.3: QoS dimensional utility functions

Network utility
Wired 192
Wireless 88

Table 8.4: Aggregated utility functions

It has become one of the most successful direction of computational intelligence in the past
decade. GAs are well suited to solve multi-objective optimization problems, which can find a
set of multiple non-dominated solutions in a single run. The ability of GA to simultaneously
search different regions of a solution space makes it possible to find a diverse set of solu-
tions for difficult problems with non-convex, discontinuous, and multi-modal solutions spaces
(Konak et al., 2006). Most of the multi-objective GAs eliminate the trouble of prioritizing or
weighing objectives. GA have been the most popular heuristic approach to multi-objective
design and optimization problems.

8.4.1 Basic introduction of GAs

This basic introduction of GA is based on the tutorial by (Konak et al., 2006). GA are inspired
by the evolutionist theory explaining the origin of species. In nature, weak and unfit species
within their environment are faced with extinction by natural selection. The strong ones
have greater opportunity to pass their genes to future generations via reproduction. In the
long run, species carrying the correct combination in their genes become dominant in their
population. Sometimes, during the slow process of evolution, random changes may occur
in genes. If these changes provide additional advantages in the challenge for survival, new
species evolve from the old ones. Unsuccessful changes are eliminated by natural selection.

In GA terminology, a solution is called an individual or a chromosome. Chromosomes
are made of discrete units called genes. Each gene controls one or more features of the
chromosome. Normally, a chromosome corresponds to a unique solution x in the solution
space. This requires a mapping mechanism between the solution space and the chromo-
somes. This mapping is called an encoding. In fact, GAs work on the encoding of a problem,
not on the problem itself.

GAs operate with a collection of chromosomes, called a population. The population is
normally randomly initialized. As the search evolves, the population includes fitter and fitter
solutions, and eventually it converges, meaning that it is dominated by a single solution.

GAs use two operators to generate new solutions from existing ones: crossover and
mutation. In crossover, generally two chromosomes, called parents, are combined together
to form new chromosomes, called offspring. The parents are selected among existing chro-
mosomes in the population with preference towards fitness so that offspring is expected to
inherit good genes which make the parents fitter. By iteratively applying the crossover oper-
ator, genes of good chromosomes are expected to appear more frequently in the population,
eventually leading to convergence to an overall good solution.

The mutation operator introduces random changes into characteristics of chromosomes.
Mutation is generally applied at the gene level. In typical GA implementations, the mutation
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rate (probability of changing the properties of a gene) is very small and depends on the
length of the chromosome. Therefore, the new chromosome produced by mutation will not
be very different from the original one. As discussed earlier, crossover leads the population
to converge by making the chromosomes in the population alike. Mutation reintroduces
genetic diversity back into the population and assists the search escape from local optima.

Reproduction involves selection of chromosomes for the next generation. In the most
general case, the fitness of an individual determines the probability of its survival for the
next generation. There are different selection procedures in GA depending on how the
fitness values are used. Proportional selection, ranking, and tournament selection are the
most popular selection procedures.

The procedure of a generic GA is given as follows:

1. Set t = 1. Randomly generate N solutions to form the first population, P1. Evaluate
the fitness of solutions in P1.

2. Crossover: Generate an offspring population Qt as follows:

(a) Choose two solutions x and y from Pt based on the fitness values.

(b) Using a crossover operator, generate offspring and add them to Qt.

3. Mutation: Mutate each solution x ∈ Qt with a predefined mutation rate.

4. Fitness assignment: Evaluate and assign a fitness value to each solution x ∈ Qt based
on its objective function value and infeasibility.

5. Selection: Select N solutions from Qt based on their fitness and copy them to Pt + 1.

6. If the stopping criterion is satisfied, terminate the search and return to the current
population, else, set t = t + 1 go to Step 2.

8.4.2 Algorithms for planning

There are many algorithms proposed so far as surveyed in (Konak et al., 2006), for exam-
ple NSGA-II (Deb et al., 2002). For the usability in pervasive systems, efficiency is one of
the most important requirements. Therefore we will choose the algorithms that shows effi-
ciency. An interesting set of multiple objective optimization algorithms are cellular genetic
algorithms, represented by its most recent algorithms called MOCell (Nebro et al., 2007)
and CellDE (Durillo et al., 2008).

Cellular GAs make use of the concept of (small) neighborhood in the sense that one
individual can only interact with individuals belonging to its neighborhood in the breeding
loop. The overlapped small neighborhoods of cGAs help in exploring the search space:
the induced slow diffusion of solutions through the population provides a kind of exploration
(diversification), while exploitation (intensification) takes place inside each neighborhood
by genetic operators (Durillo et al., 2008). This characteristic seems fit for the nature of
pervasive systems. Also it has show that MOCell (Nebro et al., 2007) and CellDE (Durillo
et al., 2008) have better performance than the existing algorithms. Therefore, they may
potentially be used in Hydra.

Table 8.5 shows the comparisons of the mentioned algorithms, and compared the fit-
ness function evaluations, diversity mechanism, whether elitism and external population is
used, together with their advantages and disadvantages. The compared items are based on
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Algorithm Fitness as-
signment

Diversity
mecha-
nism

Elitism External
popula-
tion

advantages Disadvantages tool support

NSGA-II Ranking
based
on non-
domination
sorting

Crowding
distance

Yes No Well tested, effi-
cient

Crowding dis-
tance works in
objective space
only

ECJ6,
JGAP7,
JMetal8

MOCell Ranking
based
on non-
domination
sorting

Cell based
crowding
distance

Yes Yes Good perfor-
mance, fast
convergence

Tested only with
up to 3 objec-
tives

JMetal

CellDE Ranking
based
on non-
domination
sorting

Cell based
1-hope
neighbors

Yes Yes Good perfor-
mance, fast
and elegant
convergence

Tested only with
up to 3 objec-
tives

JMetal

Table 8.5: Multi-objective optimization genetic algorithms comparisons

(Konak et al., 2006), and we add the tool support section to compare whether they have im-
plemented the compared algorithms directly (e.g. as examples) (these tools are extensible
to implement any multi-objective optimization algorithms though).

We are going to explore these algorithms in the future to test the performance, and
will implement at least one of them. We can predict that the algorithms can have more
potential than planning in self-management. It can be used to make decisions for other
Hydra components, for example the Network manager can use these algorithms to have an
optimized solution on how to replicate the Hydra IDs (HIDs) considering the resources and
network contexts, which have been explored by other work (Hassan et al., 2008).
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9 Implementation of the semantic web based
self-management in Hydra

In this section, we will first give an overall view of the Hydra run time architecture, illustrated
with UML component diagram and sequence diagram. Then we will show how the seman-
tic web based self-management (Flamenco/SW) is designed. The ASL part is detailed in
Chapter 5.

9.1 Runtime view of the Hydra Self-* Architecture

Figure 9.1 shows a runtime view of the Hydra self-* architecture as a UML component
diagram. Currently the ASLHost is deployed as an OSGi bundle. The dotted lines represent
dependencies between components. Different layers are interacted with events, realized as
publish/subscribe style, and the Hydra EventManager is used as a connector for realizing
the interaction.

The bottom of the architecture is the SeMaPS ontologies/rules, in which knowledge of
devices, diagnosis and error-resolution (as in Malufunction ontology) , QoS based self-
management, and state based diagnosis are encoded. The Component Control layer is
mainly used for state reporting (including resources state, service calling information, OSGi
component adding or leaving), and updating of the related information into the correspond-
ing self-management ontologies. Another important task is the ASLHost component, which
listens for the architecture events, and then using ASL commands to bind/unbind OSGi
components. The Change Management layer is used to execute rules developed based on
these state and other runtime information, and parsing the inferred results in order to take
actions, for example the self-healing action. For the Goal Management layer, it is used to
find solutions for the malfunctions whose basic information is encoded in the Malfunction
ontology, and resolve the rule conflicts based on QoS regulations or user preference etc.
Utility function based evaluations of the usability of services and plans are adopted.

9.1.1 Example: Rebinding services

Figure 9.2 shows how the layers in the architecture should interact in the case of scenario
number 1 given in chapter 3. The interaction among the two layers uses the EventMan-
ager for publish/subscribe. The services report (1) when they invoke another service, (2)
are invoked and (3) reply to an invocation. This enables the change management layer
to detect that a service, say s2 is failing using rule MessageCallingRelationship based on
MessageProbe ontology (by counting the number of messages exchanged from client to
service). It will then discover a new service, s3 which implements the same interface as s1
used on s2, and unbind s1 from s2 (delete its reference) and bind s1 to s3.

9.2 Implementation of the semantic web based self-
management

The semantic web based self-management components follows the layered architecture
style in essence, but also mixed with a Blackboard architecture style, and use the observer
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Figure 9.1: A runtime view of the overall architecture.

pattern in both the updating of state machine ontology and inferred result parsing. Assigning
class responsibilities follows the GRASP patterns (Larman, 2001).

Figure 9.3 shows the high level processing sequence of the semantic web based self-
managements. When there are state updates, the Flamenco/SW diagnosis component, as
a subscriber to this topic, will then update the device state machine, and the updates are
listened, and at the same time SWRL rule inferring will be started. New inferred information
will be added to the inferred result queue, which is also observed. Next, the observer will
parse the new inferred result, and publish the corresponding diagnosis result.

SWRL APIs from Protege-OWL are the only available SWRL APIs and are used for
the implementation and execution of SWRL rules. The Protege-OWL code generator is
used to generate Java code from the StateMachine ontology and MessageProbe ontology.
The generated code provides us with convenience for allowing to use the factory class and
interfaces to manipulate ontology data, such as the creation of a new state machine instance
and updating instances.
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Figure 9.2: The interactions of the component control layer and the change management
layer in the realization of scenario 1
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Figure 9.3: Processing sequence of the self-management components

As there is no big difference architecturally with what we present for the implementation
in D4.3 (Ingstrup et al., 2008), we refer D4.3 as the source for the reader who needs further
details of the implementation.

9.2.1 Brief introduction to the usage of APIs

Suppose the rules added by the knowledge developer are only related to one device. Then
there is no need to do anything as the APIs can handle the diagnosis cases. In case a
developer needs to process a rule, then a key class to use is RuleProcessing in package
com.eu.hydra.flamenco.ruleprocessing. It can be used like this:

RuleProcessing rp=new RuleProcessing("http://localhost:9999/ontology/DeviceRule.owl");

HashSet<String> set=a.getAllSWRLInferred();

// get all inferred information, and can get inferred individual or property separately using

// getSWRLInferredIndividual(), getSWRLInferredProperty().

rp.checkNormalTwoColumnRule("deviceTypeChecking"); // execute rule called "deviceTypeChecking"

There are different methods for processing different types of rules: checkSingleColumn-
Rule() which is used to process a rule returns only one column result but may have multiple
rows. Similarly there are other rules processing methods.
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As there may be many rules, but different rules are used for different purpose, therefore,
a separate rule group can be build and executed as needed. The rule group feature can be
used like this:

RuleGroupProcessing a=new RuleGroupProcessing("http://localhost:9999/ontology/DeviceRule.owl");

a.processRuleGroup("pig"); //create a rule group called "pig"

HashSet<String> set=a.processRuleGroup("pig"); //This will execute all rules whose name contains ’Pig’

HashSet<String> set1=a.processRuleGroup("pig", "battery", "and"); //This will execute all rules whose name con-
tains ’Pig’ and ’battery’.

HashSet<String> set2=a.processRuleGroup("pig", "battery", "or"); //This will execute all rules whose name contains
’Pig’ or ’battery.

Now the rule grouping feature can be used to diagnosis as followed:

DiagnosisInitializingData.getDiagnosisInitializingDataInstance();

DiagnosisInitiation pig=DiagnosisInitiation.getPigRuleInstance();

//prepare for infered result parsing as a observer to InferredResult

InferredResultParsing parser=InferredResultParsing.getInferredResultParsingInstance();

InferredResult result=InferredResult.getInferredResultInstance();

result.addObserver(parser);

pig.Diagnosis("pig");

pig.Diagnosis("ventilator");

pig.Diagnosis("flowmeter");

The detailed tutorial for Flamenco is on Hydra Wiki with this link:
https://hydra.fit.fraunhofer.de/confluence/display/HYDRAWIKI/WP4+Flamenco+Tutorial
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10 Evaluation

10.1 Evaluating the self-diagnosis component

The self-management features are being implemented incrementally. As mentioned before,
performance is the major concern for semantic web. Therefore we are still concentrating
this during the evaluation, using the self-diagnosis components. We have done these eval-
uations in the former deliverable (Ingstrup et al., 2008), in this deliverable we have extended
these evaluations by adding the rule group features, and more attempts to test the extensi-
bility. As the development goes, we evaluate the extensibility, performance, and scalability
whenever there arises the needs when new features are added.

Extensibility

Extensibility is continuously evaluated in the whole process of the self-management feature
development. We started the development of the Flamenco/SW diagnosis module with the
rule for temperature monitoring. Generic SWRL rule processing component is developed.
Then we added the MessageProbe ontology and service calling dynamism handling to de-
tect a service is available or not. Only piece of code was added to the reasoning result
parsing component. Adding of the rule grouping feature did not affect the existing rule pro-
cessing code either. Neither the adding of new ontologies affect the existing ontologies. The
design has good separation of concerns nature. In summary, the rule processing and rule
grouping feature is generic and has good extensibility for adding new features.

Performance

For the performance measurements, the following software platform is used: JVM 1.6.02-
b06, Windows XP SP3, the hardware platform is: Thinkpad T61P T7500 2.2G CPU,
7200rpm hard disk, 2G DDR2 RAM. The time measurements are in millisecond. We ad-
justed heap memory to 266M for running Protege-OWL/SWRL APIs (Protege 3.4 Build 130).
The size of the DeviceRule ontology is 238,824 bytes, and contains 20 rules, including 6
rules for the Smart Home system.

The performance figures are shown in Table 10.1. The update column represents the
time needed for updating the StateMachine ontology and/or MessageProbe ontology, the
InferringTime column shows the time needed for rules processing and inferring to obtain
results, and the AfterEventTillInferred column shows the elapsed time, starting when the
events of device state changes and/or service calling occurred, till the end of rules inferring.

Update InferringTime AfterEventTillInferred
843 843 843
906 906 906
922 906 922
719 719 719
953 938 938

Table 10.1: Performance before rule grouping

Instead of running all rules as a whole, we can make use of the rule grouping feature,
in which a specific system, or a device, can be separately diagnosed. To achieve this,
rules for the device or any other situation where a specific diagnosis is needed, can be
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assigned to a rule group at runtime, and we then execute this rule group accordingly. This
can greatly improve the performance as shown in Table 10.2 for the “SmartHome” rule group
performance. We can see that more than 50% performance improvement is possible when
rule grouping is used, with a minimum improvement of 52%, and a maximum of 69%.

Update InferringTime AfterEventTillInferred
328 328 328
297 281 297
297 297 297
297 281 297
344 344 344

Table 10.2: Performance after rule grouping

Scalability

As no significant changes to the whole implementation, we can notice that the scalability
remains as good as before.

Discussion

The design of the rule processing and rule grouping feature is generic to be used for all self-
management purposes and the overall design of the self-diagnosis has good extensibility.
The testing results shown above are up to the requirements for self-management in perva-
sive environment, in terms of performance and scalability. The usage of the rule processing
and rule grouping is via simple APIs (e.g, rule name and/or rule group name) and easy to
use to develop applications.
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11 Conclusions and future work

This deliverable has reported the design, implementation and initial evaluation of self-
management prototypes, trying to lay a solid foundation to cover full three layer architec-
ture, and full spectrum of self-management, including self-adaptation, self-configuration,
self-healing, and self-protection.

A combined interpreter and actuator for the architectural scripting language has been
implemented as an OSGi bundle for the Equinox platform, and currently enables reconfig-
uration in this platform; as such it provides an implementation of the ’actuator’ part of the
component control layer in the 3L architecture. The extension to ANT with the architectural
scripting operations has likewise been designed and implemented to support the Equinox
OSGi platform. It is designed to be extensible and currently constitutes a first version of the
testbed.

We proposed semantic web self-management approach in Hydra motivated by the open
world nature of pervasive systems. This approach is supported by a set of self-management
ontologies (SeMaPS ontologies). The SeMaPS ontologies serve as the self-management
knowledge base, in which both static and dynamic contexts necessary for self-management
are modeled, and SWRL rules for self-adaptation, self-configuration, self-healing are im-
plemented. SeMaPS covers also architectural ontologies which can be used to enhance
self-management features by considering architectural constraints.

The self-management model and Hydra utility function is proposed to use in the Goal
management after extensive survey on planning techniques for self-management planning.
Genetic algorithm is investigated and promising to serve as planning algorithm due to its
capability to find a global optimization candidate.

In the future, we will extend the architectural scripting features by adding atomic execu-
tion of operations, and explore the concurrent execution. At the same time, we will extend
the ASL based test bed by adding more devices to it, and improve flexibility for developer to
adapt the test bed.

We still envision to enhance the SeMaPS ontologies as the development goes and
the usage of these ontologies provides feed back. More rules cover self-protection, self-
optimization will be developed, and further to extend existing rules set. Goal management
layer will be implemented based on genetic algorithm, and other algorithm will be investi-
gated.
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ABSTRACT
Semantic web-based context modeling is widely used in per-
vasive computing systems to achieve context awareness which
is essential for Ambient Intelligence (AmI). In the Hydra
middleware for pervasive services, context awareness is ex-
tended for self-management purposes, which is an integral
part of Hydra. To achieve this, a set of self-management
ontologies called SeMaPS (Self-Management for Pervasive
Services) are developed, where the dynamism of device state
changes and service invocation are taken into account. To
show the effectiveness of these ontologies, in this paper,
we focus on our Component ontology that extends OSGi’s
Declarative Service specification to add capabilities for ex-
pressing architectural (especially global) and functional con-
straints (e.g. contextual constraints), and show how to use
it to verify component configurations by using a pervasive
service compiler at runtime.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods,Validation; D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures; I.2.4 [Artificial Intelligence]: Knowledge Repre-
sentation Formalisms and Methods—Representations (pro-
cedural and rule-based)

General Terms
Languages, Design, Verification.

Keywords
OWL/SWRL ontology, context awareness, ambient intelli-
gence, Configurations, OSGi declarative service

1. INTRODUCTION
Ambient Intelligence (AmI) aims to make pervasive com-

puting[10] more usable through natural interaction, person-
alized and efficient services, and context awareness. Having

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

context awareness is very important in knowing when and
where a service can happen, what triggers a service provi-
sion, how to provide a service to whom and so on. Thus
context awareness is essential to achieving AmI and deci-
sions and services should be based on current or histori-
cal contexts. To enable AmI in the Hydra project (IST-
2005-034891), we are building self-management capabilities
into the Hydra middleware, supported by context ontolo-
gies based on semantic web technologies (OWL1 and SWRL
(Semantic Web Rule Language2)).

Semantic web-based context modeling is arguably a pow-
erful approach for context modeling [11], since it can pro-
vide reasoning potentials for contexts, a capability not easily
achievable by other context modeling approaches. In order
to support self-management, the context models should have
dynamic and runtime information of the system available in
order to take appropriate actions based on these dynamic
contexts. Hence, the dynamic information should be re-
flected in the context models and used for self-management
in order to make decisions on what actions should be taken
to react to the changes that are needed for self awareness.

Existing pervasive computing context ontologies, such as
SOUPA[1] and Amigo[4], are not targeting self-management
and almost no dynamic and runtime models of the under-
lying pervasive systems are considered. This makes these
existing ontologies unsuitable for the self-management pur-
poses, which depend on the timely reporting of the status of
devices, network, and even on running processes.

To realize our vision of semantic context awareness-based
self-management in Hydra [14, 16], we designed SeMaPS
(Self-Management for Pervasive Services), a set of self-man-
agement ontologies in Hydra. The context ontologies in
SeMaPS are considering runtime contexts which are neces-
sary for self-management. These dynamic contexts include
device runtime status, service call/response relationships,
and service execution time. SWRL rules are developed to
handle self-management features such as malfunction diag-
nosis, device and system status monitoring, and service se-
lection based on QoS parameters. When there are state
changes or service calls, the dynamic running information
is fed into the related self-management context ontologies,
which then trigger execution of self-management rules for
adaption, monitoring, diagnosis, and other aspects of self-
management.

For this paper, we will demonstrate the utility of SeMaPS

1OWL homepage. http://www.w3.org/2004/OWL/
2SWRL specification homepage. http://www.w3.org/
Submission/SWRL/
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by focusing on one of its ontologies, Component ontology
that extends OSGi’s Declarative Service specification through
OWL-DS to add capabilities for expressing architectural and
functional constraints over component configurations, and
show how to use it to verify the component configurations
at runtime by using a pervasive service compiler (Limbo [3])
as an example.

The rest of the paper is structured as follows: The de-
sign of SeMaPS context ontologies and their structure are
presented in Section 2. Next, we discuss how we extended
OSGi DS (Section 4) followed by a more detailed case study
of applying OWL-DS to the Limbo compiler (Section 5).
We present the implementation of runtime validation in Sec-
tion 6. Then we discuss related work in Section 7. The paper
is concluded in Section 8.

2. SEMAPS ONTOLOGIES
In Hydra, to make full use of context awareness, a seman-

tic web based self-management approach is being adopted
[14, 16], with the support of the SeMaPS context ontolo-
gies. The high level structure SeMaPS ontologies is shown
in Figure 1. The dynamic contexts are modeled with run-
time concepts and properties in the related ontologies.

Device

StateMachineHardwarePlatformService Malfunction

Service Malfunction SocketMessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

FlamencoProbe

<<import>>

QoS

<<import>>

DeviceRule

<<import>>

Component

<<import>>

Figure 1: Structure of the SeMaPS ontologies

The Device ontology presents HydraDevice (as a concept)
type classification (e.g. Mobile Phone, PDA, Thermome-
ter). This is based mainly on the device classification in
Amigo project ontologies [4]. To facilitate self-diagnosis,
there is a concept called HydraSystem to model a system
composed of devices that provide services. A corresponding
object property hasDevice is added, which has the domain of
HydraSystem and range as HydraDevice. The HydraDevice
concept has a data-type property currentMalfunction which
is used to store the inferred device malfunction diagnosis
information at runtime.

The HardwarePlatform ontology defines concepts such as
CPU, Memory, and relationships to devices (in the Device
ontology), for example hasCPU. This ontology is based on
the hardware description part from W3C’s deliveryContext
ontology3. Power consumption concepts and properties for
different wireless network are added to the HardwarePlat-
form ontology to facilitate power-awareness, including a bat-
terLevel property for monitoring battery consumption at
runtime.

3Delivery Context Overview for Device Independence.
http://www.w3.org/TR/di-dco/

The device Malfunction ontology is used to model knowl-
edge of malfunction and recovery resolutions. It provides the
classification of device malfunctions (for example, Battery-
Error). The malfunctions are defined into two categories:
Error (including device totally down) and Warning (includ-
ing function scale-down, and plain warning) according to
severeness. There are also two other concepts, Cause and
Remedy, which are used to describe the origin of a malfunc-
tion and its resolution.

The QoS ontology defines some important QoS parame-
ters, such as availability, reliability, latency, error rate, etc.
Furthermore, properties for these parameters are defined,
such as their nature (dynamic, static) and impact factor.
There is also a Relationship concept in order to model the
relationships between these parameters. The QoS ontology
is developed based on Amigo QoS ontology [4].

To model device state changes, a state machine ontology
is developed based on [2] with many improvements to facili-
tate self-management work: the State concept has data-type
property isCurrent to indicate whether a state is current or
not for the purpose of device monitoring, a doActivity ob-
ject property is added to the State in order to specify the
corresponding activity in a state, and also a data-type prop-
erty hasResult is added to the Action (including activity)
concept in order to check the execution result at runtime,
together with three data-type properties that are added to
model historical action results in order to conduct history
based self-management work.

To model the invocation of services, a FlamencoProbe on-
tology is developed to monitor the liveness of computing
node, and facilitating the monitoring of QoS, such as the
request/response time of a corresponding service call. The
SocketProcess concept is used to model a process running in
a client or service, and SocketMessage to model a message
sent to/from between client and service. There is also a con-
cept called IPAddress, which is related to HydraDevice with
a property hasIPAddress in the Device ontology. The object
properties invoke, messageSourceIP, and messageTargetIP
are used to build the invoking relationships, and data type
property initiatingTime is used to model the time stamp for
a message.

The Component ontology is based on the OSGi’s Declara-
tive Service specification [5] as we are adopting OSGi as the
underlying component model in Hydra. It specifies the Com-
ponent (as a concept) dynamic status, for example whether
it is enabled, and also static characteristics such as its ref-
erence to other service, its implementation interface, and
services provided. Figure 2 shows partially the details of
the Component ontology.

In the following sections, we will demonstrate the capa-
bilities of these ontologies from a different angle by applying
the Component ontology and SWRL rules to verify configu-
rations of Limbo. We will first introduce OSGi’s Declarative
Services (OSGi DS) on which we build the Component on-
tology, and then we discuss OSGi DS’ shortcomings, exem-
plified with requirements for Limbo configurations. Then we
propose an approach called OWL-DS based on the Compo-
nent ontology and SWRL rules, to verify the configurations
for Limbo at runtime. Please note that the OWL-DS ap-
proach is not limited to Limbo, but can be applied to all
situations where configuration need to be verified using the
OSGi component model.
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Figure 2: Component ontology (simplified)

<?xml version="1.0" encoding="UTF-8"?>
<component name="com.eu.hydra.limbo">
<implementation class="com.eu.hydra.limbo.Limbo"/>
<service>
<provide interface="com.eu.hydra.limbo.generator.Generator"/>

</service>
<reference name="BACKEND"

interface="com.eu.hydra.limbo.backend.Backend"
cardinality="1..n"
policy="dynamic"
bind="addBackend"
unbind="removeBackend"/>

<reference name="FRONTEND"
interface="com.eu.hydra.limbo.frontend.Frontend"
cardinality="1..n"
.../>

<reference name="REPOSITORY"
interface="com.eu.hydra.limbo.repository"
.../>

</component>

Figure 3: OSGi DS Example

3. OSGI DECLARATIVE SERVICES
OSGi provides a set of services per default [5], one of

which is Declarative Services management. OSGi’s Declar-
ative Services Specification [5] enables developers on the
OSGi platform to declaratively manage service composition
at runtime. Concretely, OSGi DS allows OSGi bundle de-
velopers to provide a XML-based description of components
that may be instantiated at runtime to provide and require
services. Figure 3 shows an example of such a description
which specifies the main component of the Limbo compiler.

Figure 4 shows a logical view of (a part of) Limbo’s soft-
ware architecture. Limbo provides a Generator service that
Frontends and Backends may use. Frontends process source
artifacts (such as Web Service Description Language (WSDL4

files) whereas Backends produce output artefacts (such as
web service stubs and skeletons). Both Backends and Fron-
tends may use a single Repository. At runtime Limbo selects
and uses a set of Backends (and Frontends) based on Limbo’s

4http://http://www.w3.org/TR/wsdl

Limbo

Frontend Repository Backend

Generator

1requires

provides

requires requires1..* 1..*

Figure 4: Limbo Logical Architecture

configuration.
This description essentially makes sure that the runtime

architecture of Limbo is as shown in Figure 4: The Limbo
component (inside an OSGi bundle) will be instantiated by
the OSGi DS runtime and that, in this case, will need to
implement the Generator interface since this is a service
provided by the component. Furthermore, the Limbo com-
ponent requires the presence of at least one Frontend and at
least one Backend and one Repository. When these services
are available, the references are said to be satisfied and the
component may be activated.

Essentially, OSGi DS provides a way for components to
specify provided and required services (in the form of Java
interfaces) declaratively so that the OSGi framework can
resolve service dependencies dynamically. Even though this
is a convenient and powerful composition mechanism, we
argue that it should be extended. The Limbo compiler case
exemplifies a number of limitations of OSGi DS:

• Global constraints are not supported. This means that
one cannot express architectural constraints that are
non-local. An example of this could be that there must
be exactly one instance of the Repository service for
consistency reasons.

• Contextual constraints are not supported. The OSGi
DS constraints are closed in the sense that they are
specified at packaging time in the OSGi bundles. An
example of where this is insufficient in the Limbo case
is that it could not express that JME and OSGi server
is not a legal combination.

4. EXTENDING OSGI DS THROUGH OWL-
DS

We use an approach as in SAWSDL5 to extend OSGi DS.
In doing so, OSGi components reference the Component on-
tology and configuration rules. The Component ontology is
built based on OSGi DS XML Schema as shown in Figure
2. This approach to extending OSGi DS is called OWL-DS.

To conveniently model component types, we add a concept
ComponentType into the OWL model. This is important for
specifying the constraints based on the component types. In
fact, the services provided by a component (specified by in-
terfaces) can be used to identify a component type, but this
may be counter-intuitive for a user to reference the compo-
nent type in this way. We are also using SWRL rules to
link the ComponentType with the component interfaces. In
order to model the configuration based on the semantic com-
ponents, we use a SystemConfiguration concept to model the
set of configurations that components can have.

5http://www.w3.org/TR/sawsdl/
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There is a way to specify some local constraints using
OWL capabilities (using cardinality restriction). OWL car-
dinality restrictions are referred to as local restrictions as
they are stated on properties with respect to a particular
class. That is, the restrictions constrain the cardinality of
that property on instances of that class6. This is a simple
and feasible way to implement constraints for component
configurations. However, this approach is not sufficient to
specify component configurations for our purposes for the
following reasons:

Low usability : The model developer has to specify all the
components as concepts (for every component) and
properties explicitly, and then use the concepts and
properties to specify constraints. This is not a prac-
tical way as it is hard to enumerate components in
practice.

Not flexible : All constraints are explicitly stated with
every component, if a new component is added, the
model has to be changed accordingly. There should be
a scalable way to specify constraints.

Not powerful : OWL in itself is criticized for its limited
expressiveness, e.g., not being able to use math ex-
pressions or string operators that may be involved in
constraints.

We are intending to use SWRL to specify the constraints
for the configuration of components. This is feasible with
SWRL (e.g. using the SWRL APIs from Protege7) because
of the extensibility of SWRL.

If we know the current set of components that are avail-
able to OSGi DS, we can apply SWRL to a semantic descrip-
tion of this set. Here we can use SWRL built-ins, such as
the mathematical built-ins, string built-ins, and Abox and
Tbox built-ins. The basic idea is to retrieve these current
components, and then use SWRL to specify what is a valid
configuration, and what is an invalid combination following
by reporting of violations of configurations.

5. LIMBO RUNTIME VALIDATION
In this section, we will use SWRL to specify the validation

of component configuration. A SWRL rule is composed of
an antecedent part (body), and a consequent part (head).
Both the body and head consist of positive conjunctions
of atoms. A SWRL rule means that if all the atoms in
the antecedent (body) are true, then the consequent (head)
must also be true. SWRL is built on OWL DL and shares
its formal semantics. In our practice, all variables in SWRL
rules bind only to known individuals in an ontology in order
to develop DL-Safe rules to make them decidable. In our
example SWRL rules, the symbol ∧ means conjunction, and
?x stands for a variable, → means implication, and if there
is no ? in the variable, then it is an instance.

Our approach is general and not limited to Limbo, the
component model and configuration model are generic and
can be applied to any cases of component semantic descrip-
tions and component semantic configurations.

Taking Limbo as a case, the following steps are involved
in the semantic validation. In practice, all the steps can be
executed in a whole instead of step by step.

6http://www.w3.org/TR/owl-features/
7http://protege.stanford.edu/

Check the services required by a component. The rule
retrieves all components in the current configuration.
If a component has a reference which has cardinality at
least one, then there must be component provide the
required service. Or else, there is something wrong
with the configuration. This step is not necessary if
OSGi DS is used, but it is necessary if the OSGi com-
ponent model applied to other situations. The rule is
shown in Figure 5.

Figure 5: rule for checking component reference

Check component platform. All components should sup-
port the required targetted platform for Limbo compi-
lation. A component should have this supported plat-
form specified in its property and will be retrieved by
the rule and compare with the specified targeting plat-
form, if it is not supported, then it is not valid for this
configuration. The rule is shown in Figure 6.

Figure 6: rule for checking component supporting
platform and the targeted platform

Check generation combination. Some of the generation
combinations are not meaningful. For example, if JME
is a targeting platform, then an OSGi server is not an
option because OSGi is not supported on JME cur-
rently in our environment. This rule is shown in Figure
7.

Check number of component type limitations. Sometimes
it is important to limit the number of component with
a specific type, in a running configuration. We will first
retrieve the component and assert its type according
to its provided interfaces, and then count the number
of this kind of components, and programatically check
with its limit. This rule is shown in Figure 8.

In order to specify the limitation of different type of com-
ponents a configuration has in the rule body, the SWRL
builtins should be extended, and will be out of scope of
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Figure 7: rule for checking OSGi server on JME
platform is invalid

Figure 8: rule for counting Limbo repository and
assert a component as a repository component

open world assumption of OWL/SWRL. Therefore progra-
matically controlling this limit is a good option for flexibility
and soundness. This later approach is the one we are using.

The component reference rule (Figure 5) is a generic rule
that can be applied to all other situations where the declar-
ative service model is used. The second rule for platform
checking (Figure 6) is also generic, in situations where a
component’s supported platform needs to be checked. The
checking of components’ type limits (Figure 8), can be gener-
alized through parameterization of SWRL that will be com-
ing later when this feature is available from SWRL APIs.
The only rule that is very Limbo specific is the rule for check-
ing the generation combination. All in all, this semantic
validation algorithm can be applied to multiple situations.

6. DESIGN AND IMPLEMENTATION
We have implemented the usage of the Component on-

tology and Limbo runtime validation using Protege-OWL
APIs, based on the ideas presented in the former sections.
Specifically, we have (1) Designed and realized the Com-
ponent ontology based on Declarative Services using the
Protege ontology editor, (2) Extended Eclipse Equinox’s8

Declarative Services implementation to discover and main-
tain a model of the component instance topology, and (3)
Run time monitoring and validating of Limbo components
combination using Protege-OWL/SWRL APIs.

A static Component & Connector view of the implemen-
tation is shown in Figure 9

The Equinox DS bundle has been extended with a Bind-
ing Listener that knows when service are bound to (and un-
bound from) components. Whenever such an event happens,
the Binding Listener uses the standard OSGi Event Ad-
min that provides a topic-based publish/subscribe service.
This enables the OWL-DS Monitor to maintain a model of
component instances, their services, and their relationships.

8http://www.eclipse.org/equinox/

Equinox DS
Binding 
Listener

Event Admin

OWL-DS Monitor

EventAdmin

EventHandler

Figure 9: Static Component & Connector View of
Current OWL-DS Implementation

Based on this information, the OWL-DS Monitor validates
component configurations as they are made by the Equinox
DS implementation, notifying whether they are valid or in-
valid according to semantic constraints.

7. RELATED WORK
None of the existing ontologies for pervasive computing,

such as SOUPA and Amigo[4], are considering self-management
concepts and requirements, however. The SeMaPS presented
self-management ontologies in this paper are the key to en-
able various self-management tasks. At the same time, we
can model complex contexts using SWRL with the Hydra
ontologies [16]. Work in [7] applied SWRL-based context
modeling, and illustrated three cases of applying SWRL. We
go beyond it by the dynamic state-based monitoring and di-
agnosis using context ontologies.

Using semantic techniques (such as OWL) to extend exist-
ing component models has partially been attempted before.
Sillitti and Succi[9] use XML schema to specify facets of
components but they do not provide details on how to con-
figure components. Furthermore, the implementation of the
approach uses ontologies, but it is not detailed how.

In the area of product lines and feature configuration,
Wang et al. [13] present a feature modelling approach in
which legal feature combinations in which configuration rules
are expressed with OWL. We explored this approach in the
first versions of Limbo, but the approach cannot adequately
specify global constraints due to the limited expressiveness
of OWL. The approach of Wang et al. is furthermore mainly
a design time method and is not able to cope with new
contexts at runtime. The SWRL based configuration con-
straints that we propose could provide a more flexible solu-
tion.

An architecture description language can be used to de-
scribe configurations and styles, and then map a formally
rigorous ontological specification of styles to that ADL such
that its semantics are well defined. Pahl et al.[6] describe an
ontology-based modeling framework for architectural styles,
and show how it can be used in connection with the ACME
ADL. However this work is theoretical and supports rather
than overlaps with our own, in that it makes precise the
benefits to an ontology based model compared to one based
purely on an ADL.

Redondo et al. [8] present work to enhance the semantics
of OSGi services (rather than components) to support en-
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hanced service matching, based on OWL-S 9. Redondo et al.
do not use the OSGi DS specification that makes the con-
figuration of component easier. A possible future step for
us would be to incorporate OWL-S in our model to enhance
service matching.

Finally, the work in [12] extends OSGi component descrip-
tions with a special-purpose description language which is
used in the CACI context awareness infrastructure. CACI
proposed a context aware component model which defines
that a component has application ports as well as context
ports. We basically have similar mechanisms for context in-
formation such as Quality-of-Service. Additionally, we are
applying semantic web technologies that have more reason-
ing capabilities than what is provided by [12].

8. CONCLUSIONS AND FUTURE WORK
The SeMaPS ontologies consider runtime context infor-

mation of pervasive systems by incorporating pervasive ser-
vice computing characteristics. These ontologies are impor-
tant in supporting the envisioned semantic-web based self-
management approach adopted in Hydra [14][16]. The se-
mantic web-based self-management is suitable for the open-
ness of pervasive computing as explored in [15]. As semantic
web-based context modeling is extensively used in pervasive
computing, it is beneficial to uniformly make use of these
assets for self-management purposes.

Dynamic service applications require extensive develop-
ment and runtime support. This paper presented OWL-DS
that extends OSGi’s Declarative Services with support for
global (architectural) constraints on composition and sup-
port for dynamic, contextual constraints. The approach has
been validated through the Limbo web service compiler case
study which shows that the Limbo architecture benefits from
the ability to specify advanced component constraints.

Besides self-diagnosis as presented in previous papers, we
are working on extending the application of SeMaPS ontolo-
gies for quality of service-based service selection and adap-
tion, and other self-management work which also depends
on contexts. Furthermore, the investigation of applying the
OWL-DS idea and the Component ontology to the .NET
platform is also under investigation. This idea can be po-
tentially used for Hydra to validate whether a configuration
of an application, or the middleware is legally configured at
runtime, to make sure various constraints are met dynami-
cally.
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Abstract

An issue in self-managed systems is that different ab-
stractions and programming models are used on different
architectural layers, leading to systems that are harder
to build and understand. To alleviate this, we introduce
a self-management approach which combines high-level
Petri Nets with the capability of distributed communication
among nets. Organized in a three-layer Goal Management,
Change Management, and Component Control architecture
this allows for self-management in distributed systems. We
validate the approach through the Flamenco/CPN middle-
ware that allows for self-management of service-oriented
pervasive computing systems through the runtime interpre-
tation of Coloured Petri Nets. The current work focuses on
the Change Management and Component Control layers.

1 Introduction

A self-managing, or autonomic, system is one in which
technology is deployed specifically for the purpose of man-
aging other technology [2]. Parashar and Hariri [17]
describe four types of challenges for research in this
area:Conceptual challenges concerning how we understand
autonomic systems, including models and abstractions of
them; the Architectural challenges of what architecture can
enable self-management at various levels of granularity, lo-
cally or globally and so they can be specified, implemented
and controlled in a predictable and robust manner; Middle-
ware challenges about what core services are needed to sup-
port realization of autonomic systems subject to particular
and perhaps varying quality requirements; and finally Appli-
cation challenges that are concerned with the programming,
development and maintenance of autonomic applications.

Our work addresses middleware and application chal-
lenges in the context of self-managed pervasive computing
systems. Pervasive computing systems [19] are character-
ized by inherent dynamism, context awareness, heterogene-
ity, and open-endedness. All of this stresses the need for

self-management and for solutions that scale across hetero-
geneous platforms. A central component in the Hydra mid-
dleware [9] of which this work is part, is the Flamenco sub-
system that is responsible for self-management in a service-
based pervasive computing context. This paper introduces
a high-level Petri Net [10] variant, Flamenco/CPN, of this
subsystem. A previous paper introduces a complementary
Semantic Web-based version [22].

The rest of this paper is structured as follows: first
Section 2 discusses related work from the perspective of
Parashar and Hariri. Next, Section 3 presents three basic
scenarios of self-monitoring and self-management that we
used to design, implement, and evaluate Flamenco. The de-
sign of Flamenco/CPN is presented in Section 4, its imple-
mentation in Section 5, and its evaluation in Section 6.2.
Finally, Section 7 conclude.

2 Related Work

There have been at least two main conceptual approaches
to building self-managed systems. One is inspired by tradi-
tional Artificial Intelligence with the explicit representation
and interpretation of plans as a basis for action, e.g. as in
the three-layer architecture by Kramer and Magee [12]. The
other major conceptual approach is to build systems without
any explicitly represented overall plan, e.g. inspired by the
decentralized control in ant colonies [13], or by evolution
as an adaptation mechanism [7]. In principle our approach
of communicating Petri Nets can be used for realizing both
conceptual approaches, but we specifically use the Kramer
and Magee model to structure self-management.

It is an open topic how well these two approaches can be
unified in a given system architecture, but arguably the hu-
man nervous system that provide some of the inspiration for
the vision of autonomic computing encompasses both high
level cognitive explicit/conscious planning as well as rely-
ing on lower level more emergent properties for self man-
agement and healing.

From an architectural point of view, Kramer’s and
Magee’s [12] recently proposed reference model for self-

1
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managed systems is based on an interpretation of Gat’s three
layer architecture for autonomous robotics [6]. This model
for self-management of software systems contrasts ear-
lier approaches based on Sense-Plan-Act architectures [6]
which have also been used in self-management systems
(such as by [5]).

Kramer and Magee argue that handling self-management
on an architectural level is appropriate in terms of level of
abstraction and generality and casts Gat’s three layer archi-
tecture in terms of conceptual layers of a self-management
system:

Component Control Layer. This layer includes sensors,
actuators, and simple control loops. In a self-managed
system, this layer consists of elements that perform ap-
plication functions (“control loops”), reporting of state
to upper layers (“sensors”) and facilities for creating,
changing, and deleting elements (“actuators”)

Change Management Layer. Based on state reported
from the Component Control Layer, the Change
Management Layer executes precomputed plans and
change the elements in the Component Control Layer.
If a conditions is met for which a plan does not exist,
a new plan may be requested from the Goal Manage-
ment Layer.

Goal Management Layer. This layer creates new plans
based on high-level objectives of the running sys-
tem. Often compute-intensive re-planning is done. Al-
though planning has been extensively researched in AI
the application of these techniques to self-management
is to the best of our knowledge unexplored.

Figure 1 illustrates the reference model.
In their seminal paper on autonomic computing, Garnek

and Corbi [4] describe five degrees of autonomy. In this
model, increasing the level of autonomy corresponds to re-
quiring higher-level functionality in Kramer and Magee’s
reference model. Since any system is unlikely to be com-
pletely autonomous there will always be certain high-level
tasks a human operator must perform. Flamenco/CPN is
specifically built in correspondence with the Kramer and
Magee model.

From a middleware perspective we are concerned with
what core services are needed to support the realization of
self-managed computing systems subject to particular and
perhaps varying quality constraints. Furthermore, support
for distributed communication is also important here. We
build on pervasive web services with embedded state ma-
chines [9] and with event-based communication using the
publish/subscribe paradigm [3].

Finally, the application perspective is concerned with the
programming, development and maintenance of autonomic
systems. Barret et al. [1] performed ethnographic studies

Goal Management

Change Management

Component Control

Plan Requests
Change Plans

Status
Change Actions

Figure 1. Three Layer Architecture Model for
Self-Management

of systems administrators and emphasize the need for en-
abling awareness by operators, support them in rehearsal
and planning activities and aid them in managing multi-
tasking, interruptions and diversions. Similarly, we have
performed ethnographic studies of agricultural, pervasive
(maintenance) work [11] to derive our scenarios.

Concerning the programming of autonomic systems,
[14] propose a component based framework in which each
component is rule based and specified through behavior
rules and interaction rules. Each component is itself self
managing, a requirement also stated by White et al. [21].
We follow a similar approach in that both (device) web ser-
vices and other subsystems may contain executable Petri
Nets.

3 Scenarios of Self-Management

We base the description of self-management in Hydra on
scenarios from the agricultural domain [11]. In the follow-
ing, we outline a future scenario in which monitoring and
management is involved.

Bjarne is an agricultural worker at a large pig
farm. His daily routines include taking care
of one of the slaughter pig stables, maintaining
equipment, and helping with various jobs on the
farm as needed.

To help him in his tasks, he carries around a PDA.
Each morning, he feeds the pigs in one of the pig
stables. When he enters the stable this morning,
the PDA shows him that there is a leak in the wa-
ter pipes somewhere, something that is critical for
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the well-being of the pigs. He quickly locates the
problem and has his smith repair the leak.

Later the same day he notices a notification that
says that he needs to take care of the Heating
Ventilation and Air-Conditioning (HVAC) sys-
tem. Luckily there is a standby system that has
been turned on, otherwise his pigs would have
suffered (and possibly died) within short time.

“Time for the big service check”, Bjarne mutters
to himself as he sees the final notification of the
day: one of the many thermometers at the farm is
broken! Time to feed the pigs again...

Based on this, we derive the following scenarios of diagno-
sis and self-management:

3.1 Self-Management Scenario 1: Threshold

In the first part of the use scenario, Bjarne’s system is
able to detect a broken water pipe based on measurements
of characteristics of the flow meter of the system. This is
a basic scenario where diagnosis of problems is based on
simple threshold values of flow meter measurements. The
diagnosis is based on the fact that in a working system, the
water consumption of the pigs determine the flow level of
the water in the system. The thresholds are:

• Low. If the flow meter values are too low, the pigs are
either not drinking enough water or there is too little
water coming into the farm. Both of these situations
are problematic.

• High. If the flow meter values are high (but not ex-
tremely high), it may again be a sign of problems, e.g.,
due to too high temperature in the stable or sickness in
the pigs.

• Too high. In this case, if the water flow is above this
level, a water pipe is most probably broken.

This example of diagnosis is taken from the farm studied
where such a system is in operation. Figure 2 illustrates the
case. At time t1, the water level is Low, at t2 it is High, and
at t3 it is Too high.

3.2 Self-Management Scenario 2: Trend

In the HVAC part of the scenario, the diagnosis and re-
pair is based on measurements from an indoor and an out-
door thermometer (see Figure 3) that is used to track the
effects of the HVAC system. The diagnosis is more compli-
cated, since a time trend of the two thermometers is needed
to deduce the problem. There are two cases to consider

Flow

Time

Too high

High

Low

t1 t2 t3

Figure 2. Self-Management Scenario 1:
Threshold of Flow

1. If the temperature of either of the thermometers is be-
low Low or above High, we cannot diagnose and as-
sume that the system is working.

2. If the temperatures is between Low and High, we
would expect the indoor temperature, Tin, to follow the
outdoor temperature, Tout. If this is not the case, the
spare HVAC system needs to be started.

Temperaure

Time

High

Low

t1 t2

Tout

Tin

Figure 3. Self-Management Scenario 2: Trend
of HVAC System

More precisely, in case 2., the situation is problematic if
Tout falls for a number of consecutive readings whereas
Tin does not. In the figure, Tout starts falling at t1 and Tin
should have started falling at t2, but it has not.

3.3 Self-Management Scenario 3: Interpretation

In the third self-management part of the use scenario, a
thermometer stops working. This is detected through miss-
ing reports from the thermometer (“Status” in the Kramer
and Magee model, cf. Figure 1). In this case, the user is no-
tified about the problem which is not serious since a number
of thermometers are still working. This self-management
scenario illustrates the use of information from reflection
on the system communication.
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Concretely, this scenario assumes that Hydra is able to
monitor network traffic between services and report and in-
terpret that. Figure 4 shows the system model that the self-
management of scenario 3 works upon when the network
traffic has been interpreted.

ip

Host

pid

port [*]

Process

* *

time

Invocation

Figure 4. Self-Management Scenario 3: Sys-
tem Model

In this chapter, we take this as an assumption that such
a model can be created and in Chapter 4, we discuss the
details of how it can be created from running Hydra sys-
tems. The “Host” class models a machine on a Hydra net-
work. The Host has an IP address and may run a number of
“Processes” each of which has a process ID (“pid”) 1. Pro-
cesses may communicate with other Processes (possible on
other Hosts) by invocation of web services. In the model
this is illustrated as an “Invocation” association class that
also tracks the time of invocation. Furthermore, if a Process
is a server for a web service, it will also have at least one
open IP port.

In the concrete scenario, Hydra (and Flamenco) uses this
information to deduce liveness of processes in the system.
Figure 5 illustrates this. In the figure, the thickness of the

Thermometer: Host EventManager: Host

ThermometerUser: Host

1:Process 2:Process

3:Process

publish

notify

invoke

Figure 5. Self-Management Scenario 3: Sys-
tem Overview

1This is a more rudimentary model than the full Hydra network model,
but it is compatible with that and will be extended

Process objects (informally) signify the perceived aliveness
of the Process. Here, Process 1 which is running on the
Thermometer Host is believed to be dead. This information
may now be used by a Hydra application.

These three scenarios will in the following be used to
illustrate the design and implementation of first iteration of
the Hydra self-management approach and also to evaluate
the implementation.

3.4 Further scenarios of self-management

The three scenarios outlined above are all simple, yet
shows several aspects of self-management. In this section
we briefly outline the full use of self-management in Hydra:

• Goal management. Given a goal in a specific applica-
tion, a Hydra-based should continuously optimize it-
self to support that goal. An example from the agricul-
ture scenario would be that the response time from an
alarm is generated somewhere until it is received by a
user terminal should be less than a given threshold.

• Self-healing. Strongly connected to goal management
as outlined above is self-healing in which an applica-
tion attempts to be continuously running even in the
event of partial failure

• Self-configuration. A clear goal of much pervasive
computing middleware is self-configuration in which,
e.g., new devices and services announce themselves
and existing services subsequently make use of these.
This is supported, e.g., by UPnP. An additional layer
on top of this would be that parameters of individual
services should be continuously optimized based on
the arrival (and departure of services)

• Self-protection. An example of self-protection in a
self-managed system could be the ability to sense at-
tacks and reacts upon those. Attacks could be sensed
if traffic to and from the system is abnormal and a re-
action to that could be to (temporarily) shut off com-
munication to an application

4 Design of Flamenco

In this chapter, we introduce and discuss the design of
Flamenco. We base the design of Flamenco on the refer-
ence model of Kramer and Magee [12]. In doing so, we are
currently focusing on the Change Management and Com-
ponent Control layers. These are discussed next.

4.1 Component Control

Hydra implements a service-oriented architecture based
on web service interaction among devices. Thus a reason-
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able granularity to build a self-management system on is the
level of web service requests and responses. Furthermore,
we are interested in the states of devices per se, i.e., is the
device operational, stopped, not working and if it is opera-
tional what is the value of its sensor readings (if any) or its
actuator state (if any).

This leads us to focus on status reporting of the following
two forms:

• State change reporting. The Limbo web service gener-
ation tool [9] supports the generation of state machines
(a restricted form of Petri Nets) describing the states
of a device and its associated services. These state ma-
chines report their state changes as events through a
publish/subscribe subsystem of Hydra. Furthermore,
state machines may be specified in a way so that data
from device services are sent as part of the events.
An example of this would be a thermometer that has
a measuring state that it continuously returns to after
each physical measurement (see Figure 6)); here the
event sent may naturally contain the latest temperature
measurement.

starting Measuring stopping

Figure 6. A thermometer state machine

• Web service request/reply reporting. The interaction
among devices and managers in Hydra takes place via
web service calls. These can then be said to correspond
to “system events” in the sense of Schmerl et al. [20].
The requests and replies (and their associated data) can
subsequently be used to analyze the runtime structure
of running Hydra systems. To do this, we have imple-
mented an IP sniffer that is able to report about TCP/IP
packets being sent between hosts. The sniffer currently
runs on Windows only. For other platforms, the Limbo
compiler is able to produce adapters that report system
events.

Currently, we assume that the management interface of de-
vice web services is realized through their subscription to
change events, but a more refined management interface
needs to be designed.

4.2 Change Management

Following up on Kramer and Magee [12], we approach
self-management through architectural abstractions. Thus

an integral part of Flamenco then becomes to make sense of
system level events (“Status”) and transform that into rep-
resentations of, e.g., architectural components and connec-
tors.

Schmerl et al. [20] presents a recent approach to this
that uses a domain-specific language and a formal runtime
semantics of this language described using Coloured Petri
Nets (CP Nets) [10]. Flamenco/CPN generalizes this to use
a state-based approach, more specifically a Petri Net-based
approach, to do interpretation of system events as architec-
tural events and to reason upon these elements.

In the following, we first briefly present CP Nets and how
we use this formalism in Flamenco/CPN.

4.2.1 Coloured Petri Nets

Coloured Petri Nets is a formal, graphical modeling lan-
guage with well-defined syntax and semantics. Here, we
provide a very brief and somewhat informal introduction to
CP-nets which is adapted from [10] and [8]. The structure
of a non-hierarchical CP-net is formally defined as a tuple:

Definition 1 (Coloured Petri Net) A non-hierarchical CP-
net is a tuple CPN = (Σ,P,T,A,N,C,G,E,I), where

• Σ is a finite set of non-empty types called colour sets;

• P,T, and A are non-empty finite, disjoint sets of places,
transitions, and arcs, respectively;

• N is a node function defined from A into (P × T ) ∪
(T × P );

• C is a colour function defined from P into Σ;

• G is a guard function defined from T into boolean ex-
pressions;

• E is an arc expression function defined from A into ex-
pressions such that the arc expression for an arc eval-
uates to a multi-set of values from C(p) where p is the
place that the arc is connected to; and

• I is an initialization function defined from P into ex-
pressions that do not contain variables such that the
initialization expression for place p evaluates to a
multi-set of values from C(p).

4.2.2 Integrating CP-nets and Publish/Subscribe
systems

An integral part of the Hydra architecture is a pub-
lish/subscribe [3] subsystem. The Limbo compiler, e.g.,
generates services for devices that advertise their state
through notifications. A similar pattern is used in
other kinds of pervasive computing middleware such as
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UPnP [15]. Given our choice of CP-nets as the formal-
ism for expressing self-management, it makes sense to con-
sider an integration of publish/subscribe systems and CP-
nets. In the following, we will thus assume that a pub-
lish/subscribe system in some way is responsible for com-
munication to and from the Component Control layer of
Kramer and Magee [12].

In defining publish/subscribe systems, we take our outset
in the work of [16] and define:

Definition 2 A publish/subscribe system is a tuple PS =
(C,N, F ), where

• C is a non-empty, finite set of clients of the system;

• N is a set of notifications; and

• F is an filter function from N into boolean expression

We now informally describe the runtime semantics of such
systems. An execution of a publish/subscribe system is a
trace of states of the system and operations on the system.
For a formal definition, refer to [16]. The state of the system
defines for each client in C which filters it has in place (what
it has subscribed to) and which publications each client has
made. The operations are on the form:

• subscribe(c, f), c ∈ C, f ∈ F resulting in c subscrib-
ing to notifications that evaluate to true when f is ap-
plied to them

• unsubscribe(c, f), c ∈ C, f ∈ F resulting in that c
does not subscribe to f

• notify(c, n), c ∈ C, n ∈ N where c is notified about
notification n. In a safe system, only clients that are
subscribed to a filter that applied to n evaluates to true
should be notified of n

• publish(c, n), c ∈ C, n ∈ N meaning that c publishes
a notification n. Eventually, clients, c′ for which ∃f ∈
F : subscribe(c′, f) ∧ f(n) = true are notified of n

An example trace for a publish/subscribe system, ps, could
be

σ = s0, subscribe(c1, f1), s1, publish(c2, n1), s2,
notify(c1, n1), s3, ...

Here c1 subscribes to f1, c2 publishes a notification n1

(where f1(n1) = true) and subsequently c1 is notified
of n1. In the trace, s0, s1 etc. are the states of the pub-
lish/subscribe system.

Now, to combine publish/subscribe systems and CP-nets
in Flamenco/CPN, we require that certain notifications in an
execution trace of a publish/subscribe system are mapped
to tokens in an execution of a CP-net. More precisely, we
define:

Definition 3 A Flamenco system is a tu-
ple (FPS , FCPN , pin, pout, Fin,min, cF ),
where FPS = (CPS , NPS , FPS) is a
publish/subscribe system and FCPN =
(ΣCPN , PCPN , TCPN , ACPN , NCPN , CCPN , GCPN ,
ECPN , ICPN ) is a CP-net, and where:

• pin ∈ PCPN is an input place;

• pout ∈ PCPN is an output place, pout 6= pin;

• Fin ⊆ FPS is a set of input filters; and

• min is an invertible function from NPS to CCPN (pin)

• cF ∈ CPS is Flamenco client

The basic idea now is that whenever a notification is pub-
lished that matches a filter in Fin, the notification is “con-
verted” to a token in the executing CP-net that is placed
on pin. Conversely, tokens in the CP-net execution that
are placed on pout should be “converted” to a notification.
More precisely, we want the following two properties to
hold:

1. For all traces, σ, of FPS , if publish(c, n), c ∈
CPS , n ∈ NPS ∧ ∃f ∈ Fin : f(n) = true and the
marking of FCPN is M then there will be a subsequent
marking, M ′, so that min(n) ∈ M ′(pin)

2. For all markings, M , of an execution of FCPN , if
∃t ∈ M(pout) then the trace of FPS will contain
publish(cF ,m−1

in (t)) and there will be a subsequent
marking, M ′, so that t /∈ M ′(pout)

A simple example

Figure 7 shows a very simple example of a Flamenco CP-
net. The example is cast in the context of Hydra in which the
publish/subscribe system is topic-based, notifications con-
sist of topics and events, and events are untyped (actually
string-based) key-value pairs. Filtering is straight-forward
in this case: clients are notified if they subscribe to the topic
(or a super-topic of a topic) that another client publishes
on. In Figure 7, the input place is the “Input Events” place
with colour “INPUT” and the output place is the “Output
Events” place with colour “OUTPUT”. In the example, all
publications to the topic “/statemachine/statechange” will
be converted to a token on “Input Events”. Whenever this
happens, a token will be placed on “Output Events” and
this token will eventually be converted to a notification on
the topic “/tick”. As a side effect, “Event Count” contains a
token that counts the number of notifications that have been
received on the topic “/statemachine/statechange”. The
count is also used in the event that is part of the “/tick” no-
tification.
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OUTPUT
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("/tick", 
{Count=Int.toString(c1)})

Input
Events

("/statemachine/statechange", 
{DeviceID=id, State=state})

Output
Events

Event
Count

c1+1

c1

1 1`0

Figure 7. A Flamenco CP-net example

5 Flamenco/CPN Implementation

Flamenco/CPN is realized in a distributed fashion in the
Hydra middleware. With respect to qualities, the architec-
ture should support building a system that is adaptable and
where devices are easily installable. This implies, e.g., that
there should be a loose coupling between Flamenco/CPN
and the rest of an application. Furthermore, efficiency is
certainly an issue: there should be little impact of devices
in terms of time behavior and resource utilization.

This is to a certain extent achieved by coupling Fla-
menco/CPN to the publish/subscribe subsystem of Hydra
(i.e., the Event Manager) and taking advantage of that
Limbo-generated services already use the Event Manager to
publish state information. Further work also involves mak-
ing the execution itself of the Flamenco CP-net distributed.

Figure 8 shows a runtime view of the Flamenco/CPN ar-
chitecture. Here a set of Devices publish their state using

:Device
:Publish-

Subscribe

:Flamenco/CPN :CPN/Tools

publisher/

subscriber

publisher/

subscriber
Flamenco

Figure 8. Flamenco/CPN architecture. Com-
ponent & Connector view

the PublishSubscribe component. The Flamenco/CPN com-

ponent is responsible for receiving these notifications and
convert them to input CP-net tokens and for consuming out-
put CP-net tokens when available. Flamenco/CPN does this
by interacting with CPN Tools [18]. CPN Tools is respon-
sible for the Flamenco CP-net including for the execution
of it. Figure 9 shows a dynamic view of these components
interacting in the form of a sequence diagram.

:Device
:Publish-

Subscribe

publish

:Flamenco/CPN

receive

:CPN Tools

send

publish

process

notify

Figure 9. Flamenco/CPN architecture. Dy-
namic Component & Connector view

6 Evaluation of Flamenco/CPN

This section presents two types of evaluation of Fla-
menco/CPN:

• A qualitative evaluation in which the three scenarios
from Section 3, are realized using Flamenco/CPN

• A quantitative evaluation of performance and scal-
ability of Flamenco/CPN based on the first self-
management scenario (Section 3.1)

6.1 Qualitative Evaluation

We realized the three self-management scenarios. In
general, the realization of the CP-nets were straightforward
in the sense that modeling was unproblematic. Work is
still needed to enhance support for the programming model
since CPN Tools has to be used directly and in a centralized
way.

Figure 10 shows the CP-net for the first self-management
scenario. The net follows a simple structure in which
the three thresholds are realized as parameters (“LOW”,
“HIGH”, and “TOO HIGH”). These parameters are com-
pared with state of input from flow meters in the transi-
tions “Low Flow”, “High Flow”, and “Too High Flow” in
which the parameters and the flow meter value are used in
the guards. If one of these transition fire, an alarm (on the
topic “/diagnosis/alarm”) is generated.
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c1
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("/diagnosis/alarm", 
{DeviceId=id, Reason="Too High Flow"})

("/diagnosis/alarm", 
{DeviceId=id, Reason="Low Flow"})
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Figure 10. CP-net for scenario 1

In figure 11 we show the CP-net that implements the part
of scenario 3 that pertains to constructing an architectural
model of the Hydra middleware. In this case, the “Hosts”
place contains a list of products of type (host, processid).
The “Invocations” place contains a list of invocations of
type (localhost, remotehost) that indicate that a pro-
cess on host localhost has invocation a process on host
remotehost. The “Get Invocations” transition’s guard finds
invocations by assuming that two partial invocation tuples
from the Flamenco sniffer belong to the same invocation (is
a request and reply) if they match in hosts and ports and if
the are sufficiently close in time. We did not implement the
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Figure 11. CP-net for scenario 3

diagnosis part of the scenario since this has been evaluated
in the previous scenarios.

6.2 Quantitative Evaluation

We did a quantitative evaluation of Flamenco/CPN based
on Scenario 1 from above.

The measurements were made on MacBook Pro with a
2.4 GHz Intel Core 2 Duo processor, 4 GB 667 MHz DDR2
SDRAM, and Mac OS X Version 10.5.1. Since CPN Tools
only run on Linux and Windows, we ran Flamenco/CPN in
VMWare Fusion Version 1.1. The tests were run only on
a single machine since it was not our intention to measure
network performance. Clearly, for a distributed system such
as Flamenco it is of interest to measure the network-related
performance, but in this case we were interested in the per-
formance of the actual reasoning.

In the test setup, a Tester (implemented using Limbo)
continually publishes state changes of a flow meter us-
ing the Event Manager. A Semaphore controls how many
concurrent publications the Tester makes. If, e.g., the
Semaphore has three permits, three concurrent publications
can be made before the tester blocks on the Semaphore. For
each publication by the Tester, Flamenco/CPN should pub-
lish an alarm event.

When a response is received from Flamenco/CPN (via
the EventManager), a permit of the Semaphore is released
and another publication can be made. This is used to emu-
late a number of devices publishing and to used to measure
scalability (see Section 6.2.2). This effectively gives two
parameters to vary for the evaluation:

• Number of devices which is controlled by number of
permits of the Semaphore

• Number of publications which is controlled as a pa-
rameter to the Tester.

The tester publishes the total number of publications as
quickly as possibly, only blocking as an effect of acquiring
the Semaphore.

6.2.1 Performance

For the performance measurements, we ran the Tester
with 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200, 500, and
1000 publication and one permit in the Semaphore. We ran
each sub-scenario four times and took the average of the
execution times of the last three (to allow Flamenco/CPN to
start up and stabilize). The average execution time was 32.2
msec, the median was 31.0 msec and the variance was 10.2.
This execution time is for a “round-trip”including execution
in CPN Tools.

As Figure 12 shows, Flamenco/CPN appears to scale lin-
early in number of publications.
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Figure 12. Flamenco/CPN performance

6.2.2 Scalability

For the scalability measurements, we simulated 1, 10,
20, 30, 40, 50, 60, 70, 80, 90, and 100 devices each of which
published 10 events. The average execution time was 29.4
msec, the median 28.5 msec, and the variance was 9.1. It
can be observed that execution times are lower in average
than in the performance measurements. This is most prob-
ably due to the fact that the EventManager is multithreaded
and that this is exploited in the scalability tests. Further-
more, it can be noticed that the Event Manager is a bottle-
neck in this evaluation, preventing a real scalability evalua-
tion. A second set of experiments where the tester created
a number of concurrent threads that published state change
data were created. Here Flamenco/CPN behaved well un-
til 80 threads were running simultaneously after which Fla-
menco/CPN failed.

Again, cf. Figure 13, Flamenco/CPN in the test scales
linearly.
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Figure 13. Flamenco/CPN scalability

7 Conclusions

This paper has introduce Flamenco/CPN, a tool for self-
management in service-based pervasive computing. The
tool is an instance of a general approach in which systems
are modeled and implemented as communicating, high-
level Petri Nets. To scale the nets to embedded devices, a
restricted version of Petri Nets (essentially state machines)
are used. In the reasoning part of Flamenco/CPN, full
Coloured Petri Nets are used. Furthermore, Flamenco/CPN
is realized according to the three-layer architecture for self-
managed systems described by Kramer and Magee.

We designed and evaluated the tool in the context of
agricultural scenarios, a domain with heterogeneous devices
with complex interaction, exemplifying pervasive comput-
ing. Our evaluations in this context were in general encour-
aging: performance and scalability appears to be good and
expressiveness (in terms of ability to realize the scenarios)
is also good. However, further quantitative measurements
are needed in particular with respect to scalability. It will,
e.g., be interesting to know how the size and complexity of
the Flamenco CP-nets affect performance. Moreover, mem-
ory consumption has not been measured.

Future work includes realizing a full Goal Management
layer, work in which an integration with our Semantic Web-
based version of Flamenco will be performed.
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Abstract

Self-management is one of the challenges for realizing
Ambient Intelligence in pervasive computing. In this pa-
per, we propose and present a semantic web based self-
management approach for a pervasive service middleware
where dynamic context information is encoded in a set
of self-management context ontologies. The proposed ap-
proach is justified from the characteristics of pervasive
computing and the open world assumption and reasoning
potentials of semantic web and its rule language. To en-
able real-time self-management, application level and net-
work level state reporting is employed in our approach.
State changes are triggering execution of self-management
rules for adaption, monitoring, diagnosis, and so on. Eval-
uations of self-diagnosis in terms of extensibility, perfor-
mance, and scalability show that the semantic web based
self-management approach is effective to achieve the self-
diagnosis goals, and lay a solid foundation for further self-
management work.

1 Introduction and Motivation

Several aspects characterize a pervasive computing sys-
tem [16] compared to the traditional computing system,
among them the prominent ones are: Openness and Dy-
namism: pervasive systems are often open in the sense that
any device or service can come and go any time and any-
where. Sharing: knowledge on pervasive services should be
shared to different service consumers in order to make the
service provision conducted in a quality-of-service-aware
way, and of course this process should be done in a se-
cured way. Context awareness[6]: it is important to know
when and where the service can happen, what triggers a
service provision and how to provide a service to whom.
And more recently, self-management: which is the enabler
towards dependable pervasive system that leads to higher
quality of pervasive systems. The self-management [13] in-
cludes a broad list of features, such as self-configuration,

self-adaptation, self-optimization, self-protection and self-
healing (through self-diagnosis), which are important for
achieving dependability for pervasive systems towards the
vision of Ambient Intelligence (AmI).

In fact, these different characteristics are inter-related. In
our vision, context awareness is the key feature for enabling
the others. For example, self-protection can be achieved by
taking into consideration of the current context a user is in
and then choose an appropriate security mechanism to pro-
tect information. A service can be shared based on the lo-
cation context and quality of service (QoS) requirements,
and at the same time QoS can also be considered as a part
of context. The semantic web based context modeling pro-
vided by OWL (Web Ontology Language)1 ontologies, will
help to make the openness and dynamism more manageable
due to the Open World Assumption (OWA) [11] adopted by
OWL/SWRL(Semantic Web Rule Language)2.

The semantic web based context modeling is promoted
as a powerful way for context modeling [17], which can
provide reasoning potentials for what contexts we are in,
a capability not easily achievable by other context model-
ing approaches. This is vital to achieve the vision of self-
management that should come with a pervasive service mid-
dleware.

In this paper, we present a semantic web based self-
management approach in Hydra 3, supported by a set of
self-management ontologies. The context OWL ontologies
are considering run time contexts, such as device run time
status and service call/response relationships. SWRL rules
are developed to handle self-management features, such as
malfunction diagnosis, device and system status monitor-
ing, and service selection based on QoS parameters. When
there are state changes or service calls, the dynamic run
time information is fed into the related self-management
context ontologies using an eventing mechanism. The state
changes are triggering the execution of self-management
SWRL rules for adaption, monitoring, diagnosis, and so

1OWL homepage. http://www.w3.org/2004/OWL/.
2SWRL specification homepage. http://www.w3.org/Submission/SWRL/
3http://www.hydra.eu.com
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on. Evaluations of self-diagnosis in terms of extensibility,
performance, and scalability show that the semantic web
based self-management approach are effective to achieve
self-diagnosis goals, and lay a solid foundation for further
self-management work.

The rest of the paper is structured as follows: Section
2 presents the mechanisms used for run time state report-
ing necessary for self-management. Then in Section 3 we
present a hybrid approach for context modeling in Hydra.
The design of self-management context ontologies and their
structure are shown in Section 4. In Section 5 we discuss
the rationale of semantic web usage for self-management
in pervasive computing. Section 6 presents the architecture
and design of self-management based on OWL/SWRL on-
tologies of the Hydra middleware; Section 7 demonstrates
the proposed approach using the Hydra Diagnosis Manager
together with some evaluations. We compare our work with
the related work in Section 8. Conclusions and future work
end the paper.

2 State reporting for self-management

The Hydra project is developing self-managed middle-
ware for pervasive embedded and network systems based
on service-oriented architecture. One of the key issue for
implementing self-management in pervasive computing is
to get the timely information of the run time status of all
devices, service calls and network connections. The Hydra
middleware is based on web services, therefore two types
of state reporting via an event publish/subscribe system are
utilized in Hydra:

• Application-layer4 reporting in which application-
specific state is reported to self-management compo-
nents.

• Network-layer reporting in which general data about
communication is reported to self-management com-
ponents.

2.1 Application-Layer Reporting

In many self-management scenarios in Hydra it is impor-
tant to be able to reason on and to change the (application-
specific) state that a device or a service is in. Embedded de-
vices are often implemented as one or more state machines
in which events cause state changes of the device or its ser-
vices and may cause effects. We thus assume that Hydra-
enabled devices have an embedded state machine that may
be used to provide application-layer reporting at runtime.
The generation of such state machines are supported by the

4Here we use the terms “application layer” and “network layer” in the
sense of the OSI reference model [20]

Limbo compiler [9]. In the following we precisely formu-
late the integration of such state machines.

The general idea of state reporting on the application
layer is that actions, activities, and transition occurrences
may result in state reporting. To report application-specific
data via the state machine, we allow the state machine de-
signer to make use of the services that a device offers. Fig-
ure 1 shows a conceptual diagram of the connection be-
tween devices, services, and statemachines. The relation-
ship between Service and Port is akin to the concepts de-
scribed in the WSDL 1.1 specification5. The state machines

Device Service Port* *

Statemachine

* references

Figure 1. Conceptual View of Devices and Ser-
vices

can reference its associated Ports by using the port name.
Furthermore, events are published for transitions such as in:

send notification({Result=Port.service()})

The result of this is to create a notification of either type
transition or activity (cf. Table 1 ) and add an attribute with
name “Result” and value being the result on invoking “ser-
vice” on “Port”.

Figure 2 shows a (very simplified) state machine for an
example thermometer device. The thermometer device has
a service with a port named “TH03” that has an operation
called “getTemperature”. In the example, the thermometer
implementation will continuously measure the temperature,
calculate a temperature and send a “measured” event when
a new temperature has been calculated. The effect of the

Measuring

measured / send notification 
     ({Result=TH03.getTemperature())

Figure 2. Simplified state machine for a Ther-
mometer

transition occurring is the publication of a notification, an
example of which is shown in Table 1.

5http://www.w3.org/TR/wsdl
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Topic
/statemachine/transition
Attribute Value
DeviceId pico_th03_0xA12A
DeviceType PicoTh03
FromStateName Measuring
ToStateName Measuring
EventName measured
Result 17.54

Table 1. An Example Transition Notification

2.2 Network-Layer Reporting

The network reporting is used to deduce whether pro-
cesses have failed/stopped responding or if performance of
network communication is adequate, and also potentially
to calculate the service responding time. As Hydra is us-
ing SOAP6 for web service calls, therefore our interests for
protocols are HTTP, SOAP, TCP, UDP and IP [20]. In or-
der to get report from network, a number of approaches are
feasible:

• Instrument the service implementation, e.g., by instru-
menting (web) services themselves to log information.

• Instrument the service middleware, e.g., by installing
a data collector in the application servers running the
(web) services.

• Instrument the service host, e.g. by packet sniffing on
the host running the (web) services, and

• Instrument the service environment, e.g., by passing
all communication through a proxy server for logging
information

The first approach is what actually happens on the appli-
cation layer (cf. Section 2.1). Both the first and the second
approach are only concerned with the application layer on
top of HTTP, i.e., SOAP since they intercept traffic in the
application. A less intrusive approach which we are using
is to instrument the service host, e.g, by means of a packet
sniffer. Several tools are available for this such as tcpdump7

and Wireshark8. This approach has, e.g., been used by [1]
to do “blackbox” debugging of distributed systems. Our
current implementation uses a Windows-specific version of
tcpdump (windump).

2.3 Instrumenting the calling client and the ser-
vice Host

Figure 3 shows the intended deployment of our instru-
menter for service hosts, Flamenco Probe. It is intended to

6http://www.w3.org/TR/soap/
7http://www.tcpdump.org/
8http://www.wireshark.org/

be deployed on all hosts from which network events should
be reported. Currently, we are instrumenting both of the

1:Device

:Event Manager

2:Device

1:Client 2:Service

<<soap>>
1:Flamenco

Probe
2:Flamenco

Probe

:Event
Manager
Server

<<soap>> <<soap>>

Figure 3. Flamenco Probe Deployment

client and service, in which events will be reported when
a client call a service, when the service begins to serve,
when the service finishes its service, and when the client
get response from the service. The corresponding published
events have content ClientStart, ServiceStart, ServiceEnd,
and ClientEnd respectively. These events are then notified
to the self-management component (Flamenco). Figure 4
shows a dynamic view of the interaction between the client,
service, Flamenco Probe and the Event Manager. The left
part of the figure shows the distribution where the four
events occurs.

client service FlamencoEventManagerFlamencoProbe

ClientStart

ServiceStart

ServiceEnd

ClentEnd

1

2

3

4

notify

notify

notify

notify

Publish

Figure 4. Flamenco Probe Dynamic View

3 A hybrid approach for context modeling in
Hydra

The definition of context in [6] is general enough to cover
different kind of contexts in pervasive computing. When
self-management is concerned, it should be noted that not
only static knowledge, but also dynamic and runtime con-
text should be considered in order to handle runtime re-
quirements. For example, if there is a malfunction, we can
run a status check of a system at runtime, and monitor the
dynamic contexts of the system and then make decisions on
where the problem is, why the problem happens, and how
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to tackle the problem. Context-awareness, especially the
awareness of dynamic context information, is the most im-
portant factor to fulfill the goal of various self-management
processes.

Various context models are compared in [17], in terms
of:

• distributed composition (dc): pervasive systems are
intrinsically distributed, therefore the context model
should be consistent with this nature.

• partial validation (pv): Partially validating contextual
knowledge because of the distributed composition.

• richness and quality of information (qua): Capable to
express rich set of contexts in pervasive systems.

• incompleteness and ambiguity (inc): Capability to ex-
press incomplete and/or ambiguous information.

• level of formality (for): Describing contextual facts and
interrelationships in a precise and traceable manner.

• applicability to existing environments (app): Possibil-
ity to apply to existing infrastructure.

Besides these aspects, it is necessary to add more when
the characteristics of pervasive computing are considered in
order to get a complete view of the approach(es) to be used.
The following can be added:

• Reasoning capability (rca): The openness of the per-
vasive system implies that there are something un-
expected may happen anytime, where the underlying
context model should be able to cope with this in order
to decide the appropriate context a user is in and hence
provide appropriate service to fulfill the need.

• Resource efficiency (re): resource efficiency (re): To
facilitate resource-constrained devices to make use of
the context information, the context model should also
be resource efficient.

• developer usability (du): As the developer should
make use of the context model to develop applications,
context models should be “user-friendly” to the devel-
oper.

Take into the existing evaluation in [17], we summarize
our evaluation of the context models in Table 2:

As can be seen from Table 2, an OWL ontology model is
the best approach which provides good reasoning potentials
for realization the vision of AmI in Hydra. On the other
hand, the key-value pair model is very simple and resource-
efficient for small devices. Therefore a hybrid approach for
context modeling can be applied in Hydra. On the appli-
cation level for a powerful node, an OWL model is used

Approach/criteria dc pv qua inc for app re du rca
Key-value - - – – – + ++ + –
Markup + ++ - - + ++ - + –
Graphic – - + - + + + + –
Object orientation ++ + + + + + - + –
Logic based ++ - - - ++ – – - +
Ontology based ++ ++ + + ++ + – - ++

Table 2. Context model comparisons

and should be used if intelligence reasoning is important.
Key/value pairs are used for performance if resource effi-
ciency is important. Limited resource node will by default
use key/value pairs, and will delegate to its proxy if it needs
more intelligent solutions as key/value pairs are hardly pow-
erful enough to model complex structure contexts. This hy-
brid context modeling approach can be achieved by a nor-
malization component in the context manager, in which it
can target different context models such as the key/value
pairs or OWL ontology approach. The overall architecture
of the hybrid context modeling and the usage of context for
self-management is shown in Figure 5.

Rule Engine Bridge

(Protégé-SWRL 

APIs)OWL-KB

Rule Engine 

(Jess)

Rule 

Management

Context Sensing

Context 

Normalization

Context 

processing

Ontology

Management

Event

Manager

Knowledge Base

Flamenco 

(Diagnosis Manager)

Context 

Manager

OWL reasoner (RacerPro)

Figure 5. Architecture of a hybrid con-
text modeling and semantic based self-
management

The state reporting that we discussed in Section 2 is an
example of using key/value pair as the context modeling ap-
proach. The event topic serves as key and the content of an
event is the corresponding context value. Then this context
event is notified to the self-management component to con-
duct self-management work for example self-diagnosis as
shown later.

As discussed in [19], OWL itself is not powerful enough
to express the complex context, for example GPS distance
calculation. Also OWL itself is not capable of express-
ing certain additional constraints such as the rules for QoS
parameter selection. In this case, we are applying SWRL
to achieve the extra power for specifying self-management
rules [18].

The overall idea for this semantic web based approach
is: A set of self-management context ontologies are used to
model the dynamic status of a underlying pervasive system,
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according to the state reporting mechanisms introduced in
Section 2. State changes are reported using the Hydra Event
Manager, and these changed states are fed into related con-
text ontologies. The state changes are then triggering the
execution of SWRL rules which are used to monitor, con-
figure, adapt and diagnose the underlying system.

4 Hydra ontologies for self-management

4.1 Architecture of self-management ontologies

Semantic web ontologies are widely used in pervasive
computing for achieving context-awareness, but none of
the existing pervasive computing ontologies are consider-
ing self-management related concepts as required by Hy-
dra. The openness and dynamism of pervasive computing,
and the nature for pervasive and embedded devices running
as state machines, motivate the development of Hydra self-
management context ontologies, whose high level structure
is shown in Figure 6. This includes a Device ontology, Mal-
function ontology, StateMachine ontology, FlamencoProbe
ontology, and QoS ontology.

Device

StateMachineHardwarePlatformService Malfunction

Service Malfunction SocketMessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

FlamencoProbe

<<import>>

QoS

<<import>>

DeviceRule

<<import>>

Figure 6. Structure of the Hydra context on-
tologies for self-management

The Device ontology is a high level ontology importing
low level self-management ontologies. It is used to define
basic information of a Hydra device, for example device
type classification (e.g. mobile phone, PDA, sensor), de-
vice model and manufacturer, and so on, where the device
type classification is based mainly on the Amigo project on-
tologies [12]. Some concepts and properties are specially
defined for facilitating self-management. For examples, the
HydraDevice concept has a data-type property currentMal-
function which is used to store the inferred device malfunc-
tion diagnosis information at run time. There is a concept
called HydraSystem to model a system composed of devices
to provide services. A corresponding object property has-
Device which has the domain of HydraSystem and range as

HydraDevice.
The HardwarePlatform ontology is used to describe the

device resources. It is based on the hardware descrip-
tion part from W3C’s deliveryContext ontology9. The
HardwarePlatform ontology defines major resources con-
cept, such as CPU, Memory, Network connection capa-
bilities, and also relationships between them, for example
”hasCPU”. To facilitate energy-awareness, power supply
information for example battery and wired power are also
modeled in this ontology. Power consumption concepts and
properties for different wireless network are added to the
HardwarePlatform ontology, including a batterLevel prop-
erty for monitoring battery consumption.

The device Malfunction ontology is used to model
knowledge of malfunction and recovery resolutions. It is the
key ontology for self-diagnosis, which defines malfunctions
categories: Error (including device totally down) and Warn-
ing (including function scale-down, and plain warning), and
their sub-categories, for example, BatteryError. There are
also two other concepts, Cause and Remedy, which are used
to describe the origin of a malfunction and its resolution.

The QoS ontology defines some important QoS parame-
ters, such as availability, reliability, latency, error rate, etc.
And also properties for these parameters, such as its nature
(dynamic, static) and the impact factor. There is also a Rela-
tionship concept in order to model the relationships between
these parameters. The QoS ontology is developed based on
Amigo QoS ontology [12].

4.2 Dynamic context modeling for self-
management

According to Section 2, the dynamic context informa-
tion should reflect run time status of the underlying system,
and can be used to make decisions for diagnosis and mon-
itoring, service selection based on QoS, and so on. As in-
troduced above, some dynamic contexts are modeled with
runtime concepts and properties in the related ontologies,
for example the Malfunction ontology, QoS ontology, and
other concepts and properties in the Device ontology, such
as currentMalfunction and HydraSystem. The current-
Malfunction will be used to store the current diagnosis in-
formation for the malfunction case, HydraSystem is used to
dynamically model devices joining and leaving and reflect
the composition of a system.

There are also two other dedicated ontologies for the
achievement of self-management, namely a StateMachine
ontology and a FlamencoProbe ontology.

As a common practice, mobile and embedded devices
used in pervasive environments are usually designed and
operated as state machines. Therefore we could make use

9Delivery Context Overview for Device Independence.
http://www.w3.org/TR/di-dco/
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of the state information to achieve self-management goals.
In line with this idea, a state machine ontology is developed
based on [7] with many improvements facilitating the self-
management work. For example, to know the service exe-
cution history in order to know whether the service is nor-
mal, a data-type property hasResult is added to the Action
(including activity) concept in order to check the execution
result at runtime, at the same time three data-type properties
are added to model historical action results.

Based on the state reporting mechanism introduced in
Section 2, a FlamencoProbe ontology is developed to moni-
tor the liveness of computing node, and facilitating the mon-
itoring of QoS, such as the request/response time of a cor-
responding service call. The FlamencoProbe ontology has
concept SocketProcess for modeling a process running in
a client or service, and SocketMessage to model a message
sent to/from between client and service. There is also a con-
cept called IPAddress, which is related to HydraDevice with
a property hasIPAddress in the Device ontology. There are
important object properties such as invoke, messageSour-
ceIP, and messageTargetIP, and data type properties for ex-
ample initiatingTime to model the time stamp for a message.

5 Rationale for applying OWL/SWRL to
self-management in Pervasive computing

The Open World Assumption asserts that knowledge of a
system is incomplete, which means that if a statement can-
not be inferred from what is expressed in the system, it still
cannot be inferred to be false. In the OWA, statements about
knowledge that are not included in or inferred from the
knowledge explicitly recorded in the system may be con-
sidered unknown, rather than wrong or false in the closed
world assumption. The OWA applies to the knowledge rep-
resentation where the system can never be known to have
been completely described in advance, which is quite con-
sistent with the characteristics of pervasive computing sys-
tems, which are intrinsically open and dynamic. Therefore
it is natural to apply the open world assumption to the per-
vasive computing system where the characteristics of OWA
can be utilized to build the concept of open world software
[4].

5.1 benefits of applying OWL/SWRL to pervasive
computing

OWL and SWRL are adopting the open world assump-
tion. They can be used to achieve the needed features of
pervasive computing, such as the context-awareness and
knowledge reuse across all systems. From the AmI point of
view, the general benefits of applying the OWL/SWRL for
the pervasive computing can be summarized as followed.

• Deriving new information not existing in model explic-
itly: This includes the deriving of new relationships
between concepts and properties.

For example, JavaVM is defined as something that can
run JavaByteCode, and SuperWaba is necessarily to
run JavaByteCode, therefore SuperWaba is a subclass
of JavaVM. This is helpful for someone who is not fa-
miliar with SuperWaba. The same kind of reasoning
will classify LeJOS 10 as a kind of Java virtual ma-
chine. This capability is valuable for the developer to
understand the large variety of hardware/software plat-
forms for pervasive systems.
JavaV M ≡ ∃runs.JavaByteCode, SuperWaba v Library
SuperWaba v ∃runs.JavaByteCode

Then SuperWaba v JavaV M

The usage of transitive property can also derive use-
ful new information, for example requiresMoreMem-
ory is transitive, we have the following axioms:
requiresMoreMemory(CDC CLDC),

requiresMoreMemory(J2SE CDC)

Then requiresMoreMemory(J2SE CLDC)

This is used to derive that Java SE requires more mem-
ory than CLDC. Here CDC, CLDC and J2SE are in-
stances of its corresponding classes. Another example
is the often used location context example: if John is
in Room 17, Room 17 is in the Hopper Building, then
John is in the Hopper Building. All other entailment
such as subClassOf, subPropertyOf, disjointWith, and
inverseOf can provide such capabilities.

• Deriving additional information complementing exist-
ing knowledge: An example of applying SWRL for de-
riving additional information (which means that if the
battery level of a mobile phone is less than 10%, then
it is a device that has very low battery ) is like the fol-
lowing:

MobilePhone(?device) ∧
hasHardware(?device, ?hardware) ∧
primaryBattery(?hardware, ?battery) ∧
batteryLevel(?battery, ?level) ∧
swrlb : lessThanOrEqual(?level, 0.1)

→ V eryLowBattery(?device)

An SWRL rule as above is composed of an antecedent
part (body), and a consequent part (head). Both the body
and head consist of positive conjunctions of atoms. An
SWRL rule means that if all the atoms in the antecedent
(body) are true, then the consequent (head) must also be
true. SWRL is built on OWL DL and shares its formal se-
mantics. In our practice, all variables in SWRL rules bind
only to known individuals in an ontology in order to develop
DL-Safe rules that are decidable. In our example SWRL

10LeJOS homepage. http://lejos.sourceforge.NET/
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rules, the symbol “∧” means conjunction, and “?x” stands
for a variable, “→” means implication, and if there is no “?”
in the variable, then it is an instance.

5.2 SWRL based on self-management example

Besides the capabilities of checking whether the self-
management knowledge model is valid, minimally redun-
dant, and consistent, the OWL/SWRL based model has
nice features that are needed for self-management in perva-
sive computing environments with the capabilities of build-
ing rules for selecting security resolution, service selection
based on QoS, and so on. We now show an example of
the network monitoring of service execution, based on the
FlamencoProbe ontology.

In accordance with the network layer state reporting, we
developed a complex rule which can calculate the round
trip calling for a service, service execution time, and build
the invocation relationships between processes, as shown
in Figure 7. This rule first retrieves all the messages that
are supposed to be a complete round trip call from a client
to the service, then calculates the related information using
SWRL built-in functions.

The query results from this rule can be used further to
monitor the liveness of a service, and also the condition of
the corresponding network connection. Similarly the rules
for selection of service, security strategy can be developed.
All these rules are encoded in the DeviceRule ontology as
shown in Figure 6, taking into consideration of the current
performance of Protege-OWL/SWRL APIs 11.

6 Architecture of self-management in Hydra

Several components are involved in achieving the self-
management features, based on the self-management con-
text ontologies where dynamic contexts are encoded. These
components include a Diagnosis Manager (called Fla-
menco), which is used to monitor the system conditions
and states in order to fulfill error detection, diagnosis, and
provide recovery solutions; and a QoS Manager negotiat-
ing QoS parameters with other services and manages re-
sources accordingly. Further, the QoS Manager provides
device specific information to the Diagnosis Manager, and
coordinates with Service Manager, Ontology Manager and
Orchestration Manager. Context events are managed using
an Event Manager where publish/subscribe functionality is
provided.

The architecture for the self-management components
are following the three Layered architecture proposed by
Kramer and Magee [14] as shown in Figure 8, in which the
Goal Management, Component Control and Change Man-
agement are enclosed with dashed line. The bottom of the

11http://protege.stanford.edu/

Figure 7. FlamencoProbe calling rule

architecture is the ontologies/rules, in which knowledge of
devices, rule based QoS, and state based diagnosis are en-
coded. The Component Control layer is mainly used for
state reporting (including reporting from FlamencoProbe,
resources including battery level monitoring from a Re-
source manager). Another very important task for the Com-
ponent Control layer is the updating of the related informa-
tion into the corresponding self-management ontologies in
correspondence to these reported events. The Change Man-
agement layer is used to execute rules developed based on
these state and other run time information, and parsing the
inferred results in order to take actions for example the self-
healing action. For the Goal Management layer, it is used to
find solutions for the malfunctions whose basic information
is encoded in Malfunction ontology, and resolve the rule
conflicts based on QoS regulations or user preference etc.

When there are state changes, the corresponding events
are published, the device state machine instance in the
StateMachine ontology will be updated. When there are
web service calls, the Flamenco Probe events are published
and the corresponding call information is fed into the Fla-
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Figure 8. Self-management architecture in Hy-
dra

mencoProbe ontology. Other run time information for re-
sources (e.g, battery level) is from the Resource manager
and is updated into the Hardware ontology. The Diag-
nosis Manager and QoS Manager are event subscribers to
the state machine state change events and Flamenco Probe
events, and these events trigger the diagnosis of the device
status, executing the SWRL rules to monitor the health sta-
tus of devices, monitoring QoS and also triggering the rea-
soning of possible device errors and their resolutions in the
Goal Management layer.

7 Evaluating semantic web based self-
management with Diagnosis Manager

The self-management feature of Hydra is implemented
incrementally. In this iteration, we are focusing on the Di-
agnosis Manager, and hence at this stage we will evalu-
ate the semantic web based self-management approach with
the Diagnosis Manager. Because of potential performance
problems of the semantic web based approach, the evalua-
tion are mainly targeting performance, leaving accuracy for
diagnosis and rule conflict resolution as the future work.

We started the development of Diagnosis Manager with
the rule for temperature monitoring for a “Pig” farm in
the agriculture domain. After finishing the implementation
and testing, we then try to handle a flow meter diagnosis
rules. We only need to add the flow meter rules to the ex-
isting rules set. No single line of Diagnosis Manager code
needs to be changed. Then the network reporting features

are added to Flamenco. The adding of this quite new fea-
ture needs the FlamencoProbe ontology, and its correspond-
ing Java classes (generated using Protege-OWL java code
generator), and then a class for handling the update of the
FlamencoProbe ontology is developed. Also as expected,
an extra event subject called “FlamencoProbe/socketwatch”
is subscribed. All other rule processing code remains the
same. After that, the Diagnosis manager is integrated with
other Hydra components for the diagnosis of a weather sta-
tion. We only need to develop the weather station rules, and
it functions very well without the need to change any ex-
isting code. In summary, the Diagnosis Manager has good
extensibility.

For the measurement of performance, the following soft-
ware platform is used: Protege 3.4 Build 130, JVM 1.6.02-
b06, Heap memory is 266M, Windows XP SP3. The
hardware platform is: Thinkpad T61P T7500 2.2G CPU,
7200rpm hard disk, 2G DDR2 RAM. The time measure-
ments are in millisecond. The size of DeviceRule ontology
is 238,824 bytes, and contains 20 rules, including 6 rules
for the Pig system, 12 generic rules which can be used in a
number of domains, 3 rules (2 are shared with Pig rules) for
the Weather Station, and 1 rule for FlamencoProbe related
rules which is the biggest rule in the DeviceRule ontology.

The performance figures are shown in Table 3. The
update column represents the time needed for updating
the StateMachine ontology and/or FlamencoProbe ontol-
ogy, the InferringTime column shows the time needed for
rules processing and inferring to get results, and the Af-
terEventTillInferred column shows the time needed starting
when the events of device state changes and/or service call-
ing are notified, till the end of rules inferring.

When compared to performance figures in [19], we can
see here the performance is worse. This has several reasons:
first is that we have a larger DeviceRule ontology (238,824
bytes vs 210,394 bytes); second is that the difference of OS
(vista vs. XP); third is that this version of Protege-owl has
worse performance than its former release.

Update InferringTime AfterEventTillInferred
843 843 843
906 906 906
922 906 922
719 719 719
953 938 938

Table 3. Performance before rule grouping

Instead of running all rules in a whole, we have imple-
mented the rule grouping features, in which a specific sys-
tem, or a device can be separately diagnosed. To achieve
this, rules for the device or any other situation where a spe-
cific diagnosis is needed, can be defined into a rule group at
run time, and then execute this rule group accordingly. This
can greatly improve the performance. Table 4 shows the
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“Pig” rule group performance. We can see that more than
50% performance improvement when rule group is used,
with a minimum improvement of 52%, and a maximum of
69%.

Update InferringTime AfterEventTillInferred
328 328 328
297 281 297
297 297 297
297 281 297
344 344 344

Table 4. Performance after rule grouping

We also did measurements on scalability which shows
that time taken is in linear with the events needed to be pro-
cessed, which is consistent with our former tests [19].

In summary, the testing results shown above are up to
the requirements for self-management in pervasive environ-
ment as targeted by Hydra, in terms of extensibility, perfor-
mance, and scalability. The majority of code base devel-
oped for the Diagnosis Manager will be used for other self-
management features, especially the part for SWRL rules
processing and parsing.

8 Related work

We proposed a set of self-management ontologies which
are not existing in the related pervasive computing on-
tologies, such as SOUPA and Amigo [12]. These self-
management ontologies are the key to enable various self-
management tasks. At the same time, we can model com-
plex contexts using SWRL with the Hydra ontologies [19].
Work in [15] applied SWRL-based context modeling, and
illustrated three cases of applying SWRL to manipulate
context. We go beyond it by the dynamic-state based moni-
toring and diagnosis using the context ontologies.

In this paper, we largely followed a Layered architec-
ture proposed by Kramer and Magee [14] for self-managed
systems, which is composed of component control, change
management and goal management, but mainly focus on the
Component Control and Change Management. Our imple-
mentation adopts a mix of Blackboard architecture and Lay-
ered architecture to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic
pervasive computing. The basic process of state based di-
agnosis is using of states for detecting source of failure, and
then notification of failure source and then resolve it. ETS
[2] is following this idea, and so for our approach. Various
failures in a pervasive system are classified in [5], and an
architecture for fault tolerant pervasive computing is pro-
posed. Our semantic web based approach provides a way
of intelligent detection and resolution, which is not easily
achievable by ETS and other approaches. We focus not
only on device failure monitoring, but also on system level

detection using the relationships of different state machine
instances.

Work in [10] also use semantic web approach for achiev-
ing self-managing. Our approach is non-intrusive, SWRL
rules are automatically executed using state machine instead
of explicitly inserting sensor code to program, and is more
suitable for the characteristics of pervasive devices.

There are many researches dealing with diagnosis using
traditional artificial intelligence, e.g. [3]. These work is
not utilizing the context ontologies that are already exist-
ing in pervasive systems. In our vision, the open world as-
sumption in OWL/SWRL, and hence in our approach, is
very well suited for the openness of the pervasive comput-
ing environment in a harmonious way, which automatically
rejects the approaches using Prolog kind of rules that use
close world assumption.

As surveyed in Ghosh’s work [8], various strategies for
self-healing are used in the literature. We are using prob-
ing and monitoring (as for FlamencoProbe and StateMa-
chine) to detect something (component or service) amiss,
and for the detection of other malfunction situations. Re-
covery planing will be based on ontology reasoning from
Malfunction ontology, QoS ontology and Service ontology.
Our semantic web based self-management approach are tak-
ing into the characteristics of the pervasive service environ-
ment.

9 Conclusions and future work

Self-management capabilities are important to achieve
dependability in pervasive systems, and is a challenge for
pervasive computing. In this paper, we propose a semantic
web based self-management approach for pervasive service
environments. A set of self-management ontologies are pre-
sented within a hybrid context management framework. To
enable the self-management, we are adopting both appli-
cation level reporting and network level reporting for the
notification of runtime status.

The proposed semantic web based self-management is
suitable for the openness nature of pervasive computing. As
semantic web based context modeling is extensively used
in pervasive computing, it is beneficial to uniformly make
use of this for self-management purposes. The evaluations
of the Hydra Diagnosis Manager in terms of extensibility,
scalability, and performance, shows that the proposed self-
management is effective for the Hydra purposes. It is in-
teresting to note that rule grouping can greatly improve the
performance, and we will make use of this feature more ex-
tensively in later iterations.

We will continue the implementation of the Goal Man-
agement layer of the three layered architecture, where a
larger scale of application domains are going to be im-
plemented in the coming Hydra integration work, includ-
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ing health care domain, building automation domain. And
clearly we need to add probability capabilities into the rules
and models as the diagnosis needs to be more up to real-
ity. At the same time we are working on QoS ontology
rules and QoS-awareness service matching and service se-
lection based on the SWRL rules. Further work on the
full scope of self-management, such as self-adaptation, self-
configuration based on OWL/SWRL ontologies are also un-
der way.
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Decision Support Systems, 42(4):2164–2185, 2007.

[9] K. M. Hansen, W. Zhang, and G. Soares. Ontology-
enabled generation of embeddedweb services. In

The 20th International Conference on Software Engi-
neering and Knowledge Engineering, pages 345–350,
Redwood City, San Francisco Bay, USA, Jul. 2008.

[10] A. R. Haydarlou, M. A. Oey, B. J. Overeinder, and
F. M. T. Brazier. Use-case driven approach to self-
monitoring in autonomic systems. The Third Inter-
national Conference on Autonomic and Autonomous
Systems, 2007.

[11] U. Hustadt. Do we need the Closed World Assump-
tion in Knowledge Representation. Proc. of the 1st
Workshop KRDB, 94.

[12] IST Amigo Project. Amigo middleware core: Proto-
type implementation and documentation, deliverable
3.2. Technical report, IST-2004-004182, 2006.

[13] J. Kephart and D. Chess. The Vision of Autonomic
Computing. 2003.

[14] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. International Conference on
Software Engineering, pages 259–268, 2007.

[15] D.-J. Plas, M. Verheijen, H. Zwaal, and
M. Hutschemaekers. Manipulating context in-
formation with swrl. I/RS/2005/117, Freeband/A-
MUSE/D3.12, 2006.

[16] M. Satyanarayanan. Pervasive computing: vision and
challenges. Personal Communications, IEEE [see also
IEEE Wireless Communications], 8(4):10–17, 2001.

[17] T. Strang and C. Linnhoff-Popien. A Context Mod-
eling Survey. Workshop on Advanced Context Mod-
elling, Reasoning and Management, UbiComp, pages
34–41, 2004.

[18] W. Zhang and K. M. Hansen. An owl/swrl based di-
agnosis approach in a web service-based middleware
for embedded and networked systems. In The 20th In-
ternational Conference on Software Engineering and
Knowledge Engineering, pages 893–898, Redwood
City, San Francisco Bay, USA, Jul. 2008.

[19] W. Zhang and K. M. Hansen. Towards self-managed
pervasive middleware using owl/swrl ontologies. In
Fifth International Workshop on Modeling and Rea-
soning in Context (MRC 2008), pages 1–12, Delft, The
Netherlands, Jun. 2008.

[20] H. Zimmermann. OSI Reference Model–The ISO
Model of Architecture for Open Systems Intercon-
nection. IEEE Transactions on Communications,
28(4):425–432, 1980.

Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems Venice, Italy, October 20-24, 2008



Hydra

A.4 Paper 4: Towards Self-managed Pervasive Middle-
ware using OWL/SWRL ontologies

Version 2.0 114 of 133 29 December, 2008



Towards Self-managed Pervasive Middleware
using OWL/SWRL ontologies

Weishan Zhang and Klaus Marius Hansen

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark
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Abstract. Self-management for pervasive middleware is important to
realize the Ambient Intelligence vision. In this paper, we present an
OWL/SWRL context ontologies based self-management approach for
pervasive middleware where OWL ontology is used as means for context
modeling. The context ontologies are incorporating the dynamic context
information, including device and service run time information, which
can then be used for running status checking and diagnosis, QoS moni-
toring, and further to achieve other self-management features, such as the
self-configuration and self-adaptation. We demonstrate the OWL/SWRL
context ontologies based self-management approach with the self-diagnosis
in Hydra middleware, using device state machine and other dynamic con-
text information, for example web service calls. The evaluations in terms
of extensibility, performance and scalability show that this approach is
effective in pervasive service environment.

1 Introduction and Motivation

Context awareness[1] is one of the key features for pervasive middleware. It
can provide the potential to improve the flexibility and personality during ser-
vice provision, and alleviate the human attention and interaction bottlenecks by
providing self-management features using contexts, including self-configuration,
self-adaptation, self-optimization, self-protection and self-healing (through self-
diagnosis). This is vital to achieve the vision of Ambient Intelligence (AmI) that
should come with the pervasive middleware like Hydra (IST-2005-034891).

To facilitate achieving context-awareness, we agree that OWL1 ontology is
the best way for context modeling [2], which can provide reasoning potentials
for what contexts we are in, a capability not easily achievable by other context
modeling approaches. The definition of context in [1] is general enough to cover
the contexts in pervasive computing, but we want to point out that not only
static knowledge, but also dynamic and runtime context should be considered in
order to handle runtime-related requirements. For example, we can run a status
check of a system at runtime, and monitor the dynamic contexts of the system
and then make decisions on where the problem is, why the problem happens and
how to tackle the problem.
1 OWL homepage. http://www.w3.org/2004/OWL/.
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Take a concrete agriculture scenario in the Hydra project:
Bjarne is an agricultural worker at a large pig farm in Denmark. As he checks
whether the pigs are provided with the correct amount of food, he is interrupted
by a sound from his PDA. Apparently, the ventilation system in the pig stable has
malfunctioned. After acknowledging the alarm, the system begins to diagnosis and
soon it decides that the cause of the problem is ’power supply off because of fuse
blown’. Then he can prepare a fuse and repair the ventilator. After repairing it,
he signs off the alarm, and chooses one of the predefined log messages, describing
what he has done.

As can be seen from the above scenario, it is very important that the Hy-
dra middleware can provide diagnosis functionality to the end user, or better to
achieve self-healing when there is malfunction. To this end, the run time infor-
mation, for example the device states should be monitored in order to make de-
cisions on diagnosis. Other self-managing work for the Hydra middleware among
others includes self-protection according to security rules, searching service and
negotiating QoS (Quality of Service) parameters with other services.

In this paper, we will show the Hydra context ontologies that considering
run time contexts, and present an OWL ontology and SWRL (Semantic Web
Rule Language)2 based self-management approach for Hydra, in particular the
self-diagnosis, which take into the characteristics of pervasive computing. We
demonstrate our approach with the Diagnosis Manager for Hydra middleware.
The evaluations in terms of extensibility, performance, and scalability shows
that the proposed Hydra OWL/SWRL context ontologies and self-management
approach based on OWL/SWRL context ontologies are effective to achieve the
self-diagnosis goals, and lay a solid foundation for other self-management work.

The rest of the paper is structured as follows: in Section 2 we will briefly
introduce the architecture of self-management based on OWL/SWRL ontologies
of the Hydra middleware; We then show the Hydra ontologies that facilitate
self-management, followed in Section 4 we present the complex context specifi-
cation with SWRL; In Section 5, we demonstrate the proposed approach with
the Diagnosis Manager together with some evaluations. We compare our work
with the related work in Section 6. Conclusions and future work end the paper.

2 Architecture of self-management in Hydra

The Hydra project is developing self-managed middleware for pervasive embed-
ded and network systems based on service-oriented architecture. Several compo-
nents are involved in achieving the self-management features, based on context
ontologies where dynamic contexts are encoded. These components include a
Diagnosis Manager, which is used to monitor the system conditions and states
in order to fulfill error detection, diagnosis, and provide recovery solutions; and
a QoS Manager negotiating QoS parameters with other services and manages
resources accordingly. Further, the QoS Manager provides device specific infor-

2 SWRL specification homepage. http://www.w3.org/Submission/SWRL/
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mation to the Diagnosis Manager, and coordinates with Service Manager, On-
tology Manager and Orchistration Manager. Context events are managed using
an Event Manager where publish/subscribe functionalities are provided.

To build necessary intelligence into the Hydra middleware in order to support
the self-management, the related monitoring and dianosis rules, QoS rules and
service selection rules built on top of the ontologies, play a vital role. We chose
SWRL to develop these rules. SWRL is a W3C recommendation for the rule
language of the Semantic Web, which can be used to write rules to reason about
OWL individuals and to infer new knowledge about those individuals. SWRL
provides builtins such as math, string and comparisons that can be used to
specify extra contexts, which are not possible or very hard to achieve by OWL
itself. Therefore, SWRL is naturally chosen as the rule language in Hydra for
the implementation of self-management rules.

The architecture for all the self-management components is the same for Hy-
dra. We are following the three Layered architecture proposed by Kramer and
Magee [3]. Based on the current status of OWL/SWRL, we came up with the
following architecture as shown in Figure 1, in which the Goal Management,
Component Control and Change Management are enclosed with dashed line.
The bottom of the architecture is the ontologies/rules, in which knowledge of
devices, rule based QoS, and state based diagnosis are encoded. For the Compo-
nent Control layer, it is mainly used for state reporting and run time information
updating, for example battery level and QoS measurement. For the Change Man-
agement layer, it is used to response to the state reported from the Component
Control layer, and then execute rules developed based on these state and other
run time information. For the Goal Management layer, it is used to resolve the
rule conflicts based on QoS regulations or user preference etc.

3 Context ontologies in Hydra

Context-awareness, especially the awareness of those dynamic context informa-
tion, is the most important factor to fulfill the goal of various self-management
processes. In Hydra, the context awareness has the following awareness features:

– Resource awareness This includes hardware, for example CPU, and software,
for example operating system.

– Power awareness Different network carriers use different amount of energy
during transmission. This will be considered during service provision. Bat-
tery information for device is also need to be known.

– QoS awareness As one of the important criteria for the selection of service,
QoS is another context that shows both static and dynamic affects to the
middleware, for example latency.

– Security awareness The right information should be transferred to the right
user at the right time in the right place using the agreed service level agree-
ment, and in the appropriate format.
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Fig. 1. Architecture of the self-management in Hydra

3.1 Structure and design of the Hydra ontologies

Although there are some pervasive computing ontologies, e.g. SOUPA3 ontolo-
gies, they are not enough for achieving the needed intelligence and handling of
dynamic context in order to achieve the above mentioned various awareness. The
openness and dynamism of pervasive computing, and the nature for pervasive
and embedded devices running as state machines, motivate the development of
Hydra context ontologies, whose high level structure is shown in Figure 2.

The Device ontology itself is used to define some basic information of a Hydra
device, for example device type classification(e.g. mobile phone, PDA, sensor),
device model and manufacturer, and so on. The device type classification in the
Device ontology is based mainly on AMIGO project ontologies [4]. To facilitate
diagnosis, there is a concept called HydraSystem to model a system composed
of devices to provide services. And there is a corresponding object property
hasDevice which has the domain of HydraSystem and range as HydraDevice.
There are also concepts used for the monitoring of web service calls, including
SocketProcess, SocketMessage and IPAddress. The HydraDevice concept has a
data-type property currentMalfunction which is used to store the inferred device
malfunction diagnosis information at run time and will be exemplified later.

The device Malfunction ontology is used to model knowledge of malfunction
and recovery resolutions. We separate the malfunctions into two categories: Error
(including device totally down) and Warning (including function scale-down,
and plain warning). There are also two other concepts, Cause and Remedy,
which are used to describe the origin of a malfunction and its resolution.

3 Semantic Web in Ubicomp. http://pervasive.semanticweb.org/.
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Fig. 2. Structure of the Hydra context ontologies

3.2 Dynamic context

The dynamic context information will reflect the running status of the underlying
system, therefore it is the key enabler for the functioning of self-management. For
example, the device status is important to check the device working condition
and is used to develop diagnosis and monitoring rules; the monitoring of QoS is
important to test whether service level agreement is meet due to service mobility.

A common sense of mobile and embedded devices used in pervasive envi-
ronments is that they are usually designed and operated as state machines. In
line with this, a state machine ontology is developed based on [5] with many
improvements:

– A data-type property isCurrent is used in order to indicate whether a state
is current or not.

– A doActivity object property is added to the State in order to specify the
corresponding activity in a state and this makes the state machine complete.

– A data-type property hasResult is added to the Action (including activity)
concept in order to check the execution result at runtime.

– Three data-type properties are added to model historical action results.

The dynamic context is modeled with runtime concepts and properties in the
related ontologies, mainly the StateMachine ontology, the Malfunction ontology,
QoS ontology, and other concepts and properties in the Device ontology, such as
currentMalfunction and HydraSystem. The currentMalfunction will be used to
store the current diagnosis information for the malfunction case, HydraSystem
is used to dynamically model the device joining and leaving and reflect the
composition of a system.
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Because of the space limit, in this paper we only present the self-diagnosis
to demonstrate the effectiveness of the self-management using these ontologies.
Figure 3 shows a more detailed but simplified view of the ontologies facilitating
diagnosis.

 

Fig. 3. Partial details of the Diagnosis Manager used ontologies

4 Extending OWL ontologies with SWRL rules

A SWRL rule is composed of an antecedent part (body), and a consequent part
(head). Both the body and head consist of positive conjunctions of atoms. A
SWRL rule means that if all the atoms in the antecedent (body) are true, then
the consequent (head) must also be true. SWRL is built on OWL DL and shares
its formal semantics. In our practice, all variables in SWRL rules bind only to
known individuals in an ontology in order to develop DL-Safe rules to make
them decidable. In our example SWRL rules, the symbol ∧ means conjunction,
and ?x stands for a variable, → means implication, and if there is no ? in the
variable, then it is an instance.

4.1 Complex context specification with SWRL rules

SWRL has more expressive power than OWL using various builtins, and can be
used to specify complext contexts. As an example, we can specify a GPS distance
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calculation with SWRL in order to define a farAwayFromHome context ( e.g.
5 miles away from home using the GPS distance calculation formula4). Then
this new context can be used to take actions, for example, surveillance system is
switched automatically to the highest security level with all cameras turned on.
person : hasHome(?person, ?home) ∧
person : inLocation(?person, ?coord1) ∧
loc : hasCoordinates(?home, ?coord2) ∧
coord : latitude(?coord1, ?lan1) ∧
coord : latitude(?coord2, ?lan2) ∧
swrlb : subtract(?sub1, ?lan1, ?lan2) ∧
swrlb : multiply(?squaresublan, ?sub1, ?sub1) ∧
swrlb : multiply(?par1, ?squaresublan, 4774.81) ∧
coord : longitude(?coord1, ?long1) ∧
coord : longitude(?coord2, ?long2) ∧
swrlb : subtract(?sub2, ?long1, ?long2) ∧
swrlb : multiply(?squaresublong, ?sub2, ?sub2) ∧
swrlb : multiply(?par2, ?squaresublong, 2809) ∧
swrlb : add(?parameter, ?par1, ?par2) ∧
swrlm : sqrt(?distance, ?parameter) ∧
swrlb : greaterThan(?distance, 5) ∧
swrlb : StringConcat(?str,′′ true′′)

→ sqwrl : select(?person, ?home, ?distance) ∧ farAwayFromHome(?person, ?str)

Similarly, we can define QoS metrics and other QoS regulation with SWRL
rules, and we are investigating the specifying of service selection using SWRL
rules based on the Security ontology, Service ontology and QoS ontology. Here
is a simple example of querying the availability dynamically.
swrlb : add(?total, p1 : downtime, p1 : uptime) ∧
swrlb : divide(?availability, p1 : uptime, ?total)

→ sqwrl : select(?availability)

4.2 Complex dynamic context

To achieve self-management, for example self-diagnosis, the OWL context on-
tologies themselves are really weak to specify rules that are important to define
policies for security, QoS metric calculation and diagnosis rules. In these cases,
we are applying SWRL to specify these dynamic contexts.

For this paper, we will elaborate on the self-diagnosis contexts which rely on
the device state machine and other related concepts as mentioned in the former
section. In a similar way, the QoS monitoring rules could be developed based on
the dynamic information monitored.

Monitoring and diagnosis rules are the basis for the diagnosis service. We
have two level diagnosis rules, namely device level rules and system level rules.
Device level rules are used for a certain type of devices which are supposed to be

4 How to calculate the distance between two points on the Earth.
http://www.meridianworlddata.com/Distance-Calculation.asp
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generic for that type of devices. The following example rule specifies the mobile
phone battery level monitoring. If the battery level is less than 10%, then a
warning will be published.
device : MobilePhone(?device) ∧
device : hasHardware(?device, ?hardware) ∧
Hardware : primaryBattery(?hardware, ?battery) ∧
Hardware : batteryLevel(?battery, ?level) ∧
swrlb : lessThanOrEqual(?level, 0.1)

→ V eryLowBattery(?device)

System level rules are used to specify rules that span multiple devices in a
system. For example, if the detected flow for feeding the pig is more than 6 gallon
per minute, then we can infer that the pipe is broken.

device : FlowMeter(?device) ∧
device : hasStateMachine(?device, ?statemachine) ∧
statemachine : hasStates(?statemachine, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?result) ∧
abox : isNumeric(?result) ∧
swrlb : greaterThan(?result, 6.0) → device : currentMalfunction(device : Flowmeter, ”PipeBroken”)

A more complex rule is the example of pig farm ventilating and monitoring
system, thermometers are used to measure both indoor and outdoor tempera-
ture. In the summer time, the indoor temperate should follow the same trend
as the outdoor temperature. A rule is developed to first obtain the trends by
the difference of continuous temperature measurements of both the indoor and
outdoor temperatures. If the trend is not the same, we infer that the ventilator
is down.

From our experiences, the loading of the OWL/SWRL ontologies is the main
performance bottleneck, therefore all the current rule sets are stored in one
separate ontology called DeviceRule as can be seen from Figure 2, and we load
it when the system initializes.

5 Evaluating OWL/SWRL context ontologies based
self-management with Diagnosis Manager

To evaluate the OWL/SWRL context ontologies based self-management ap-
proach, and the proposed Hydra ontologies, we will use the Diagnosis Manager
as an example to show the effectiveness and usability, in terms of extensability,
performance (as the main concern), and scalability.

5.1 Design and implementation of the Diagnosis Manager

Hydra implements a service-oriented architecture based on web service interac-
tion among devices. Initially we focus on device status reporting using state
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changes as events through the Hydra Event Manager, and Web service re-
quest/reply reporting using IPSniffer tool. When there are state change events,
the device state machine instance in the state machine ontology need to be up-
dated, and also these state changes will be published with state machine state
changes as event topic. The Diagnosis Manager is an event subscriber to the
state machine state change events, it will then update the corresponding state
instances in the ontology. At the same time, this will trigger the diagnosis of the
device status, executing the SWRL rules to monitor the health status of devices,
and also trigger the reasoning of possible device errors and their resolutions. The
Diagnosis Manager will publish the diagnosis results as an event publisher.

We adopted a mix of the Blackboard architecture style and the Layered
architecture in the actual implementation due to the high overhead for loading
ontologies, and use the observer pattern in both the updating of state machine
ontology and parsing fo the inferred result from SWRL rules.

OWL ontology provides intelligence capabilities for diagnosis decisions. For
example, Bjarne get a high priorit warning of ”GrundfosPumpMQ345 failed to
start”. A diagnosis task is initiated to check what is wrong with the pump, but
as a newly installed pump, there is still no error resolution to this model of pump
in the Malfunction ontology. As a further step, the diagnosis system will conduct
subsumption reasoning and search for the device Type in the Device ontology,
which is found as FluidPump, and then its manufacturer is also queried. Now
another query to the Device ontology will get a similar pump called Grund-
fosPumpMQ335 as of the same type from the same manufacturer ”Grundfos”.
And based on the name of the error and pump type, the solution from a query
to Malfunction ontology is suggested ”replace a capacitor”, which is happily the
solution to solve the problem.

5.2 Evaluation of the Diagnosis Manager

We evaluated the extensibility of the OWL/SWRL based diagnosis Manager in
terms of scalability, performance, and extensibility. We started the development
of Diagnosis Manager with the rule for temperature monitoring. After finishing
the implementation and testing, we then try to handle the flowmeter diagnosis
rules. We only need to add the flowmeter rules to the existing rules set. No single
line of Diagnosis Manager code needs to be changed. In summary, the Diagnosis
Manager has good extensibility.

For the measurement of performance, the following software platform is used:
Protege 3.4 Build 125, JVM 1.6.02-b06, Heap memory is 266M, Windows Vista.
The hardware platform is: Thinkpad T60 Core2Duo 2G CPU, 7200rpm hard
disk, 2G DDR2 RAM. The time measurement is in millisecond. The size of
DeviceRule ontology is 210,394 bytes, and contains 22 rules, which is fair for
a small pervasive system in which monitoring and diagnosis functions are all
included. The performance figures are shown in Table 1. An interesting thing is
after some time of running, the Diagnosis Manager is running stably with the
total time in 260-270 ms for processing an event, a bit faster than the one when
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it starts. Here the parsing of the inferred result is running in a multi-threaded
way in the Diagnosis Manager.

Update InferringTime AfterEventTillInferred
383 380 382
322 319 321
282 278 282
272 269 271
265 263 265
270 267 269
268 266 269

Table 1. Diagnosis Manager performance

For scalability, a number of events are published (almost in parallel) to mea-
sure how long it will be, starting from the publishing till the end of inferring
and publish related inferring result. Time needed (y-axis) is shown in Figure 4
(x-axis shows the number of events) . We can see that the time taken is in linear
with the events need to be processed.
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Fig. 4. Diagnosis Manager scalability

6 Related work

The work on Context OWL[6] considers that contexts are local. In the pervasive
computing environment, this is not always true as we have a global Time man-
ager which manages the consistent time for all users. Work in [7] also applied
SWRL-based context modeling, and illustrated three cases of applying SWRL
to manipulate context. We go beyond this work by the dynamic-state based
monitoring and diagnosis using the context ontologies. When compared to the
existing pervasive computing ontologies, such as SOUPA and Amigo[4], the Hy-
dra context ontologies have some unique features. Firstly, dynamic contexts are
incorporated which facilitate the achieving of self-management. Secondly, com-
plex contexts, especially those self-management needed complex and dynamic
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contexts, are defined by SWRL, which are not expressible by OWL ontology
itself.

Kramer and Magee [3] recently proposed a reference model for self-managed
systems, which is composed of component control, change management and goal
management. In this paper, we largely followed this work for the Layered archi-
tecture, but mainly focus on the Component Control and Change Management.
At the same time, a mix of Blackboard architecture and Layered architecture
are applied to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic pervasive computing.
Generally speaking, our approach applied the same idea of ETS [8], in terms
of the using of states for detecting source of failure, and then notification of
failure source. And this process is actually universal for error detection. Our
ontology and SWRL rule based approach provides a way of intelligent detection
and resolution, which is not easily achievable by ETS.

Work in [9] also use semantic web approach for achieving self-managing.
Our approach is non-intrusive, SWRL rules are automatically executed using
state machine instead of explicitly inserting sensor code to program, and is more
suitable for the characteristics of pervasive devices.

Various failures in a pervasive system are classified in [10], and an architec-
ture for fault tolerant pervasive computing is proposed. We focus not only on
device failure monitoring, but also on system level detection using the relation-
ships of different state machine instances. In addition, our approach can be more
intelligent in terms that ontology reasoning can help the diagnosis.

There are many researches dealing with the diagnosis in various field, e.g. [11]
from traditional artificial intelligence point of view. These traditional approaches
are not utilizing the context ontologies that are already there in pervasive sys-
tems and are used for context-awareness and other purposes. In our vision, the
open world assumption in OWL/SWRL, and hence in our approach, is very well
suited for the openness of the pervasive computing environment, which auto-
matically rejects the approaches using Prolog kind of rules that use close world
assumption.

7 Conclusions and future work

Self-management capabilities are important to achieve necessary dependability
in pervasive system, and is a challenge for pervasive computing. In Hydra, we
make use of the OWL/SWRL ontologies as the basis for the implementation
of self-management features, which is very suitable for the openness nature of
pervasive computing. These context ontologies are incorporating the dynamic
context information, including device and service run time information, which
can then be used for running status checking and diagnosis, QoS monitoring, and
further to achieve other self-management features, such as the self-configuration
and self-adaptation.

We illustrate the OWL/SWRL based self-management with the experiment
of the Diagnosis Manager, mainly using state machine ontology and SWRL rules
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built based on it. The malfunction information and its resolution are encoded
in an OWL ontology, and can be used at run time to infer the solution to
the malfunction, and further to fulfill self-healing activities. SWRL is used to
develop monitoring and diagnosis rules, which can help make intelligent decisions
when there is malfunction occurs. The evaluations of the Diagnosis Manager in
terms of extensibility, scalability, and performance, relieved us for the worrying
of performance of the OWL/SWRL based self-management.

In the future, we will continue the implementation of the Goal and planning
layer of the three layered architecture. At the same time we are working on QoS
ontology rules and QoS-awareness service matching and service selection based
on the SWRL rules. Further work on full scope of self-management, such as self-
adaptation, self-configuration based on OWL/SWRL ontologies are under way,
which will be reported in the coming papers.
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Abstract

Diagnosis is the most important step for achieving self-
healing of systems, which is a challenge in pervasive com-
puting. In this paper, we present a semantic, state machine-
based diagnosis approach for a web-service based middle-
ware. We use OWL ontologies and SWRL to develop both
diagnosis and monitoring rules, based on state changes and
also invocation relationships. Malfunction information and
its resolution are encoded in an OWL ontology as a part of
a Device ontology, and can be used at run time to check how
to resolve malfunction, and further to fulfill self-healing ac-
tivities. SWRL rules at both device level and system level
are designed and will be executed as needed. The evalua-
tions in terms of extensibility, performance and scalability
show that this approach is effective in pervasive service en-
vironment.

1 Introduction and Motivation

Web services are increasingly needed to be adopted as
service provision mechanisms in pervasive computing en-
vironment. This trend is exemplified during the inaugura-
tion phase of the Hydra project(IST-2005-034891), by some
companies that donate us Zigbee devices and other embed-
ded devices that enabling pervasive computing, and express
their wishes for web service enabled devices.

A concrete agriculture scenario that we are considering
in the Hydra project is as followed:
Bjarne is an agricultural worker at a large pig farm in Den-
mark. As he walks through the pens to check whether the
pigs are provided with correct amount of food, his work is
interrupted by a sound from his PDA, indicating that a high
priority alarm has arrived. Apparently, the ventilation sys-
tem in the pig stable has malfunctioned. After acknowledg-
ing the alarm and the system begins to diagnosis and soon
it decides that the cause of the problem is ’power supply off
because of fuse blown’. Then he can prepare a fuse and re-
pair the ventilator. After repairing it, he signs off the alarm,

and writes a log on what he has done.
As can be seen from the above scenario, it is very impor-

tant that the Hydra middleware can provide diagnosis func-
tionality to the end user, or better to achieve self-healing
when there is malfunction. Such kind of self-healing can
not be always finished automatically, for example device
down because of fuse broken. But providing diagnosis and
then resolution suggestions would be the most important
step towards malfunction recovery.

In this paper, we present an OWL ontology (the Web
Ontology language)1 and SWRL (Semantic Web Rule Lan-
guage)2 based diagnosis using state machine and sniffering
of process invocation in the context of the Hydra middle-
ware. The malfunction information and its resolution are
encoded in an OWL ontology as part of a Device ontology,
and can be used at run time to check appropriate resolution
to the malfunction, and further to fulfill self-healing activ-
ities. We use SWRL to develop monitoring and diagnosis
rules, and these rules, together with OWL ontologies, can
help make intelligent decisions on where malfunction oc-
curs and its resolution.

The rest of the paper is structured as follows: Section
2 presents an overview of the Hydra middleware; We then
show the diagnosis ontologies used in Hydra; In section 4,
design of both rules and the Diagnosis Manager are pre-
sented. Section 5 evaluates our work with the extensibility,
performance and scalability. We compare our work with the
related work in section 6. Conclusions and future work end
the paper.

2 Web service based middleware-Hydra

The Hydra project is developing a service-oriented and
self-managed middleware for pervasive embedded and net-
work systems based on web service. According to the avail-
able resources, the function structure of the Hydra mid-
dleware is divided into two parts, namely Application El-

1OWL Web Ontology Language Guide. http://www.w3.org/TR/owl-
guide/

2SWRL specification homepage. http://www.w3.org/Submission/SWRL/
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ements(AEs) and Device Elements(DEs). AEs are meant
to be running on powerful machines, DEs describe compo-
nents that are usually deployed inside Hydra-enabled de-
vices where small devices maybe involved. The Layered
architecture of the Hydra middleware is shown in Figure 1.
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Figure 1. Hydra middleware Layered architec-
ture

Diagnosis Manager is used to monitor the system condi-
tions and states in order to fulfill error detection and logging
device events. Its functions include system diagnosis and
device diagnosis.

The Event Manager is used to provide publish/subscribe
functionality to the HYDRA middleware. In general, pub-
lish/subscribe communication as provided by the Event
Manager provides an application-level, selective multicast
that decouples senders and receivers in time, space and data.

3 Ontologies used in the Diagnosis Manager

There are several ontologies involved in the diagnosis
process, namely Device ontology, Malfunction ontology,
and StateMachine ontology. The DeviceRule ontology is
used for holding all diagnosis rules as introduced in Section
4.1. The high level structure of the diagnosis ontologies is
shown in Figure 2.
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Figure 2. Diagnosis ontologies structure

The Device ontology is used to define some basic infor-
mation of a Hydra device, for example device type classifi-
cation(e.g. mobile phone, sensor), device model and manu-

facturer, and so on. The device type classification is based
mainly on AMIGO project ontologies [7]. To facilitate di-
agnosis, there is a concept called HydraSystem to model a
system composed of devices to provide services. And there
is a corresponding object property hasDevice which has the
domain of HydraSystem and range as HydraDevice. There
are also concepts used for the monitoring of web service
calls, including SocketProcess, SocketMessage and IPAd-
dress. The HydraDevice concept has a data type property
currentMalfunction which is used to store the inferred de-
vice malfunction diagnosis information at run time and will
be exemplified later.

To enable state based diagnosis, a state machine ontol-
ogy is developed based on [5] with many improvements:
firstly, we add a datatype property isCurrent in order to in-
dicate whether a state is current or not; secondly, we add
a doActivity object property to the State in order to specify
the corresponding activity in a state and this makes the state
machine complete; thirdly, we add a datatype property has-
Result to the Action (including activity) concept in order to
check the execution result at run time. Three other datatype
properties are also added to model historial action results.
This facilitates the specification of diagnosis rule based on
state and activity result and its history.

The device Malfunction ontology is used to model mal-
function and recovery resolutions. We separate the mal-
functions into two categories: Error (including device to-
tally down) and Warning (including function scale-down,
and plain warning). There are also two other concepts,
Cause and Remedy, which are used to describe the origin
of malfunction and its resolution.

A more detailed but simplified view of the ontologies
used in the diagnosis is depicted in Figure 3.

4 Design of the Diagnosis Manager

Hydra implements a service-oriented architecture based
on web service interaction among devices. Thus a reason-
able granularity to build a self-management system on is the
level of web service requests and responses. Furthermore,
we are interested in the states of devices per se, i.e., is the
device operational, stopped, not working and if it is oper-
ational what is the value of its sensor readings (if any) or
its actuator state (if any). This leads us initially to focus on
status reporting of the following two forms:

• State change reporting. State machines are used to re-
port their state changes as events through the Hydra
Event Manager.

• Web service request/reply reporting. The requests and
replies (and their associated data) can be used to anal-
yse the runtime structure of the Hydra systems. Here a
tool called IPSniffer is used to report invocations.
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Figure 3. Partial details of the Diagnosis Manager used ontologies

4.1 Design of SWRL rules

Diagnosis is a complex task which need intelligence
to infer what is the reason for error and its consequence.
The OWL-DL ontologies themselves are hardly expressive
enough to specify diagnosis rules. As an alliance to
OWL, SWRL can be used to write rules to reason about
OWL individuals and to infer new knowledge about those
individuals. A SWRL rule means that if all the atoms in
the antecedent (body) are true, then the consequent (head)
must also be true. In the SWRL rules, the symbol ∧ means
conjunction, ?x stands for a variable, → means implica-
tion; and if there is no ? in the variable, then it is an instance.

Device level rules
Device level rules are used for a certain type of devices

which are supposed to be generic for that type of devices.
The followed is an example of mobile phone battery mon-
itoring, if battery level is less than 10%, a warning will be
published.
device : MobilePhone(?device) ∧
device : hasHardware(?device, ?hardware) ∧
Hardware : primaryBattery(?hardware, ?battery) ∧
Hardware : batteryLevel(?battery, ?level) ∧
swrlb : lessThanOrEqual(?level, 0.1)
→ V eryLowBattery(?device)

Another monitoring rule is if the flow measured from
the flowmeter is more than 16 (gallon/minute), then it is too
high and should be repaired as soon as possible:

device : FlowMeter(?device) ∧
device : hasStateMachine(?device, ?sm) ∧
statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
abox : isNumeric(?r) ∧ swrlb :
greaterThan(?r, 16.0)→
device : currentMalfunction(device :
Flowmeter, ”FlowHigh”)

The rule for IPSniffer is used for both checking process
id, ip address, port etc. and inferring invoking relationships.
device : messageSourceIP (?message1, ?ip1) ∧
device : ipaddr(?ip1, ?ipa1) ∧
device : messageSourcePort(?message1, ?port1) ∧
device : hasMessage(?process1, ?message1) ∧
device : hasProcessID(?process1, ?pid1) ∧
device : messageTargetIP (?message2, ?ip2) ∧
device : messageSourceIP (?message2, ?ip3) ∧
device : ipaddr(?ip3, ?ipa3) ∧
device : messageTargetPort(?message2, ?port2) ∧
device : hasMessage(?process2, ?message2) ∧
device : hasProcessID(?process2, ?pid2) ∧
swrlb : equal(?port1, ?port2) ∧
device : initiatingT ime(?message1, ?time1) ∧
device : initiatingT ime(?message2, ?t2) ∧
temporal : duration(?d, ?time1, ?t2, temporal :
Milliseconds)
∧ swrlb : lessThanOrEqual(?d, 60000)
→ device : inovoke(?message1, ?message2) ∧
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sqwrl : select(?ipa1, ?port1, ?pid1, ?ipa3, ?port2, ?pid2, ?time1)

System level rules
System level rules are used to specify rules span multiple

devices in a system. In the introduced agriculture scenario,
thermometers are used to measure both indoor and outdoor
temperature, which are named PicoTh03_Outdoor and
PicoTh03_Indoor respectively. In the summer time, when
outdoor temperature is between 12 and 33 degree, the
indoor should follow the same trend as the outdoor temper-
ature. Or else, we can infer that the ventilator is down.
device : hasStateMachine(device :
PicoTh03Outdoor, ?sm)
∧ statemachine : hasStates(?sm, ?state) ∧
statemachine : doActivity(?state, ?action) ∧
statemachine : actionResult(?action, ?r) ∧
statemachine : historicalResult1(?action, ?r1) ∧
statemachine : historicalResult2(?action, ?r2) ∧
statemachine : historicalResult3(?action, ?r3) ∧
swrlb : add(?tempaverage, ?r1, ?r2, ?r3) ∧
swrlb : divide(?average, ?tempaverage, 3) ∧
swrlb : subtract(?temp1, ?r, ?r1) ∧
swrlb : subtract(?temp2, ?r1, ?r2) ∧
swrlb : subtract(?temp3, ?r2, ?r3) ∧
swrlb : add(?temp, ?temp1, ?temp2, ?temp3) ∧
swrlb : greaterThan(?average, 12.0) ∧
swrlb : lessThan(?average, 33.0) ∧
swrlb : lessThan(?temp, 0) ∧
device : hasStateMachine(device :
PicoTh03Indoor, ?smb)
∧ statemachine : hasStates(?smb, ?stateb) ∧
statemachine : doActivity(?stateb, ?actionb) ∧
statemachine : actionResult(?actionb, ?rb) ∧
statemachine : historicalResult1(?actionb, ?r1b) ∧
statemachine : historicalResult2(?actionb, ?r2b) ∧
statemachine : historicalResult3(?actionb, ?r3b) ∧
swrlb : subtract(?temp1b, ?rb, ?r1b) ∧
swrlb : subtract(?temp2b, ?r1b, ?r2b) ∧
swrlb : subtract(?temp3b, ?r2b, ?r3b) ∧
swrlb : add(?tempb, ?temp1b, ?temp2b, ?temp3b) ∧
swrlb : greaterThan(?tempb, 0)→ device :
currentMalfunction(device :
V entilatorMY 0193, ”V entilatorDown”)

The processing of this rule will get the trend with
the difference of continuous temperature measuring of
indoor and outdoor temperature, and also an instance of
the property (”VentilatorDown”) currentMalfunction of
concept HydraDevice (which is VentilatorMY0193) will be
inferred. Then the Malfunction ontology will be checked
for the resolution of the problem based on the malfunction
cause. In our case, Malfunction ontology gives us the
solution as the ”power supply off because of fuse blown”.

Usage of Malfunction and Device ontology
For example, Bjarne get a warning of ”Grundfos-

PumpMQ345 failed to start”, which is a high priority
task for him as the pump is used for feeding the pigs. A
diagnosis task is initiated to check what is wrong with
the pump, but as a newly installed pump, there is still no
error resolution to this model of pump in the Malfunction
ontology. As a further step, the diagnosis system will
conduct subsumption reasoning and search for the device
Type in the Device ontology, which is found as FluidPump,
and then its manufacturer is also queried. Now another
query to the Device ontology will get a similar pump
called GrundfosPumpMQ335 as of the same type from the
same manufacturer ”Grundfos”. And based on the name
of the error and pump type, the solution from a query to
Malfunction ontology is suggested ”replace a capacitor”,
which is happily the solution to solve the problem.

4.2 Diagnosis manager architecture

Based on the current diagnosis requirements, and also
the status of OWL/SWRL, we come up with the following
architecture for the Diagnosis Manager as shown in Fig-
ure 4, in which the Component Control and Change Man-
agement are enclosed with dashed line, taken Kramer and
Magee [6] three Layered architecture as a reference model.

The bottom of the architecture is the ontologies/rules,
in which knowledge of devices, and state based diagnosis
are encoded. When there are state change events, the de-
vice state machine instance in the state machine ontology
need to be updated, and also these state changes will be
published with state machine state changes as event topic.
The Diagnosis Manager is an event subscriber to the state
machine state change events, it will then update the corre-
sponding state instances in the ontology. At the same time,
this will trigger the diagnosis of the device status, execut-
ing the SWRL rules to monitor the health status of devices,
and also trigger the reasoning of possible device errors and
their resolutions. The Diagnosis Manager will publish the
diagnosis results as an event publisher.

The Diagnosis Manager mainly runs on powerful PC or a
proxy for an embedded device running on a powerful node.
For those node with limited capabilities, only state will be
reported, which can delegate its own diagnosis to other node
or its proxy.

For the actual implementation, we adopted a mix of the
Blackboard architecture style and the Layered architecture,
and use the observer pattern in both the updating of state
machine ontology and inferred result parsing.
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Figure 4. Diagnosis Manager architecture

5 Evaluation

5.1 Extensibility

At present, the extensibility is evaluated by the applica-
bility to new devices added to a system. We started the de-
velopment of Diagnosis Manager with the rule for temper-
ature monitoring. After finishing the implementation and
testing, we then try to handle the flowmeter diagnosis rules.
The steps involved are:
1. Add the flowmeter device to the HydraSystem concept
instance called ”Pig” in the Device ontology.
2. Add the flowmeter state machine instance to the
StateMachine ontology.
3. Add the flowmeter state machine instance to the has-
StateMachine property of the ”flowmeter” device.
4. Add flowmeter diagnosis rule to the DeviceRule on-
tology.

After this, we test the Diagnosis Manager and it runs
very well. No single line of Diagnosis Manager code needs
to be changed. In summary, the adding of new devices to
a certain system is very straightforward. The adding of
new devices can be at run time, if the rules for the new de-
vices are existing, then the diagnosis process can be directly
working for the new devices.

5.2 Performance

The following software platform is used for measur-
ing performance: Protege 3.4 Build 125, JVM 1.6.02-b06,
Heap memory is 266M, Windows Vista. The hardware plat-
form is: Thinkpad T60 Core2Duo 2G CPU, 7200rpm hard-
disk, 2G DDR2 RAM. The time measurement is in millisec-
ond. The size of DeviceRule ontology is 210,394 bytes, and
contains 22 rules.

We measured the performance as shown in Table 1. An
interesting thing is after some time of running, the Diagno-

sis Manager is running stably with the total time in 260-270
ms for processing an event, a bit faster than the one when it
starts. Here the parsing of the inferred result is running in a
multi-threaded way in the Diagnosis Manager.

Update InferringTime AfterEventTillInferred
383 380 382
322 319 321
282 278 282
272 269 271
265 263 265
270 267 269
268 266 269

Table 1. Diagnosis Manager performance

5.3 Scalability

The scalability is evaluated through clients continuously
publishing their states (thermometers and flowmeters) as
events, in an almost parallel way and each of the client
sends messages as fast as possible in a loop. Then we mea-
sure how long it will be, starting from the publishing till the
end of inferring and publish related inferring result. Time
needed (y-axis) is shown in Figure 5 (x-axis shows the num-
ber of events) . We can see that the time taken is in linear
with the events need to be processed.
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Figure 5. Diagnosis Manager scalability

6 Related work

Kramer and Magee [6] recently proposed a reference
model for self-managed systems, which is composed of
component control, change management and goal manage-
ment. In this paper, we largely followed this work for the
Layered architecture, but mainly focus the component con-
trol and change management. At the same time, a mix of
Blackboard architecture and Layered architecture are ap-
plied to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic
pervasive computing. Generally speaking, our approach ap-
plied the same idea of ETS [2], in terms of the using of
states for detecting source of failure, and then notification
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of failure source. And this process is actually universal for
error detections. Our ontology and SWRL rule based ap-
proach provides a way of intelligent detection and resolu-
tion, which is not easily achievable by ETS.

Work in [1] shares some similarity with us on the us-
age of semantic web approach for achieving self-managing.
Our approach is non-intrusive, SWRL rules are automati-
cally executed using state machine instead of explicitly in-
serting sensor code to program, and is more suitable for the
characteristics of pervasive devices.

Various failures in a pervasive system are classified in
[4], and an architecture for fault tolerant pervasive comput-
ing is proposed. We focus not only on device failure moni-
toring using the device state machine, but also system level
detection using the relationships of different state machine
instances. In addition, our approach can be more intelligent
in terms that ontology reasoning can help the diagnosis.

There are many researches from traditional artificial in-
telligence point of view dealing with the diagnosis in var-
ious field, e.g. [3]. These traditional approaches are not
utilizing the context ontologies that are already there in per-
vasive systems and are used for context-awareness and other
purposes. The open world assumption in OWL/SWRL and
hence in our approach makes our proposed approach well
suited for the openness of the pervasive computing envi-
ronment, which automatically rejects the approaches using
Prolog kind of rules which use close world assumption.

7 Conclusions and future work

OWL/SWRL is adopting an open world assumption
which is in nature very suitable for the pervasive computing
systems, where the openness and dynamicity dominate the
interaction and function. OWL is widely used in pervasive
computing, for the purpose of context awareness, service
selection and composition. The potentials of OWL and con-
text awareness could be further extended as we have shown
in this paper.

Diagnosis is the most important step for achieving self-
healing, which is a challenge in pervasive computing. We
present a semantic and state machine based diagnosis ap-
proach using OWL ontology and SWRL, for the Hydra mid-
dleware. The malfunction information and its resolution are
encoded in an OWL ontology, and can be used at run time
to infer the solution to the malfunction, and further to fulfill
self-healing activities. SWRL is used to develop monitoring
and diagnosis rules, which can help make intelligent deci-
sions when there is malfunction occurs. IPSniffer will help
diagnosis on devices that are dead or no response which
provides fault tolerance in our approach.

The evaluations relieved us for the worrying of perfor-
mance of the OWL/SWRL based Diagnosis Manager. In or-
der to improve performance, we followed a mix of both the

Blackboard architecture style and the Layered architecture
style. The evaluations show that the Diagnosis Manager is
usable in terms of extensibility, performance and scalabil-
ity. The proposed approach provides an uniform, coherent
and natural way to fully utilize the existing OWL/SWRL
reasoning power, and extend it for considering the dynamic
aspects of the pervasive system for diagnosis, which is very
suitable for the characteristics of the pervasive computing
environment.

We are improving the IPSniffer based diagnosis that only
reports invocation relationships at present. The integration
with security manager and ontology manager are under way.
Probability in OWL/SWRL is to be added in the future to
make the diagnosis more intelligent. More experiments in
a larger scale will be conducted for testing the resolving of
rule conflicts, accuracy of diagnosis and so on.

Acknowledgements

The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

[1] B. J. O. A. R. Haydarlou, M. A. Oey and F. M. T. Bra-
zier. Use-case driven approach to self-monitoring in au-
tonomic systems. The Third International Conference
on Autonomic and Autonomous Systems, 2007.

[2] S. Ahmed, M. Sharmin, and S. Ahamed. ETS (Efficient,
Transparent, and Secured) Self-healing Service for Per-
vasive Computing Applications. International Journal
of Network Security, 4(3):271–281, 2007.

[3] R. Barco, L. Díez, V. Wille, and P. Lázaro. Auto-
matic diagnosis of mobile communication networks un-
der imprecise parameters. Expert Systems With Appli-
cations, 2007.

[4] S. Chetan, A. Ranganathan, and R. Campbell. Towards
fault tolerant pervasive computing. Technology and So-
ciety Magazine, IEEE, 24(1):38–44, 2005.

[5] P. Dolog. Model-driven navigation design for seman-
tic web applications with the uml-guide. Engineering
Advanced Web Applications, In Maristella Matera and
Sara Comai (eds.), Dec. 2004.

[6] J. Kramer and J. Magee. Self-Managed Systems: an
Architectural Challenge. International Conference on
Software Engineering, pages 259–268, 2007.

[7] I. A. Project. Amigo middleware core: Prototype im-
plementation and documentation, deliverable 3.2. In
IST-2004-004182, 2006.

Twentieth International Conference on Software Engineering & Knowledge Engineering (SEKE'2008), San Francisco, CA, USA, July 1-3, 2008


	Introduction
	Components Overview
	Deployment of self-management components

	State of the art
	Introduction
	Related Work
	Survey Method

	Conceptual and Architectural Basis of AC
	Conceptual perspective
	Architectural perspective

	Reliability
	Efficiency
	Usability
	Implications for Hydra

	Self-* scenarios
	Case 1: Repairing interface mismatches through reconfiguration
	Case 2: Reliability improvement through monitoring and rebinding of failing services
	Case 3: A scenario for self-adaptation considering Quality of Service (QoS)

	The Hydra Self-* architecture
	Decouple syntactic and semantic layers of abstraction
	Overview of the Hydra Semantic web based Self-* Architecture and used tools/artifacts in different layers
	The self-* architecture in relation to the Hydra architecture
	Connections with other Hydra components

	Architectural script language design, implementation and its applications
	Modeling architectural change
	Architectural scripting for test/configuration setup
	Towards a testbed for distributed/self-* systems
	Testbed implementation with ASL

	Architectural scripting for self management

	Ontologies for self-management
	Why adopt OWL-DL and SWRL
	Justifying OWL-DL and SWRL strengths
	Weaknesses of OWL-DL and SWRL
	Basic introduction to OWL-DL and SWRL

	SeMaPS ontology structure
	QoS ontology
	Software architecture ontologies design
	Semantic architectural styles
	Semantic OSGi Components
	Semantic Connectors

	Dynamic context modeling in SeMaPS ontologies
	 Complex context specification with SWRL rules

	Self-management rules based on SeMaPS ontologies
	Self-diagnosis rules
	Self-configuration rules
	Self-adaptation rules
	Architectural styles and configurations validation at runtime
	Probability handling in diagnosis
	Survey on probability in semantic web
	Diagnosis with probability

	Discussion

	Semantic software architecture enabled and QoS based planing
	Survey on planning techniques for the Goal management layer in pervasive systems
	Hydra Self-management model
	Context dimensions
	Hydra Utility function

	Planning within pervasive services environments in Hydra
	Service filtering based on service characteristics
	Architecture based filtering
	Applying Utility functions

	Genetic Algorithm for planning
	Basic introduction of GAs
	Algorithms for planning


	Implementation of the semantic web based self-management in Hydra
	Runtime view of the Hydra Self-* Architecture
	Example: Rebinding services

	Implementation of the semantic web based self-management
	Brief introduction to the usage of APIs


	Evaluation
	Evaluating the self-diagnosis component

	Conclusions and future work
	Published Papers
	Paper 1: Semantic Web ontologies for Ambient Intelligence: Runtime Monitoring of Semantic Component Constraints
	Paper 2: Towards Self-Managed Executable Petri Nets
	Paper 3: Semantic Web based Self-management for a Pervasive Service Middleware
	Paper 4: Towards Self-managed Pervasive Middleware using OWL/SWRL ontologies
	Paper 5: An OWL/SWRL based Diagnosis Approach in a Pervasive Middleware


