

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

 D6.6 Updated MDA Design Document

Integrated Project

SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 2009-08-20 version 1.0

Coordinating Partner: Fraunhofer FIT

Project co-funded by the European Commission

within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Public

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 2 of 74 2009-08-20

Document file: D6.6 Updated MDA Design Document v1.0.doc

Work package: WP6

Tasks: T – 6.6

Document owner: CNet

Document history:

Version Author(s) Date Changes made

0.10 Matts Ahlsén (CNET) 2009-05-07 Document outline, TOC

0.2

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-0515 Introduction & overview

0.3

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-05-20 MDA in Hydra overview

0.35

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-06-10 Semantic device descriptions

0.50

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-06-15 MDA Middleware components update

0.70
Peter Kostelnik (TUC),

Matts Ahlsén (CNET)
2009-06-20 Device Ontology update

0.8

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-06-23 Discovery process update

0.95

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-06-30 Draft 1

0.96
Peter Kostelnik (TUC),

Matts Ahlsen (CNET)
2009-07-16 Revision of ontology chapter

0. 97

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET)

2009-08-04 Draft for peer-review

1.0

Matts Ahlsén, Peter

Rosengren, Peeter Kool

(CNET), Peter Kostelnik

(TUC)

2009-08-20 Final for submission

Internal review history:

Reviewed by Date Comments

Julian Schütte (SIT) 2009-08-15 Approved with comments

Adedayo Adetoye (UR) 2009-08-15 Approved with comments

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 3 of 74 2009-08-20

Index:

1. Introduction .. 6

1.1 Background .. 6
1.2 Purpose, context and scope of this deliverable .. 6
1.3 Hydra Innovations and Contributions ... 6

1.3.1 OMG Model-Driven Architecture ... 7
1.3.2 Automatic Device Classification and Ontology Design 8
1.3.3 Embedded device semantics and rule engines 8

2. Executive Summary ... 9

3. Requirements for the Hydra Semantic Model-driven Architecture 10

3.1 User requirements .. 10
3.2 Quality attributes scenarios.. 12

4. Hydra approach to Semantic MDA ... 13

4.1 Motivation: Applications with heterogeneous physical device networks 13
4.2 Physical Devices and Hydra Devices .. 16
4.3 Semantic Devices ... 16
4.4 Semantic MDA at design-time .. 18

4.4.1 Model-driven code generation for Hydra Devices 18
Model-driven code generation for Semantic Devices 19

4.5 Semantic MDA at Run-time .. 19
4.5.1 Device Discovery Architecture .. 19
4.5.2 The Device Application Catalogue (DAC) .. 20
4.5.3 Use of models for resolving security requirements and capabilities 26

4.6 Standards used .. 27

5. Hydra ontologies ... 28

5.1 Hydra ontology architecture ... 28
5.2 The Device Model ... 29

5.2.1 Basic device information .. 29
5.2.2 Device services ... 31
5.2.3 Device Events ... 32
5.2.4 Device malfunctions .. 32
5.2.5 Device capabilities and state machine .. 33

5.3 Semantic Discovery Model ... 34
5.4 Semantic Device Model ... 36
5.5 Application Specific Ontology ... 38

6. Main developments in third iteration ... 39

6.1 Device Discovery .. 39
6.2 Automatic generation of device web services and devices proxies 39
6.3 Adaptation of the Device Ontology .. 39
6.4 SDK and DDK support for programming with devices 40
6.5 Device profiling and annotation .. 40

7. Future Work .. 41

7.1 SW components ontology .. 41
7.2 Ontology design and management .. 41

7.2.1 Ontology design process .. 41
7.2.2 Modifying and Evolving ontologies in Hydra 42
7.2.3 Mediation, aligning and merging of ontologies 42

8. Appendix: Standards and Tools ... 43

8.1 Standards used .. 43
8.1.1 Modelling and query languages ... 43
8.1.2 Reasoners .. 45

8.2 Platform and Tools .. 46

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 4 of 74 2009-08-20

8.2.1 TopBraid composer ... 46
8.2.2 Protégé-OWL editor ... 46

9. Appendix: Components implementing the MDA 48

9.1 The Application Device Manager ... 48
9.1.1 Related WP6 requirements ... 49
9.1.2 Internal Components ... 51

9.2 Application Service Manager .. 53
9.2.1 Related WP6 requirements ... 54
9.2.2 Internal Components ... 56

9.3 Application Orchestration Manager .. 57
9.3.1 Related WP6 requirements ... 57
9.3.2 Internal Components ... 59

9.4 Application Ontology Manager .. 60
9.4.1 Related WP6 requirements ... 60
9.4.2 Internal Components ... 63

9.5 Application Diagnostics Manager ... 64
9.5.1 Related WP6 requirements ... 64
9.5.2 Internal Components ... 66

9.6 Device Device Manager ... 67
9.6.1 Related WP6 requirements ... 67
9.6.2 Internal Components ... 70

9.7 Device Service Manager .. 71
9.7.1 Related WP6 requirements ... 71
9.7.2 Internal Components ... 72

10. References .. 73

Figures:
FIGURE 1: DEVICE NETWORKS FOR HOME AUTOMATION MAY INCLUDE LARGE NUMBERS OF HETEROGENEOUS DEVICES. . 13
FIGURE 2: DEVICES FOR HOME HEALTH-CARE AND REMOTE MONITORING .. 14
FIGURE 3: AGRICULTURE AND FARMING IS ANOTHER DOMAIN FOR HYDRA APPLICATIONS ... 14
FIGURE 4: THE HYDRA MIDDLEWARE IMPLEMENTING HYDRA DEVICE NETWORKS ... 15
FIGURE 5: DEVICE TAXONOMY SUBSET OF THE HYDRA DEVICE ONTOLOGY ... 15
FIGURE 6: SEMANTIC DEVICES PROVIDE A HIGH-LEVEL PROGRAMMING CONSTRUCT ON TOP OF HYDRA DEVICES. 17
FIGURE 7: AUTOMATIC GENERATION OF WEB SERVICE CODE FOR DEVICES. .. 18
FIGURE 8: THE 3-LAYERED DISCOVERY ARCHITECTURE IS PART OF THE HYDRA MDA. ... 20
FIGURE 9: IN THE FINAL STEP OF DISCOVERY, THE DEVICE TYPE IS RESOLVED AGAINST THE DEVICE ONTOLOGY, AND THEN

ENTERED INTO THE DAC NOTIFYING THE HYDRA APPLICATION. ... 20
FIGURE 10: THE HYDRA BROWSER.. 21
FIGURE 11: RETRIEVING DISCOVERY INFORMATION FROM THE PHYSICAL DEVICE .. 22
FIGURE 12: DISCOVERY INFORMATION FROM A BLUETOOTH DEVICE ... 22
FIGURE 13: RESOLVING A PHYSICAL DEVICE INTO A HYDRA DEVICE. ... 23
FIGURE 14: RESOLVE INFORMATION IS SENT AS AN XML STRUCTURE TO THE DISCOVERY MANAGER 23
FIGURE 15: A PHYSICAL DEVICE WITH UNKNOWN FUNCTIONALITY HAS BEEN TRANSFORMED INTO BASIC PHONE DEVICE

WITH SERVICES FOR READING/SENDING SMS. ... 24
FIGURE 16: SENDING AN SMS THROUGH THE BASIC PHONE DEVICE .. 24
FIGURE 17: USING THE DAC TO RETRIEVE A WSDL DESCRIPTION FOR THE DEVICE. .. 25
FIGURE 18: A WSDL (WEB SERVICE DESCRIPTION LANGUAGE) FOR THE DEVICE .. 25
FIGURE 19: (FROM D7.9) SECURITY ONTOLOGY CAN BE USED TO RESOLVE COMMON SECURITY CAPABILITIES 27
FIFIGURE 20: RELATIONS BETWEEN MAIN DEVICE ONTOLOGY COMPONENTS. ... 28
FFIGURE 21: DEVICE TAXONOMY ... 30
FIGURE 22: MODELLING OF SERVICES IN THE HYDRA DEVICE ONTOLOGY.. 31
FIGURE 23: EVENT MODEL IN THE HYDRA DEVICE ONTOLOGY ... 32
FIGURE 24: THE MALFUNCTION PART OF THE HYDRA DEVICE ONTOLOGY .. 33
FIGURE 25: THE STATE MACHINE PART OF THE HYDRA DEVICE ONTOLOGY ... 34
FIGURE 26: SEMANTIC DISCOVERY MODEL. ... 35
FIGURE 27: BLUETOOTH PHONE SEMANTIC DISCOVERY INFORMATION. ... 36
FIGURE 28: MODEL OF SEMANTIC DEVICE. .. 37

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 5 of 74 2009-08-20

FIGURE 29: EXAMPLE OF TEMPERATUREHANDLER SEMANTIC DEVICE. ... 38
FIGURE 30: HYDRA SOFTWARE COMPONENTS (MANAGERS) ARCHITECTURE ... 48
FIGURE 31: APPLICATION DEVICE MANAGER (DISCOVERY MANAGER) MAIN STRUCTURE ... 49
FIGURE 32: APPLICATION DEVICE MANAGER ... 52
FIGURE 33: APPLICATION SERVICE MANAGER .. 56
FIGURE 34: APPLICATION ORCHESTRATION MANAGER ... 59
FIGURE 35: APPLICATION ONTOLOGY MANAGER.. 63
FIGURE 36: APPLICATION DIAGNOSTICS MANAGER .. 66
FIGURE 37: DEVICE DEVICE MANAGER ... 70

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 6 of 74 2009-08-20

1. Introduction

1.1 Background

The Hydra project aims to research, develop, and validate middleware for networked embedded

systems that allows developers to develop cost-effective, high-performance ambient intelligence
applications for heterogeneous physical devices.

The first objective is to develop middleware based on a Service-oriented Architecture (SoA), which

makes the underlying communication layers transparent to the applications built on top of the
middleware. The middleware will include support for distributed as well as centralised architectures,

security and trust, reflective properties and model-driven development of applications.

The Hydra middleware will be deployable on both new and existing networks of distributed wireless

and wired devices, which operate with limited resources in terms of computing power, energy and

memory usage. It will allow for secure, trustworthy, and fault tolerant applications through the use
of novel distributed security and social trust components.

The embedded and mobile Service-oriented Architecture will provide interoperable access to data,
information and knowledge across heterogeneous platforms, including web services, and support

true ambient intelligence for ubiquitous networked devices.

The second objective of the Hydra project is to develop an Integrated Development Environment
(IDE). The IDE will be used by developers to develop innovative semantic model driven applications

with embedded ambient intelligence using the Hydra middleware.

1.2 Purpose, context and scope of this deliverable

This document (D6.6) describes the Semantic Model Driven Architecture (MDA) of Hydra as it has

evolved from the initial specifications and design until the implementation in the middleware, as per
end of iteration 3 in month 36.

This document is an update of the initial MDA design document (D6.2) with inputs from the
intermediate software deliverables D6.4 to D6.8.

Hydra aims to interconnect devices, people, terminals, buildings, etc. The Service-Oriented

Architecture and its related standards provide interoperability at a syntactic level. However, in Hydra
we also aim at providing interoperability at a semantic level. The objective of WP6 is to extend this

syntactic interoperability to the application level, i.e., in terms of semantic interoperability. This is
done by combining the use of ontologies with semantic web services.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, the

Hydra middleware should provide adaptations to whatever interface the devices offer. To achieve
this, Hydra aims to be able to describe the capabilities of the devices in such way that a software

agent can understand these capabilities and use them, e.g., in an automated discovery process.

The objective of the Hydra MDA is to facilitate application development and to promote semantic

interoperability for services and devices. The semantic MDA of Hydra includes a set of models,

represented by ontologies, and enables these to be used both in design-time and in run-time.

1.3 Hydra Innovations and Contributions

Hydra’s technological innovations in semantic MDA are in the following areas:

• To develop tools for (semi-)automatic building of device ontologies - evolving

ontologies, generalisation of concepts (knowledge generalisation)

• Techniques for automatic device classification and ontology updating.

• Ontologies over the middleware components themselves.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 7 of 74 2009-08-20

• Application of ontology-based semantic technologies on privacy and security issues

• Application of ontologies in enabling intelligent services (personalisation, alerting

etc.) and search.

The following highlighted extract from table 5 in the DOW section 4.5 “Technologies to be used,
researched and developed” summarizes the intended contributions from WP6 with respect to the

semantic model-driven architecture.

WP 6 SoA and MDA middleware

Technology

area

Use of existing
technologies

New technologies to

be developed

New technologies to
be researched

Embedded
and mobile
service-
oriented
architectures
for AmI

The Hydra middleware will be
based on mature web service
technologies such as SOA, SOAP,
WSDL, BPEL etc. to the furthest
extend possible

Embedded web services will be
built using standard WS
technologies including:

 Web services stack
 Fast evaluation of

WS
 Semantic stack

Technologies for bringing
semantic web service
technology down to device
level to provide semantic
interoperability between
devices.

New technologies for
integration of WS with the
device level will be
researched. This will include:

 Automatic generation
of web services
device proxies.

 Caching principles

Semantic
Model-Driven
Architecture
for AmI

The model driven architecture
will be build with standard web
service technologies including
domain model meta descriptors
such as IFC and HL7 classes

Ontology frameworks will be
based on standards such as OWL

Horizontal standards such as WS-
Coordination and WS-Transaction
will be considered

New technologies for
maintaining and accessing
distributed domain meta models
will be developed

Semantic cooperative
instantiation of devices,
personas and services will be
developed

Technologies for Automatic
Device classification

Technologies for Semantic-
cooperative reasoning.

New techniques based on
combination UML and OWL
for automatic construction
and maintenance of
ontologies will be researched.

Research of principles and
technologies for Intelligent
Rules Processing to allow for
configuration of device
behaviour.

Semantics
and
knowledge
management

Prototype semantic approaches
will be used, e.g., inspired by
OWL-S or SWS based on the
Semantic Web, to support
properties such as discovery,
context awareness, self-*
properties

Standard Knowledge
Management (KM) techniques for
knowledge capture, indexing and
re-use will be deployed where
needed and applicable

New technologies to provide
interoperability at the semantic
level will be developed including
profiling knowledge repository
technologies for preference
engineering

Table 1: WP6 contribution objectives from the initial DOW

1.3.1 OMG Model-Driven Architecture

The MDA represents a major evolutionary step in the way the OMG (The Object Management

Group, www.omg.org) defines interoperability standards. For a very long time, interoperability had
been based largely on CORBA standards and services. Heterogeneous software systems interoperate

at the level of standard component interfaces. The MDA process, on the other hand, places formal

http://www.omg.org/

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 8 of 74 2009-08-20

system models at the core of the interoperability problem. What is most significant about this
approach in relation to Hydra is the independence of the system specification from the

implementation technology or platform. The system definition exists independently of any

implementation model and has formal mappings to many possible platform infrastructures (e.g.,
Java, XML, and SOAP).

The MDA has significant implications for the disciplines of Meta modelling and Adaptive Object
Models (AOMs). Meta modelling is the primary activity in the specification, or modelling, of

metadata. Interoperability in heterogeneous environments is ultimately achieved via shared
metadata and the overall strategy for sharing and understanding metadata consists of the

automated development, publishing, management, and interpretation of models. AOM technology

provides dynamic system behaviour based on run-time interpretation of such models. Architectures
based on AOMs are highly interoperable, easily extended at run-time, and completely dynamic in

terms of their overall behavioural specifications (i.e., their range of behaviour is not bound by hard-
coded logic).

The main contribution of Hydra will is in the use of ontologies both for the application developer and

the device developer. For the latter we support a model-driven process at design time through the
use of ontologies and semi-automatic code generation for devices. Ontologies are also an integral

part of the run-time environment, i.e. program execution is based on the models and descriptions in
the ontologies, providing an easy to configure and dynamic extensible middleware.

1.3.2 Automatic Device Classification and Ontology Design

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, two

broad options can be considered: a) to force every device to be compliant to some set of more or

less flexible interfaces, or b) to have Hydra middleware layer provide adaptation to whatever
interface the devices offer.

Since choice a) will probably not be applicable neither to the present nor to the future world, Hydra
has opted for choice b), so it will try to be able to adapt to all the variety of interfaces, information

and operations that the devices offer. And given the vast amount of devices, the only viable option

to address this issue is to try to do it in some automatic way.

In order to achieve this, Hydra relies on semantic descriptions/annotations about device capabilities

(using ontologies) in such way that applications can understand these capabilities and use them.
Once the semantics describing the model of a peer device has been found, the device capabilities

could be accessed.

1.3.3 Embedded device semantics and rule engines

A final issue, which involves the adoption of semantic facilities into a novel platform such as the

envisaged one, comprises the development of reasoning rules and components that will make use of
dynamic meta-data to take advanced real-time decisions. It is clear that web services composition is

the technology envisaged obtaining complex functionality from atomic operations of heterogeneous
end-points (services, interfaces provided by any entity: user agents, servers, devices, etc.). The

reasoning over available data (not only services but also network status, context information,

availability of resources, etc.) becomes a critical task that should be solved to obtain later successful
compositions. However, reasoners must rely on query languages over meta-data and there are

several initiatives and languages that allow for queries over RDF annotated data.

In the Hydra MDA the choice fell upon SPARQL as the query interface to the Device Ontology. The

latter expressed on OWL/Owl-s, with the Pellet reasoning engine. For diagnostics purposes the

SWRL language has been used to express diagnosis rules (c.f. WP4).

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 9 of 74 2009-08-20

2. Executive Summary

This work package applies Service Oriented and Model Driven Architecture techniques to AmI

systems. All of the devices and services comprising a Hydra network will be integrated in a Service
Oriented Architecture (SoA), which will provide, among other things, interoperability. The Hydra
middleware thus also becomes the link between web services and devices. Interoperability, which

here is taken as the capability of components of Hydra to talk to each other no matter what is the
technology used to implement them or their physical location, is achieved by means of the usage of

many specifications in the context of the web services world, including XML, SOAP, WSDL, XML

Schema, WS-Security, WS-Addressing and several others. To summarise, the main purpose of the
Service-Oriented Architecture in Hydra is to provide interoperability between devices at a syntactic
level.

Hydra aims to interconnect devices, people, terminals, buildings, etc. As mentioned above, the

Service-Oriented Architecture and its related standards provide interoperability at a syntactic level.
However, one of the goals of Hydra is to provide interoperability at the semantic level. This is

achieved through a modelling infrastructure in the middleware, whereby services exposed by devices

can be described and consumed by Hydra applications.

A main contribution of this work package to is that it brings semantic web technologies down to the

device level, i.e., each device can act as a semantic web service accessible by other devices, users
and software application. This is achieved in close cooperation with WP4 who have developed

techniques for embedding web services into devices. In this WP we are concerned with automating

the generation of web services code for devices based on meta data and ontology descriptions.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, two

broad options can be considered: a) to force every device to be compliant to some set of more or
less flexible interfaces, or b) to have Hydra middle layer provide adaptation to whatever interface

the devices offer.

Since choice a) will probably not be applicable neither to the present nor to the future world, Hydra

has opted for choice b), so that the middleware is able to adapt to the variety of interfaces,

information and operations that devices offer. And given the vast amount of devices, the only viable
option to address this issue is to try to do it in an automatic way.

In order to achieve this, Hydra has introduced descriptions for the devices (ontologies) in such way
that an automatic agent can understand these capabilities and use them. Once the semantic

description of the device mode has been found, then its device capabilities could be accessed.

Hydra’s technological innovations in semantic MDA are in the following areas:

 To develop tools for (semi-)automatic building of device ontologies - evolving ontologies,

generalisation of concepts (knowledge generalisation).

 Techniques for automatic device classification and ontology updating.

 Ontologies over the middleware components themselves.

 Application of ontology-based semantic technologies on privacy and security issues

 Application of ontologies in enabling intelligent services (personalisation, alerting etc.) and

search.

A final issue, which involves the adoption of semantic facilities into a novel platform such as the

envisaged one, comprises the development of reasoning rules and components that will make use of
dynamic meta-data to take advanced real-time decisions. It is clear that web services composition is

the technology envisaged obtaining complex functionality from atomic operations of heterogeneous

end-points (services, interfaces provided by any entity: user agents, servers, devices, etc.).

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 10 of 74 2009-08-20

3. Requirements for the Hydra Semantic Model-driven

Architecture

3.1 User requirements

Below we present the current set of user requirements with relevance for the MDA, and which are

part of the specification at the end of iteration 3. The requirements are maintained and elicitated
using the Volere method in WP2 with the Jira requirements database A subset of the requirements

are selected for assessment in validation (WP10) of each iterations prototype (c.f. D10.2 and D10.3
for details).

Table 2: WP6 requirements summary list

Key Summary Rationale Fit Criteria

Hydra-91 Any Hydra device
should have an
associated
description

For management, search and
discovery purposes, all Hydra enabled
devices should be described
(classified) according to the Hydra
device ontology.

Any device associated to a
Hydra application is also
included in the Hydra device
ontology, and its description
can be retrieved.

Hydra-92 Rule-based
configuration of
devices

The possibility for the developer to
specify device behaviour using rules. It
should be possible to derive and re-use
rules from pre-existing or generic rule
sets for application domains.
Possibility to hide device specific
details.

The functionality (services) of
a device is accessible (by user
or application) thru a rule-
based interface.

Hydra-94 Simulation
environment

Use of a simulation environment is
important for validating the
rules/software interaction with
devices. It can also be used for
replaying the event log in order to
examine unwanted system behaviour.

Simulation environment is
available

Hydra-101 Manual device
ontology definition

The developer should be able to define
and extend device ontologies. The IDE
is required to provide descriptors for
devices and device classes

The Hydra IDE supports the
manual editing of devices in
the framework of device
ontology.

Hydra-102 Device Ontology
with user interface

Tool that allows browsing, searching,
navigating device classes and their
capabilities.

Tool for browsing device
ontology exists

Hydra-103 Automatic device
ontology
construction

The construction of a device ontology
should be facilitated through finding
and parsing product or device
descriptions to annotate and produce
ontology entries. The component
should handle different input formats
like Word, PDF, HTML, databases.

5 of 10 device descriptions
can be successfully processed

Hydra-104 Automatic
Discovery of
Services

It should be possible to configure the
middleware to discover available
services that meets defined criteria.

8 of 10 services are
automatically discovered.

http://localhost:8010/jira/browse/HYDRA-91
http://localhost:8010/jira/browse/HYDRA-92
http://localhost:8010/jira/browse/HYDRA-94
http://localhost:8010/jira/browse/HYDRA-101
http://localhost:8010/jira/browse/HYDRA-102
http://localhost:8010/jira/browse/HYDRA-103
http://localhost:8010/jira/browse/HYDRA-104

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 11 of 74 2009-08-20

Hydra-108 Device discovery Middleware should be able to detect
new device that enters the network

7 of 10 devices are discovered

Hydra-110 Device
Categorisation in
runtime

Middleware should after discovery of
device be able to categorise a device
based on device ontology information.

7 of 10 devices are correctly
categorised and described.

Hydra-111 Dynamic Web
Service Binding

Middleware should be able to after
device discovery and categorisation
expose a new device as a web service
that can be called without re-
compilation.

New devices are callable and
controllable in 7 out of 10
cases.

Hydra-112 Dynamic Web
Service Generation

Configuration tool that is able to
generate the necessary interfaces to
wrap the device functionality as a web
service.

7 of 10 device functionalities
are automatically represented
as web services

Hydra-113 Composition (of
services and
devices)

In order to enhance or replace
application level functions it will be
useful to be able to compose services
and devices from different providers
and/or manufacturers into high level
services/devices

Service composition during
design-time is possible.

Hydra-114 Semantic enabling
of device web
services

Middleware should be able to attach
semantic descriptions to device web
services based on device ontology.

7 of 10 devices are
semantically enabled.

Hydra-117 Hydra component
ontology

In order to support automatic device
proxy creation, a Hydra middleware
manager’s ontology is needed. The
ontology will facilitate the selection of
the appropriate device and service
managers to implement the proxy,
depending on the discovery protocol
and device types.

Hydra device and service
managers can be identified
and selected through a
software component ontology

Hydra-119 Domain modelling
support

The middleware and IDE should be
able to interface with application
domain frameworks
representing core concepts and
functions of specific application
domains. These could in the most basic
form be represented by UML Profiles,
or domain ontologies.

The Hydra IDE supports at min
2 defined domain modelling
frameworks.

Hydra-120 Multiple Device
Virtualisations

It should be possible to have several
different views/virtualisations of a
device depending on context and
applications.

At least 2 different
virtualisations are provided

Hydra-126 Automatic Device
ontology updates

The device ontology should
automatically update its device
descriptions.

The device ontology can
detect device updates and
handle that in 7 of 10 cases.

Hydra-129 Support for
Semantic Web
Standards for
Device

Middleware should support different
semantic web standards, including
OWL-S, WSMO, and selected parts of
WS-*

Support for at least OWL-S
and WSMO

http://localhost:8010/jira/browse/HYDRA-108
http://localhost:8010/jira/browse/HYDRA-110
http://localhost:8010/jira/browse/HYDRA-111
http://localhost:8010/jira/browse/HYDRA-112
http://localhost:8010/jira/browse/HYDRA-113
http://localhost:8010/jira/browse/HYDRA-114
http://localhost:8010/jira/browse/HYDRA-117
http://localhost:8010/jira/browse/HYDRA-119
http://localhost:8010/jira/browse/HYDRA-120
http://localhost:8010/jira/browse/HYDRA-126
http://localhost:8010/jira/browse/HYDRA-129

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 12 of 74 2009-08-20

Communication

Hydra-210 Middleware should
support different
architectural styles

It must be possible to build systems
with different architectures such as
fully decentralised vs. centralised.
De/centralization can pertain to:
- data/knowledge
- control
- computation

Supports at least two
different architecture styles

Hydra-376 Security
requirements must
be part of the
Hydra MDA

Security must be defined to be
resolved semantically

Security model can be defined
semantically

Hydra-389 Service browsing in
device ontology

It must be possible to view services as
central building blocks, thus an
application developer should be able
to browse the device ontology from a
service perspective, in addition to a
device perspective.

A developer can find services
and use them in
development, without an a
priori knowledge of the
devices that implement the
services.

Hydra-392 Rules for selection
of alternative
devices

The developer user should be able to
specify how devices can replace or
complement each other. This is
relevant in situations when a device
fails and another device exists which
can provide a replacement service, or,
when different levels of quality of
service are available.

In the SDK, contructs are
available that allow the
developer to specify rules for
when and how devices and
services can be interchanged
and combined.

Hydra-477 Device proxies
should make use of
available security
features for "last
mile"
communication

If non-Hydra-enabled devices are
communicate to the Hydra network by
a proxy, security features of the
protocol supported by the device
should be used.

Device proxies must support
WEP and WPA for Wi-Fi
connections as well as
Bluetooth authentication and
encryption

Hydra-500 Semantic
annotations of
devices using
SAWSDL

Device developers should via the DDK
be able to produce (SAWSDL)
annotations for devices, in order to
facilitate device discovery and
ontology update.

For a given UPnP discoverable
device, it is possible to create
an SAWSDL annotation which
can be accessed from the
UPnP discovery information.

Hydra-501 A Hydra enabled
device must
support UPnP
discovery

UPnP has been proven as a well-
functioning network discovery
mechanism in Hydra.

All Hydra enables devices
support UPnP

3.2 Quality attributes scenarios

As a complement to the Volere requirements process, a set of Quality Attribute Scenarios were also
developed. These are based on a number of ISO Quality Attributes that can be used to characterize

different architecture qualities of the Hydra architecture (e.g., portability, adaptability). The Quality

Scenarios relate some of the Volere requirements to the corresponding Quality attributes, by
describing how particular quality attribute can be identified in the system architecture and possibly

also measured. These results were reported in deliverable D6.1 [Hydra, 2007].

http://localhost:8010/jira/browse/HYDRA-210
http://localhost:8010/jira/browse/HYDRA-376
http://localhost:8010/jira/browse/HYDRA-389
http://localhost:8010/jira/browse/HYDRA-392
http://localhost:8010/jira/browse/HYDRA-477
http://localhost:8010/jira/browse/HYDRA-500
http://localhost:8010/jira/browse/HYDRA-501

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 13 of 74 2009-08-20

4. Hydra approach to Semantic MDA

4.1 Motivation: Applications with heterogeneous physical device networks

Hydra applications are based on networks of embedded devices, which may be geographically

distributed and possibly heterogeneous in the technologies supported.

The Hydra MDA supports the design and run-time of such applications by providing a set of models,

transformations and component assemblies.

The objectives are to facilitate programming with devices for application developers to thru the
Hydra SDK, and for device manufacturers to Hydra enable physical devices through the Hydra DDK.

The semantic model-driven architecture of Hydra is based on combination of ontologies and other
semantic web technologies to support the design of applications of device networks in different

application domains. The MDA is both a design-time and a run-time resource.

Figure 1: Device networks for home automation may include large numbers of

heterogeneous devices.

Even though Hydra is a middleware and the MDA is a part of the middleware, the platform is tested

in three different application domains.

Various types of devices usable in these domains have been the sources for requirements on the

semantic representations of device and service descriptions and development support and tools for
programmers.

Recent developments in home automation has resulted in new types of home appliances that are
DLNA-compatible (a further development of UPnP), current mainly various media management

devices. These devices should be able to coexist in a Hydra network, with other types of sensors

and actuators based on various wireless technologies like ZigBee, Bluetooth and RF, which are
supported by Hydra.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 14 of 74 2009-08-20

Figure 2: Devices for home health-care and remote monitoring

In the areas of health and agriculture, Hydra is supporting the use of various monitoring and sensor

devices, foot vital signs monitoring and environment sensors.

Figure 3: Agriculture and farming is another domain for Hydra applications

In order to connect these different devices, Hydra implements the necessary network platform
infrastructure (based on SOA over P2P). On top of this platform the MDA provides the tools and

mechanisms allowing programmers to develop model driven applications with the above mentioned
device types.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 15 of 74 2009-08-20

Figure 4: The Hydra middleware implementing Hydra Device networks

To achieve our vision of a Semantic Model Driven Architecture we have chosen to base our approach

on ontologies and related semantic technologies. In Hydra there are three major ontologies used -
Device Ontology, Security Ontology and Software Components Ontology.

The Hydra Device Ontology presents the basic high level concepts describing basic device related
information, which will be used in both development and run-time process.

Figure 5: Device taxonomy subset of the Hydra Device Ontology

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 16 of 74 2009-08-20

The device ontology is divided into four interconnected modules:

 Basic device information and taxonomy

 Device services

 Device malfunctions

 Device SW and HW capabilities and state machine

The content and structure of the Device Ontology is described in more detail in chapter 5.

To summarise, there are two uses of the semantic MDA in Hydra is used in two phases. Firstly, it is
relevant at design-time, and it will support both device developers as well as application developers.

Secondly, at run-time any Hydra application is driven from the semantic MDA.

4.2 Physical Devices and Hydra Devices

The basic idea behind the Hydra Semantic MDA is to differentiate between the physical devices and
the application´s view of the device.

A Hydra Device is the software representation of a physical device. This representation is either
implemented by a proxy running on a gateway device, or, by embedded Hydra managers on the

actual device. A Hydra Device is said to Hydra-enable a physical device.

The MDA run-time includes a Device Service Generator which creates the service interfaces for

discovered devices. Each Hydra device will thus get a web service as well as a UPnP service

interface.

There are five categories of Web (UPnP) services generated for a Hydra Device,

 A Generic Hydra web service, exposing metadata and management functions common to all

Hydra Devices

 An Energy web service, providing a set of functions for the monitoring and control of energy

consumption of devices.

 A Memory Service which allows logging and storing of device internal data such as state

variables and energy consumption data.

 A Location Service which can be used to query the device about is location and position.

 A device type specific web service, exposing the device type specific functions

4.3 Semantic Devices

Based on Hydra Devices, we introduce the concept of Semantic Devices as a programming

construct. This allows a programmer to develop new applications specific adaptations of the

available Hydra Devices.

The Hydra Devices offers a set of services, a lamp might offer “on/off” and “dimming” as two

services while a pump might offer “increase flow” and “get water temperature” as two services.

The services offered by the physical devices have been designed independently of particular

applications in which the device might be used. A semantic device on the other hand represents

what the particular application would like to have. For instance, when we are designing the lighting
system for a building it would be more appropriate to model the application as working with a logical

lighting system that provides services like “working light”, “presentation light”, and “comfort light”
rather than working with a set of independent lamps that can be turned on/off. These logical devices

might in fact consist of aggregates of physical devices, and use different devices to deliver the
service depending on the situation. The service “Working light” might be achieved during daytime by

pulling up the blind (if it is down) and during evening by turning of a lamp (blind and lamp being

Hydra Devices). We call these logical aggregates of devices and their services for Semantic Devices.

Semantic Devices should be seen as a programming concept. The application programmer designs

and programs his application using semantic devices. Figure 6 below illustrates the concept. The

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 17 of 74 2009-08-20

semantic device “Heating System” consist of three physical devices: a pump that circulates the
water, a thermometer that delivers the temperature and a light that flashes when something is

wrong.

The developer will only have to use the services offered by the semantic device “Heating System”,
for instance “Keep temperature:20 degrees Celsius” and “Set warning level:17 degrees Celsius”, and

does not need to know the underlying implementation of this particular heating system.

Light 1 Light 2Pump

Heating System Comfort Lighting Working Light

Home Automation

Home Automation System Application

Thermometer Window Blinds

Physical Devices

Semantic Devices

Hydra application

Pump Thermometer Light 1 Light 2 Window Blinds

Hydra Devices

Figure 6: Semantic Devices provide a high-level programming construct on top
of Hydra Devices.

The Semantic Device concept is flexible and will support both static mappings as well as dynamic

mappings to physical devices.

Static mappings can be both 1-to-1 from a semantic device to a physical device or mappings that
allow composition.

 An example of a 1-to-1 mapping would be a “semantic pump” that is exposed with all its

services to the programmer.

 An example of a composed mapping is a semantic heating system that is mapped to three

different underlying devices – a pump, a thermometer and a digital lamp.

Static mappings will require knowledge about which devices exists in the runtime environment, for
instance the heating system mentioned above will require the existence of the three underlying

devices – pump, thermometer and lamp – in for instance a building.

Dynamic mappings will allow semantic devices to be instantiated at runtime. Consider the heating
system above. We might define it as consisting of the following devices/services:

 a device that can circulate the water and increase its temperature

 a device that can measure and deliver temperature

 a device that can create an alarm/alert signal if temperature is out of range.

When such a device is entered into the runtime environment it will use service discovery to
instantiate itself and it will query the physical devices it discovers as to which can provide the

services/functions the semantic device requires. In this example the semantic device most probably

starts by finding a circulation pump.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 18 of 74 2009-08-20

But then it might find two different thermometers which both claims they can measure temperature.
The semantic device could then query about which of the thermometers can deliver the temperature

in Celsius, with what resolution and how often. In this case it might only be one of the

thermometers that meet the requirements. Finally the semantic device could search the network if
there is a physical device that can be used to generate an alarm if the temperature drops below a

threshold or increases to much. By some reasoning the semantic device can deduct that by flashing
the lamp repeatedly it can generate an alarm signal, so the lamp is included as part of the semantic

heating system.

The basic idea behind semantic devices is to hide all the underlying complexity of the mapping to,

discovery of and access to physical devices. The programmer just uses it as a normal object in his

application focusing on solving the application’s problems rather then the intrinsic of the physical
devices.

We note also that Semantic devices can be subject to device discovery, and will in that case be
discovered as Hydra Devices by other Hydra applications.

4.4 Semantic MDA at design-time

4.4.1 Model-driven code generation for Hydra Devices

The different ontologies in the semantic MDA are used at design time to generate web service code

for devices. This work is carried out as a part of WP 4 “Embedded AmI Architecture”. While WP4 is

concerned with generating small and efficient web service code that can be embedded into devices,
WP6 is concerned with utilising these device web services by mapping semantic devices to them to

provide programmers with a high level semantic interface to the devices. It should be noted that in
both WP4 and WP6 the same Device Ontology is used to ensure maximum re-use and a truly

semantic MDA approach. It is the responsibility of WP6 to define the structure and content of the

Device Ontology, as is described in chapter 5.

The details of the Hydra approach to web service code generation for devices are described in

Deliverable 4.2 [Hydra, 2007b]. This section thus briefly summarizes the approach.

The figure below shows the generation strategy for web services for devices. We have developed a

tool, Limbo, which takes as inputs an interface description (“Provide WSDL file”) and a semantic
description of the device on which a web service should run (“Provide OWL description”). The

interface description is assumed to be in the form of a WSDL file and the semantic description is a

link to an OWL description of the device (part of the Device Ontology).

Provide WSDL file
Provide OWL

description

Create embedded

service stubs

and skeletons

Create proxy

service stubs

and skeletons

[Resources available

and open device]
[Resources constrained

or closed device]

Figure 7: Automatic generation of web service code for devices.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 19 of 74 2009-08-20

The semantic description is used to

 Determine the compilation target. Depending on the available resources of a device, either

embedded stubs and skeletons are created for the web service (to run on the target device)

or proxy stubs and skeletons are created for the web service (to run on an OSGi gateway).

 Provide support for reporting device status. Based on a description of the device states at
runtime (through a state machine), support code is generated for reporting state changes

through the Hydra Event Manager. Eventually this also supports the self-* properties of

Hydra.

In both cases, refer to D4.2/D4.7 “Embedded Service SDK/DDK Prototype and Report” for more

detail.

Model-driven code generation for Semantic Devices

The descriptions of services in the Device Ontology can be used at design time to find suitable

services for the application that the Hydra developer is working on. The descriptions of these
services will be used to generate code to call the service, query the device that implements the

service, and manipulate the data that the service operates on.

 The Hydra SDK and DDK are made available in an object-oriented language environment, and IDEs.

Thus, the objects a developer can use to access the services (service proxies) as well as objects

from the Device ontology connected to the service (in its simplest form, the parameters to the
service operations) will be generated from the Device Ontology and discovery information retrieved

from the devices at discovery time.

These device objects can then be used when creating a semantic device or Hydra application from

the selected Hydra devices and their services.

An example of this is a heating control system, where device proxies to represent the heating

system devices and classes representing the domain classes (Temperature, TemperatureRange), will

be generated for the Hydra developer.

Some devices have a certain set of services built in, e.g. a thermometer that provides a

thermometer reading service. The thermometer service is not upgradeable and no other services can
be added to the device. In this case we can find out which services the device provides by looking

up the device in the ontology.

Some advanced devices such as smart phones and PDAs, however, are capable of installing and
hosting any number of services. This is a capability of devices that will be represented in the Device

Ontology. There are physical devices that come with a static set of services, devices that are
programmable and thus can host (almost) any service and devices that can host Hydra proxies for

physical devices. A Hydra developer can specify a service to be used, and leave the device as
generic as possible - any device that is capable of implementing the service. The necessary code will

be generated both for the service and the device.

Applications can decide how to use the Device Ontology, so that some applications will only use the
Device Ontology at design whereas others will always query the Device Ontology for new types of

services that match certain goals.

4.5 Semantic MDA at Run-time

4.5.1 Device Discovery Architecture

The Hydra MDA includes a Discovery Architecture which implements the device discovery process.
This architecture is structured in three layers abstracting the discovery functions.

The discovery process operates both locally and remotely, so that devices that are discovered in a

local Hydra network can also be discovered in a peer Hydra network over the P2P protocol
implemented by the Hydra Network Manager.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 20 of 74 2009-08-20

Figure 8: The 3-layered Discovery Architecture is part of the Hydra MDA.

The lowest discovery layer implements the protocol specific discovery of physical devices. This is

performed by a set of specialized discovery managers listening for new devices at gateways in a

Hydra network. The second layer uses UPnP/DLNA technology to announce discovered physical
devices in the local network and to peer networks.

At the top most layer the device type is resolved against the Device Ontology and is mapped to
some Hydra Device type. It is then placed in the Device Application Catalogue (DAC). If an

application subscribes to events regarding this type of device, it will be notified that the device is

available and has been placed in the Device Application Catalogue.

Figure 9: In the final step of discovery, the device type is resolved against the
device ontology, and then entered into the DAC notifying the Hydra application.

4.5.2 The Device Application Catalogue (DAC)

The Device Application Catalogue (DAC) is a fundamental part in every Hydra application. It is a

runtime component that keeps track of and manages all devices that are currently active within an

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 21 of 74 2009-08-20

application. The DAC is managed by the Application Device Manager. The DAC serves all Hydra
middleware managers with the information and metadata they need regarding devices, their

services, and their status.

The Application Device Manager uses the Hydra Device Ontology and models for discovery to
recognise new devices when they enter into a Hydra network. Based on the discovery model it

queries the Device Ontology to deduce what type of device has entered the network. The Hydra DAC
can be queried by different middleware managers to retrieve a service interface for different devices.

A Hydra browser has been developed to allow a user/developer to graphically browse the Hydra
network and inspect properties and services of devices. The browser tool also allows the user to

invoke the different services offered by devices. To illustrate the functionality of the Device

Application Catalogue we can view the figure below that shows the Hydra DAC Browser which allows
browsing of the different devices that have currently been discovered by the Hydra DAC.

Figure 10: The Hydra Browser

 By manually invoking the different services we can also actually illustrate the role the Device
Application Catalogue plays in the Hydra middleware. As can be seen above 5 different Discovery

Managers are available in the network, each of them is dedicated to discover a certain type of

physical device (Bluetooth, RF Switches, and ZigBee etc).

Each Discovery Manager keeps track of the device it has discovered and tries to elicit as much

information as possible from the device. All this physical discovery information can be accessed by
calling the service “Get Device Physical Discovery”.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 22 of 74 2009-08-20

Figure 11: Retrieving discovery information from the physical device

This discovery information is returned as an XML document, which can be seen in the figure below:

Figure 12: Discovery information from a Bluetooth Device

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 23 of 74 2009-08-20

In the figure we can see that it is a Bluetooth Device that has been discovered, it has the Bluetooth
Major DeviceType “Phone” and Minor DeviceType “CellPhonePhone” (Major DeviceType and Minor

DeviceType are part of the Bluetooth standard.

The Bluetooth Discovery Manager has also managed to extract the different Bluetooth services
offered by the device. This discovery information can now be used to reason about what type of

device has been discovered. The physical discovery XML is given to the Device Ontology which
deducts that this device corresponds to a “Basic Phone” in the Hydra Device Ontology.

Figure 13: Resolving a physical device into a Hydra Device.

By invoking the service “Resolve Device” we can now tell the Bluetooth Discovery Manager that this

is a “Basic Phone”. The idea is of course to do this programmatically, but here we do it manually for
illustration purposes.

Figure 14: Resolve information is sent as an XML structure to the Discovery

Manager

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 24 of 74 2009-08-20

The Discovery Manager then creates and publishes the Device to the network as a “Basic Phone”
device. The Basic Phone device is now available together with the services offered by a Basic Phone

(in this case a set of SMS read/send functions).

Figure 15: A physical device with unknown functionality has been transformed

into Basic Phone Device with services for reading/sending SMS.

These services are now directly invokable from the Browser, and we can now for instance send an

SMS.

Figure 16: Sending an SMS through the Basic Phone Device

Finally we can also use the Browser to retrieve a service description for a web service that allows us

to access the device programmatically:

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 25 of 74 2009-08-20

Figure 17: Using the DAC to retrieve a WSDL description for the device.

Figure 18: A WSDL (Web Service Description Language) for the device

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 26 of 74 2009-08-20

The models used at design time are also used in the discovery of devices. At design time, the Hydra
application developer selects the Hydra devices and services that will be used to implement the

application. This subset of the Device Ontology will form the basis for the Device Application

Catalogue. These devices may be defined at a fairly general level, e.g. the application may only be
interested in "Hydra SMS Service" or "Hydra Generic Smartphone Device" and any device entering

the network/(application context) that fits in these general categories will be presented to the
application. The application will then work against the more general device descriptions.

This means that an application should only know of the (types of) devices and services selected by
the developer when it was defined. Although other devices may be registered at the network level,

an application gets notified on a "needs/wants to know" basis. Note that this still means that the

application could use a device that was designed and built after the application was deployed, as
long as the device can be classified through the Device Ontology as being of a device type or using a

service that is known to the application, e.g., a Hydra application built in 2008 could specify the use
of "Hydra Generic Smartphone" and "Hydra SMS Service" and thus use a "Nokia N2010 Smartphone"

released two years later.

The above scenario means that although the Device Application Catalogue is defined at design time
as a selection from the Device Ontology at a specific point in time, the Device Ontology used at

runtime will be constantly updated. Whether the Ontology Manager always will use a full ontology or
in some cases a subset that is useful to the application for optimization is to be further investigated.

This will require solutions for versioning, caching and evolution of the Device Ontology.

If there are any non-Hydra-enabled devices that the developer wants to use, these will have to be

Hydra enabled first using the (Hydra device mapping tools) e.g. LIMBO [Hydra, 2007b]. The Hydra

developer will also have to define the application level events that are of interest to the application,
e.g. devices entering or leaving the network, error states, and so on.

In the SDK, only Hydra Devices are used. If the developer needs information about the specific
device at run time, this will be available on request (analogous to reflection capabilities in various

programming languages), but in most cases, the only objects that the application handles are Hydra

devices.

The DDK (Device Development Kit) is used to Hydra-enable physical devices, while the SDK

(Software Development Kit) is used to build more advanced Hydra applications using other Hydra
Devices.

4.5.3 Use of models for resolving security requirements and capabilities

The MDA also plays a role in the design and enforcement of security in Hydra. The modelling
framework, requirements and design principles are based on the Hydra Security Meta Model, which

elaborates the set of building blocks: context, trust, virtualisation and semantic resolution
(deliverable D7.9).

A Security Ontology (reported in deliverables D7.6 and D7.7) is used to provide a vocabulary for
protection goals and capabilities for Hydra Devices and applications. The ontology is a Hydra

adaptation of an existing ontology framework (the NRL security ontology). The security ontology can

be referenced from the devices descriptions in the Device Ontology.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 27 of 74 2009-08-20

Figure 19: (from D7.9) Security Ontology can be used to resolve common

security capabilities

We refer to the corresponding WP7 deliverables for in-depth descriptions of the Security Meta Model
and its implementation in Hydra.

4.6 Standards used

An important objective in the design of Hydra as an open source middleware has been the use of
standards, such as the various industry standards for semantic technologies. In the development

process, three such language standards were used:

 The Web Ontology Language (OWL) allows semantic description of the several elements in
the middleware environment. OWL was used as the main modelling language for ontology

specification, capturing the most important requirements for achieving semantic
interoperability in the Hydra

 The SPARQL query language for RDF was used to retrieve the information from ontologies in

the development process to test the representation capabilities of developed models and
also in Application Ontology Manager Implementation.

 The Semantic Web Rule Language (SWRL) allows definition of rules, which were used to
extend the models of device state-machines. SWRL is primarily used in the devices

diagnostics process.

A short overview of used standards and reasoners with their possibilities of usage in the Hydra is
presented in the appendix.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 28 of 74 2009-08-20

5. Hydra ontologies

5.1 Hydra ontology architecture

In Hydra, ontologies are used to model devices, security requirements and parts of the middleware

itself.

The Hydra Device Ontology represents the concepts describing device related information, which can

be used in both design and run time. The basic ontology is composed of several partial models

representing specific device information. The initial device ontology structure was extended from the
FIPA device ontology specification [FIPA 2002]. The initial device taxonomy was extended from

AMIGO project vocabularies for device descriptions [AMIGO, 2006].

The relation between the Device Ontology components is shown in

FiFigure 20.

F

i
Figure 20: Relations between main Device Ontology components.

The components of the Device Ontology can be shortly described as follows:

■ Core Ontology (Device.owl): contains a taxonomy of various device types and the basic
device description, manufacturer and model information.

■ Device Capabilities: represent the hardware properties (Hardware.owl, Network.owl) and
software description (SoftwarePlatform.owl divided into DotNet.owl, Java.owl and

OperatingSystem.owl ontologies)

■ Device Services (Service.owl): describes the models of device services in the terms of

operation names, inputs and outputs. The device services are connected to the Quality of
Service ontology (QoS.owl, QoS.owl, QoSSpec.owl, Unit.owl) used to annotate the services

and their parameters to several quality factors.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 29 of 74 2009-08-20

The Hydra services of a device are further divided in different categories, which are made
available to the developer in the DAC:

 A generic set of services providing access to various device and service metadata.

 A number of device type specific services.

■ Device events (Event.owl): provides the descriptions of events, which can be generated by

the simple devices, as the alternative of providing the functionality. Events can be annotated
to the quality of service ontology in the similar way as the services.

■ Device Malfunctions (Error.owl): represents the various types of errors and failures which

may occur when using the device at run-time

■ Self-* Properties supporting models: models of state-machines tracking the run-time

device/service state changes, model of device run-time request/response tracking
(IPSniffer.owl, StateMachine.owl) and SWRL rules supporting mainly the self-monitoring and

self-diagnosis processes. Detailed in WP4, D4.8.

■ Security Ontology (securityMain.owl): represents the various security properties, such as
protocols, algorithms (securityAlgorithms.owl), objectives and assurances

(securityAssurance.owl), which may be attached to devices or services. To describe the
security properties, the third party NRL ontology was reused, modified and connected to the

device model. Detailed in WP7, D7.3-D7.9.

■ Discovery models (Discovery.owl): used for semantic resolution in the semantic discovery

process.

 Application model (Application.owl): describes the model of application and the entities used

in various applications, such as locations or persons (Location.owl, Coord.owl,

SetLocation.owl, GraphLocation.owl)

 The Hydra ontology architecture was designed to support the maintainability and future extensions
of used concepts. The ontologies have been developed using the OWL language. The references

between more general and specific concepts and modules (related ontologies) is realised using the
OWL import mechanism. In design-time, every ontology module can be further extended by creating

new concepts according to the needs of representation of the new information about new device

types and models. The concepts can also be further specialized. For example, if the new device type
is needed, the adequate concept in the device classification module can be further sub-classed by

more specialised concepts and the new properties can be added.

The device or application developer may use the maintenance/update tools to extend or modify the

ontology structure or for populating the ontology with instances – i.e., models of specific devices.
Device instances created at design time are represented by description templates, which are used at

run-time to create application specific device instances. Each time a new device is discovered, the

ontology is used to infer the most suitable device template and the Ontology Manager creates the
device specific clone – the run-time instance. Each real device has its own run-time instance, which

is used to track the device properties continually changing at run-time. Tracking of run-time
properties is used e.g. for self-monitoring, self-diagnosis, updating state-machines purposes or

context-related computations. The ontology models can also be used as the semantic support for

model-driven application development.

5.2 The Device Model

5.2.1 Basic device information

Basic device information represents general device information. The HydraDevice concept presents

the main ontology class. The HydraDevice is further subclassed to the model of the PhysicalDevice
and the SemanticDevice, which share the common device properties (such as deviceId or location),

but have different semantic interpretation and behaviour.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 30 of 74 2009-08-20

The concept InfoDescription contains basic information about device friendly name, manufacturer
data (such as manufacturer name and URL) and device model data, namely model name, model

description and model number. The information is represented as OWL data type properties. The

InfoDescription class is referred from the HydraDevice concept using the info OWL object property.

An important part of the basic device information is the representation of device type. The type of

device is modelled as the OWL is-a hierarchy by sub classing the PhycicalDevice concept. This
approach leads to the model of flexible device taxonomy, which can be further modified and

extended by newly manufactured or not yet used device descriptions. The main purpose of device
taxonomy is to reduce the whole model complexity by distributing the device information into

smaller units. Each device type should refer only to relevant parts of all possible device information,

for example relevant device capabilities, service types, malfunctions, etc. The Device taxonomy
should also reduce the information complexity in both development and run-time process by

selecting only the set of device information relevant to actual context. The hierarchy is defined for
the physical devices, which are used as the lowest (physical and executable) level in semantic

devices composition.

The semantic model of the basic device description is illustrated in FFigure 21. The initial device
taxonomy was taken from AMIGO project vocabularies for device descriptions [AMIGO, 2006].

F

Figure 21: Device Taxonomy

Further, the OWL object property hasEmbeddedDevice of SemanticDevice concept recursively refers
to HydraDevice concept. This property enables the creation of models of composite devices, such as

in case of HeatingSystem device used in first system prototype application. HeatingSystem can be,

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 31 of 74 2009-08-20

for example, composed of Thermometer and Pump devices. Property hasEmbeddedDevice enables
to access information on several subsumption levels according to actual needs in dependence on

actual context, run-time properties, required services, etc.

5.2.2 Device services

The device services ontology component presents the semantic description of device services on the

higher, technology independent level. Hydra service model enables the interoperability between
devices and services, employing the service capabilities, input and output parameters and supported

communication protocols supporting the device interaction.

The semantic service specification is based on the OWL-S [OWL-S, 2004] standard, which is

currently the most complete description of semantic mark-up for services following web service

architecture (the overview of related standards for semantic web service mark-up is presented in
D6.3 deliverable). The OWL-S approach was taken as the starting point for Hydra service model.

HydraService concept serves as the container for the two different service types SemanticService of
PhysicalService assigned to the semantic or physical devices. HydraService concept is linked to the

common service properties, such as quality of service, security properties, additional service

capabilities or I/O parameters. ServiceInput and ServiceOutput parameters are specific subclasses of
general ServiceParameter class and should be annotated to a semantic model describing various

input and output types in the syntactic (for example, string, number) and semantic (for example,
address, and user name) way. For more, the ServiceOutput contains the information of actual value

and value range of the output parameter. This information should hold the actual value returned by
the service and should be continually updated. Actual values can be used for example for diagnostics

or various kinds of context-based decisions. Capabilities and input/output descriptions can be used

for suitable service discovery or service composition, but also for semi-automatic or fully automatic
generation of self-descriptive service user interfaces.

Figure 22: Modelling of services in the Hydra Device Ontology.

The PhysicalService concept represents the properties of real device services and contains the

taxonomy of services. The taxonomy is also used to classify the services by their capabilities or

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 32 of 74 2009-08-20

usage purposes. Using the service categorisation tends to reduced complexity of service discovery
and development process by selection of only services of specified type or usage.

SemanticService represent the model of composition of devices and services used by the semantic

device.

The proposed Hydra device services model represents one possible approach to service modelling

and may be subject to further investigation and research related to possible existing and future
semantic service mark-up standards (such as WSMO) and the system architecture requirements.

5.2.3 Device Events

Some simple devices, which are not able to provide a service interface, may instead provide simple
functionalities in the form of generated events. The events are, similarly to the description of

services, subclassed to the taxonomy of possible event types. Each Event is described by the
MetaInformation providing the basic event description (frequency of event generation, trigger, event

human-readable description). Each event contains the set of EventKeys, which are sent in key-value

pairs by the device, when the event is generated. The event keys can be annotated to the quality of
service ontology, which specifies the units of values. The model of events is illustrated in Figure 23.

Figure 23: Event model in the Hydra Device Ontology

Actually, the event ontology is used as the semantic support for the developer, when creating the

application. Using the event ontology, the developer can easily check, what should be taken into
account, when device generating the events should be used in the application.

5.2.4 Device malfunctions

The semantic model of device malfunctions represents possible errors that may occur on devices.

The concept Malfunction is referred from the HydraDevice concept using the hasMalfunction OWL
object property. This concept contains general malfunction information, namely OWL data type

properties malfunctionName and malfunctionCode, where property malfunctionName represents
human readable name and malfunctionCode contains application specific malfunction reference.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 33 of 74 2009-08-20

Both properties are mainly used to access the information related to specific faults. OWL object
property hasCase of Malfunction concept represents the one-to-many relation to potential

malfunction cases represented by MalfunctionCase concept.

The concept MalfunctionCase contains two OWL data type properties cause and remedy, which
contain the human readable name of particular cause and human readable remedy describing how

to react to the given cause. Every device malfunction may have as many cases as needed.

In order to have a flexible model of malfunctions, the Malfunction concept can be further sub

classed to several malfunction levels or severity, such as, error, fatal, warning and info. Possible
severity levels can be further extended by the hierarchy of specific faults.

The model of basic device malfunctions is illustrated in .

Figure 24 .

Figure 24.

Figure 24: The malfunction part of the Hydra Device Ontology

Connecting the device taxonomy to the malfunction taxonomy creates a flexible representation of

fault states, which may occur on various device types and the possibilities of their solutions. The
malfunctions, using taxonomy relations, can be, according to actual context, used to retrieve the

more general fault descriptions in case, when the required specific description for the concrete
device (or device type) is missing. The connection of malfunction model and device state machine

can be used for diagnostic purposes. The various faults related to specific ontology states can, for

example, be used to predict or avoid the fatal error states of a device or to invoke the related call-
back events to handle the error states that may occur in run-time.

5.2.5 Device capabilities and state machine

The device capabilities as part of the device ontology refer to the various Self-* Properties

supporting models, such as models of state-machines tracking the run-time device/service state
changes, models of device run-time request/response tracking and SWRL rules supporting mainly

the self-monitoring and self-diagnosis processes. Details are found in WP4 Deliverable D4.8.

DevOnt 1: Device malfunctions.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 34 of 74 2009-08-20

Figure 25: The State machine part of the Hydra Device Ontology

5.3 Semantic Discovery Model

When a new device enters the Hydra network, it is discovered using one of the low level discovery
managers for various protocols such as Bluetooth, ZigBee or RFSwitch. In order to obtain the

semantic model of this device and its services, the device entering the network has to be

semantically resolved. That means, that the related device model has to be identified in the
ontology. The model is used e.g. to describe several services provided by the device. The semantic

resolution is performed using this model. This model contains the device discovery information for
each specific device type. The general view of the model is shown in Figure 26.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 35 of 74 2009-08-20

 Figure 26: Semantic discovery model.

Once the device is discovered by the discovery manager, the obtained low level discovery
information is transformed into a SPARQL query, which is fired against the ontology and the

matching device descriptions are identified. As the low level discovery information is often too weak,
in many cases, there are multiple matches of device models. Further resolution is improved by

comparing the device manufacturer or model information, if possible. When there are still more
possible matches, the suitable model has to be identified experimentally. Each matching model

contains the description of device services, which can be executed against the physical device. If the

device is able to respond to every service described in the particular model, this model is selected as
the most suitable semantic representation of the device.

Semantic discovery identifies the semantic model, which is tied to physical device. This model
enables the semantic support for the physical device. The semantic model is used for example to

enable various kinds of semantic searches and resolutions, such as security resolution, context-

related inference or retrieving the devices providing specific functionality, quality of service, etc.

The example of a semantic discovery model for the phone discovered by the Bluetooth protocol is in

Figure 27.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 36 of 74 2009-08-20

Figure 27: Bluetooth phone semantic discovery information.

5.4 Semantic Device Model

Each physical Hydra device used in an application provides a set of services, which can be directly

used by the application developer. For example, the thermometer device may provide the “get
temperature” or “set temperature” services. As introduced in Section 4.3, the idea behind the

semantic devices is to enhance the application development by providing the application specific
services, for example if there are more thermometers in the room, an application may provide “get

average room temperature” or “hold the temperature on specified level” services. The concept of

semantic devices brings the idea of specifying the application specific behaviour achieved as the
composition of several Hydra devices services organized into complex units. Such complex units –

logical aggregates of devices are called semantic devices.The semantic devcies may be implemented
in two ways:

 Using the static mapping to the specific Hydra devices or other semantic devices and their
services, in this case, the resulting behavior is hardcoded as the composition of specified

Hydra devices services.

 Using the dynamic mapping to the devices semantically specified by various requirements,
such as quality of service, context or security information (e.g. get the average temperature

retrieved from any device capable to measure the temperature in degrees of Celsius in the
room).

The Ontology model of semantic device is shown in Figure 28. Each specific device can be seen as a

semantic device, thus basic HydraDevice concept extends the SemanticDevice concept. The same
situation counts for device services, thus the basic Service model extends the SemanticService

concept.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 37 of 74 2009-08-20

Figure 28: Model of semantic device.

The Semantic device contains only the device name and the set of provided semantic services. Each

semantic service contains the specification of devices used by this service. The implementation of
behaviour is provided by the developer. In this case, semantic device model can be used to support

the development process, for example:

 By automatic generation of semantic device interface.

 By providing the interfaces for embedded devices.

 By providing the basic functionality for execution of various types of search queries.

The implementation of semantic services can be seen as the composition of used devices services.
When semantic service implementation uses dynamic mapping to devices specified only by some

kind of semantic requirements (e.g. all devices capable of temperature measuring), the devices
satisfying the semantic specification are retrieved automatically. Thus, this kind of implementation

uses the orchestration approach, where devices matching the requirements are specified only by
defined requirements.

An example of a TemperatureHandler semantic device is shown in Figure 29. The semantic device

has the semantic service getAverageTemperature using two thermometer devices in a static way.
Even if the semantic service contains a set of specified devices, the implementation can be realized

as the combination of statically defined devices and the orchestration behaviour. The static definition
of used devices serves only as the case, when semantic service has to work exactly with some

specific devices. But this specification does not entail any limitation for using also orchestrated

devices. For example, the developer may decide to create a specific temperature alert device using
just some selected thermometers in the room, which have to be specified (thermometers are

specified as the concrete devices – static mapping). When the temperature measured by selected
thermometers decreases below some level, the semantic device may perform the “low temperature

alert” by blinking the light using any lamp in the room (lamp is specified only by location or by

device type – dynamic mapping).

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 38 of 74 2009-08-20

Figure 29: Example of TemperatureHandler semantic device.

More complex semantic devices may be also used as the decision units providing a specific
functionality in terms of effectiveness by some specified criteria. For example, the application may

use two semantic devices capable of controlling the light in the room. One semantic device controls
the lamps, another controls the blinds. These two devices may be composed into a more complex

semantic device, which would be capable for example to save the energy. Using the specific

information, the device will be able to decide, how to perform the light control. In summer day-time
it may use the blinds controlling semantic device to control light, in the evening or winter it can

prefer to use the lamps controlling semantic device. Using more information about devices, e.g.
various kinds of energy profiles, semantic devices can be used as standalone units implemented to

perform the operations while satisfying the specified goals (e.g. energy saving). The application
development can be radically simplified by using the existing semantic devices adjusted for the

specific environment.

5.5 Application Specific Ontology

When designing an application, ontology can be used to model the application structure and the
specific devices used. For example, in the case of a home automation application, it is helpful to

specify, which locations (e.g. rooms) an application will have, which persons use the application,
which concrete devices belongs to locations or are owned by concrete persons. An application

ontology represents a simple model with two basic purposes:

 to specify simple context-related information describing the locations and persons

 to specify relation of concrete devices to locations or persons

This model should be prepared in design time, when developing the application implementation. At

run-time, discovered physical devices are bound to the application model. It is not required to

specify all of the devices used by the application. Application ontology should only use those devices,
which should be used for specific computations in a similar way, as in the case of static/dynamic

mapping for semantic devices. The concrete devices may be specified directly for the application,
application locations, persons owning devices, but also by using the semantic devices. If the

semantic device is used in the application, the set of concrete devices used by the semantic device

(if any) can be inferred.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 39 of 74 2009-08-20

6. Main developments in third iteration

The main advancements (in WP6 as per the 3rd iteration) of the semantic MDA are mainly in the

following areas:

 Device discovery

 Automatic generation of device web services and devices proxies

 An adapted Device Ontology

 SDK and DDK support for programming with devices

 Device profiling and annotation

6.1 Device Discovery

Several issues have been investigated and resolved for the management of the DAC and the

discovery process:

 The Hydra discovery functions are able to discover other devices that use a number of different

protocols; Bluetooth, UPnP, Zigbee etc. These may also be able to announce themselves to

other devices using all these protocols.

 In this iteration we have moved from service composition at design time to resolving at run time

when a set of devices and services that are present in the network constitute a composite

device, and place this composite device in the DAC.

 We have analysed and improved semantic discovery process to be more precise.

 The ontology device descriptions have been refined with discovery information for different

device and protocol types.

 A semantic discovery process (device is resolved in ontology by searching low-level discovery

information) has been implemented.

6.2 Automatic generation of device web services and devices proxies

A cornerstone in the Semantic MDA is the ability to automatically generate device web services

based on discovery information. The following progress was made during the third iteration.

 Automatic generation of WSDL description and web services from UPnP descriptions (SCPD and

service descriptions).

 Adding Event Generation for devices, configurable based on state variables.

 Generation of SA-WSDL annotations from ontology for a number of device types.

 The discovery process currently works with an implicit software component model. This model

represents the device managers and service managers that are selected for automatic proxy
generation. This model is currently not available to the developer, but the device and service

manager objects are, and can be specialized.

6.3 Adaptation of the Device Ontology

The semantic MDA in Hydra is driven from the device ontology. The following improvements and
extensions have been done with respect to the device ontology:

 Basic design of ontology models for device energy (properties/consumption) models and

middleware software components

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 40 of 74 2009-08-20

 Extension of ontologies with models for semantic devices support and application/deployment

models

 Revision of the device ontology with energy profile properties

 Revisions of the concepts and representation for semantic devices

 Ontology extensions: models for data acquisition support, QoS model, models of device events

as the alternative to device services and software and hardware ontology refined

 Design of ontology support needed for Device Developers Kit (DDK)

 Integration of a QoS ontology

6.4 SDK and DDK support for programming with devices

To support application developers as well as device developers a number of tools and components

have been designed and implemented:

 Definition of a set of generic energy device services

 Designing support for Semantic Devices with mapping to Hydra devices

 Revision of the device naming and identification scheme with persistent names and dynamic
HID binding

 Specification and development of tool interfaces to the ontology manager for application

developers and device manufacturers.

6.5 Device profiling and annotation

To further improve on how devices are described and their services modeled the following issues

have been pursued:

 Definition of energy profiles and energy policies (rule-based language) for the orchestration of

energy consumption parameters and services.

 Preliminary survey on device energy profile models and modelling of device energy

properties/consumption/features

 Development of support for device annotation of energy features

 Implementation of SAWSDL annotations of device service input/output parameters to ontology

concepts.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 41 of 74 2009-08-20

7. Future Work

7.1 SW components ontology

The purpose of SW components ontology is to provide a model of the middleware software [Oberle,

2006] components that comprise a Hydra configuration (Hydra-117: Hydra component ontology,
Hydra-139: Knowledge model of hydra middleware). This model will support activities of

composition, configuration, deployment and monitoring of the Hydra middleware (Hydra-115:

Decomposable middleware, Hydra-122: Configurable and easy to install middleware).

The requirements to a component model are well met by the OSGi component model (which is also

basis for the dynamic component model in Java as described in JSR-2911. We will use this as a basis
for component ontology. The specification allows components to be declared through metadata and

be assembled at runtime using a class loader delegation network. The specification also allows

components to be dynamically life cycle managed (install, start, stop, update, uninstall). The JSR-
291 specification is basically OSGi R4. It is suggested to model the OSGi Module Layer as ontology.

7.2 Ontology design and management

The Semantic MDA of Hydra includes certain generic ontology management functions for the Hydra
IDE. The Hydra middleware as such does not impose any specific engineering or management

methods with respect to ontologies, but should be open to any approach.

In Hydra we adopt the following view on the management of ontologies:

Ontology management is the whole set of methods and techniques that is necessary to efficiently

use multiple variants of ontologies from possibly different sources for different tasks. Therefore, an
ontology management system should be a framework for creating, modifying, versioning, querying,

and storing ontologies. It should allow an application to work with ontology without worrying about
how the ontology is stored and accessed, how queries are processed, etc. Ontology modification is

accommodated when an ontology management system allows changes to the ontology that is in
use, without considering the consistency. Ontology evolution is accommodated when an ontology

management system facilitates the modification of ontology by preserving its consistency. Ontology

versioning is accommodated when an ontology management system allows handling of ontology
changes by creating and managing different versions of it [Hydra, 2006].

 “Ontologies, to be effective, need to change as fast as the parts of the world they describe” (Davies
et al.). This would hold for any model claiming to be an accurate abstraction of some part of the

world, but becomes very critical in an ontology-based system like Hydra where openness and

reasoning over system capabilities expressed in models are vital.

Ontology changes can emanate from user requirements on changes to structure and classification;

in Hydra this would be the developer users’ requirements. The changes can also be induced by
changes in the underlying domain objects being modelled by the ontology, in Hydra; this would e.g.

be changes in device capabilities, in security protocols, or in middleware components.

7.2.1 Ontology design process

The initial Hydra ontology design process is been manual, performed by ontology engineering

experts (a Hydra partner) and domain (device) experts (developer users / focus group members).

The requirements capturing process is part of and based on the requirements work performed as

part of WP2 and the Volere elicitation process. This naturally follows the iterative approach of the
Hydra project’s development model.

1 http://jcp.org/aboutJava/communityprocess/final/jsr291/

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-139
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-115
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-122
http://jcp.org/aboutJava/communityprocess/final/jsr291/

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 42 of 74 2009-08-20

7.2.2 Modifying and Evolving ontologies in Hydra

A developer must be able to define new or extend existing device ontologies (Hydra-101: Manual

device ontology definition), and hence the SDK/IDE is required to provide the necessary tools,

including an ontology browser and editor.

To semantically maintain the device ontologies, it is necessary to identify and find the relevant

descriptive sources and to retrieve the necessary semantic descriptions. This description must then
be transformed into the model structure of the actual ontology.

The manual ontology updates are complemented by support mechanisms for (semi-) automatic
extension to ontologies. This support can be divided into mechanisms for:

- device descriptions mining and parsing

- device instance change discovery and capture

7.2.2.1 Automation support for classifying devices

Hydra ontology evolution can be supported by providing functions for the automatic classification of

devices (Hydra-103: Automatic device ontology construction).

The construction of device ontology should be facilitated through finding and parsing product or

device descriptions to annotate and produce ontology entries. By this we mean the process of

retrieving device related information and the transformation of this into a device description which
can be included in the device ontology as a (sub-) class. The transformation process should be able

to map multiple input formats (such as MS Word, PDF, HTML, XML), to the ontology language of
Hydra (OWL).

The updated ontology description is then usable in the process of dynamically binding a specific
device instance to the particular device class in the ontology (Hydra-110: Device Categorisation in

runtime).

7.2.2.2 Change discovery and capture

The complementary function to the above is to capture changes to existing devices and to propagate
these as updates to the ontology (Hydra-126: Automatic Device ontology updates). This has been

referred to as data-driven change discovery, in ontology literature.

7.2.3 Mediation, aligning and merging of ontologies

A Hydra installation must be able to interface with existing ontologies (Hydra-141: Harmonization of

3rd party device ontologies). A developer should be able to import external (device) ontology and be
provided with tools for its adaptation and use in application development.

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101
http://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 43 of 74 2009-08-20

8. Appendix: Standards and Tools

8.1 Standards used

8.1.1 Modelling and query languages

8.1.1.1 Ontology Web Language (OWL)

The OWL Web Ontology Language [McGuinness, 2004] is designed for use by applications that need

to process the content of information instead of just presenting information to humans. OWL
facilitates greater machine interpretability of Web content than that supported by XML, RDF, and

RDF Schema (RDF-S) by providing additional vocabulary along with formal semantics. OWL has
three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

The basic reasons for decision to use of OWL for modelling in Hydra are:

 OWL extends all other languages like XML, RDF, and RDF-S. Actually, OWL has been

developed on top of the existing XML and RDF standards, which did not appear adequate for

achieving efficient semantic interoperability.

o E.g. in XML and XML Schema same term may be used with different meaning in
different contexts, and different terms may be used for items that have the same

meaning.

o E.g. RDF and RDF-S address some problem by allowing simple semantics to be

associated with identifiers. With RDFS, one can define classes that may have

multiple subclasses and super classes, and can define properties, which may have
sub properties, domains, and ranges. However, in order to achieve interoperation

between numerous, autonomously developed and managed schemas, richer
semantics are needed, like disjoints and cardinality of relations.

o OWL adds more vocabulary for describing properties and classes, relations between
classes, cardinality, equality, richer typing of properties, characteristics of properties

and enumerated classes, and all available in three increasingly expressive and

increasingly complex sublanguages (Lite, DL, Full) designed for use by specific
communities of implementers and users.

 OWL is well-known widely used open W3C recommendation with very good support and

promising potential and real usage in several industry applications.

 OWL has wide support of modelling tools, platforms, and reasoners.

 Previous languages could express (in most cases) the same things, but for some of them

OWL provide direct solution by a predefined type of predicates.

 There are several well-known mechanisms for expressing OWL-Lite and OWL-DL ontologies

to stay on decidable level, where Description Logic (DL) could be used correctly.

 OWL language has proved its potential to use for modelling of semantic interoperability in

several middleware-based applications and domains.

In Hydra the same OWL-based framework can be used for representation of context, device

descriptions (capabilities), descriptions of middleware components, services, security aspects, with
several specific goals such as:

 Use of semantic models of device descriptions and services for model-driven architecture

design (code generation for devices and services).

 Use of semantic-based models in run-time for discovery of devices (adoption to interfaces

supported by device), resolving application requests, resolving security requirements,

services execution and context awareness.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 44 of 74 2009-08-20

 Modelling of particular elements to create necessary semantic-based models mostly based

on the Semantic Web technologies.

OWL Lite and DL should be used for reasoning with DL-reasoners for organising context definitions,

merging domain knowledge into these definitions, and performing recognition of contexts from

sensor inputs. The ontology has many merits, of which the most notable are the excellent
extensibility, and high expression power. Many systems in the “ubiquitous” and embedded

environments are developed using DL-based ontologies and used with DL-based reasoning. Usually,
ontologies are used for modelling context that the systems should collect and analyze. A pure DL-

based approach, however, has certain limitations in a context environment. OWL and other
ontology languages based on Description Logic cannot properly handle rules expressed in Horn-

Logic. Hence, to ensure syntactic and semantic interoperability on device level (e.g. “low-level”

ontologies), SWRL (Semantic Web Rule Language) can be used for expressing rules.

8.1.1.2 Semantic Web Rule Language (SWRL)

SWRL [SWRL, 2004] combines sublanguages of the OWL (OWL DL and Lite) with those of the Rule

Mark-up Language (Unary/Binary Datalog). Actually, it is an extension of OWL which adds support
for Datalog syntax-style rules over OWL DL ontologies. Instead of arbitrary predicates (as in

Datalog), SWRL allows arbitrary OWL DL descriptions in both the head and the body of rules, where

a unary predicate corresponds to an OWL class and a binary predicate corresponds to an OWL
property. While a subset of SWRL falls inside Horn Logic, a SWRL knowledge base easily goes

beyond this fragment, because of the use of classical negation and existentially quantified variables
and disjunction in the head of the rule. A set of Horn Logic formulae can be reduced to standard

Logic Programming rules; the Horn Logic formulae and the Logic Programming rules entail exactly
the same set of ground formulae. Consequently, SWRL and standard rule languages differ in

expressiveness. The advantage of common rule languages which are based on Horn Logic is the

efficient reasoning support which has been developed for certain reasoning tasks like query
answering. By going beyond the Horn fragment, SWRL loses this advantage.

More details about usage of modelling directly for Hydra-related purposes are presented in particular
chapters in this document and/or other deliverables related to already mentioned topics like context

awareness, semantic security, semantic interoperability in Hydra middleware (device discovery and

usage in runtime, model-driven architecture design, etc).

8.1.1.3 SPARQL

Last topic to be mentioned in this section is querying of ontologies, this is based on the well-known

(and already mentioned) SPARQL. Many semantic reasoners/engines have built-in support for this
query language (e.g. Jena, RacerPro and Pellet). SPARQL is an RDF query language; its name is a

recursive acronym that stands for SPARQL Protocol and RDF Query Language, and it is undergoing

standardization under the W3C (currently November 2007 the status of SPARQL changed into
Proposed Recommendation). The beneficial properties of a query language (like SPARQL) for the

Semantic Web defined [Bailey, 2005]:

 Referentially transparent - “within the same scope, an expression always means the same”,

 Strong answer closure - the result of a query can be used as the input for further querying,

 Set-oriented functional – also known as a backtracking-free logic programming,

 Incomplete queries and answers - support for data on the Web that may not have defined

schemas,

 Multiple serialisation aware - able to serialise data to various formats including XML, OWL,

RDF,

 Queries that support reasoning capabilities - the ability to query different data sources and

infer new statements.

SPARQL is a Server-Client-based RDF query language. It has SQL syntax and is influenced by RDQL

and SquishQL4. SPARQL can process more complex query than RDQL and provides optional variable
binding and result size control mechanisms for real world usage. SPARQL allows for a query to

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 45 of 74 2009-08-20

consist of triple patterns, conjunctions, disjunctions, and optional patterns. Several implementations
for multiple programming languages exist. The SPARQL query processor will search for sets of

triples that match particular triple patterns, binding the variables in the query to the corresponding

parts of each triple. To make queries concise, SPARQL allows the definition of prefixes and base
URIs.

8.1.2 Reasoners

Reasoning over designed ontologies is important part of any semantic-based application. Here we

can see several important aspects for usage of particular reasoners. First, reasoning over created
ontology and their instances, querying languages over meta-data. The selection among the

aforementioned alternatives is basically based on the language capabilities and the availability of

further querying APIs and frameworks for it (it is a fact that available frameworks or querying APIs
are strongly associated and dependent on the languages).

8.1.2.1 JENA

According to the fact that OWL is used for modelling in Hydra middleware, it is natural that
reasoners in our case have to support OWL-based (DL and OWL-Lite) reasoning. The main

application element of Hydra middleware responsible for ontologies is Application Ontology Manager.

In order to achieve unified and comprehensive solution in programmatic way, Jena Semantic Web
Framework (http://jena.sourceforge.net/) has been used for implementation of the manager. Jena is

specifically suited to develop Java-based Semantic Web applications. It is open source and grown
out of work with the HP Labs Semantic Web Programme. The Jena Framework includes:

 A RDF API

 Reading and writing RDF in RDF/XML, N3 and N-Triples

 An OWL API

 In-memory and persistent storage

 SPARQL query engine

 Rule support – own rule engine

Jena provides a very comprehensive framework easy usable not only for reasoning, but also for

other purposes of querying, persisting, updating and versioning of different types of ontologies in

Hydra middleware.

The only weakness of the Jena framework is SWRL support. Jena has its own Rule engine support,

which is slightly different to standard SWRL. Actually, in most cases (where SWRL is not directly
used) Jena prove its potential, only in some cases where SWRL plays an important role (e.g. see

chapter about use of models for context awareness) it can be problematic.

8.1.2.2 RacerPro

During the development and design of SWRL-based parts of middleware semantics another engine
has been used – RacerPro (http://www.racer-systems.com/). RacerPro is a knowledge

representation system that implements a highly optimized calculus for a very expressive description
logic augmented with qualifying number restrictions, role hierarchies, inverse roles, and transitive

roles. In addition to these basic features, RACER also provides facilities for algebraic reasoning
including concrete domains for dealing with min/max restrictions over the integers, linear polynomial

(in-)equations over the reals or cardinals with order relations, nonlinear multivariate polynomial (in-

)equations over complex numbers, equalities and inequalities of strings. Actually, RacerPro is
commercial and can be only used as trial for academic/research purposes, as it was somehow used

also in our case.

8.1.2.3 Pellet

A solution for future can be using of another open-source engine for rule support. Pellet

(http://pellet.owldl.com/) has an implementation of an algorithm for a DL-safe rules extension to

OWL-DL. This implementation allows one to load and reason with DL-safe rules encoded in SWRL.

http://jena.sourceforge.net/
http://www.racer-systems.com/
http://pellet.owldl.com/

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 46 of 74 2009-08-20

Pellet has also been coupled with a Datalog reasoner to support AL-log (Datalog + OWL DL). This
coupling implements the traditional algorithm and a new pre-compilation technique that is

incomplete but more efficient. What is important here is that there is implemented reasoner

interface for Jena, so it is possible to use the rule support based on SWRL within whole framework.

Pellet reasoner was used in the ontology development process as the part of TopBraid composer

(see bellow).

8.2 Platform and Tools

In the ontology development process, includes two ontology editing tools supporting all of used

standards languages: TopBraid composer and Protégé-OWL editor.

8.2.1 TopBraid composer

TopBraid Composer (http://www.topbraidcomposer.com/), a component of TopBraid Suite, is a
modelling tool for the creation and maintenance of semantic models (ontologies). It is a complete

editor for RDF(S) and OWL models, as well as a platform for other RDF-based components and

services.

TopBraid Composer enables individual users and communities to collaborate effectively in developing

Semantic Web ontologies. Key features of TopBraid Composer include:

 Standards-based, syntax directed development of RDFS and OWL ontologies, SPARQL

queries and SWRL rules using ontology-driven forms, which can be customized. Ontologies

can be developed using form-based GUI or also the manual source code editing.
 Imports and namespace management.

 Re-use of the legacy models and data through XML, UML, spreadsheet and database
schema imports.

 Visualization and diagramming using UML class like diagrams or visual RDF

graphs.
 Consistency checking and debugging.

 Multi-user support.
 HTML documentation generation.

TopBraid Composer is implemented as an Eclipse plug-in. Many other Eclipse plugins for editing

other languages such as UML and XML exist, and therefore users can use a single tooling

environment for many different modelling tasks. Furthermore, the foundation on the Eclipse plug-in
architecture means that developers can build additional services (such as custom visualization and

reasoning engines) on top of TopBraid Composer.

TopBraid Composer is built on top of Jena, a Semantic Web framework from HP Labs. Jena is open-

source and plug-in developers will be able to exploit arbitrary Jena-based services. TopBraid

Composer is also shipped with the OWL DL Pellet reasoner from the University of Maryland MindLab.
Additional inference engines can be integrated and specified in the configuration preferences.

8.2.2 Protégé-OWL editor

The Protégé-OWL (http://protege.stanford.edu/overview/protege-owl.html) editor is an extension of

Protégé (http://protege.stanford.edu/) that supports the OWL. The Protégé platform supports two
main ways of modelling ontologies:

 The Protégé-Frames editor enables users to build and populate the frame-based

ontologies (in accordance with the Open Knowledge Based Connectivity Protocol

(OKBC)). Using this modelling approach, ontology consists of a set of classes organized
in a subsumption hierarchy representing a domain concepts, a set of slots describing the

properties of classes and relationships, and a set of instances of defined classes.

 The Protégé-OWL editor enables users to build ontologies directly on OWL standard.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 47 of 74 2009-08-20

Hydra ontologies are modelled using OWL; the Protégé-OWL editor was used for development
purposes. Protégé OWL provides a variety of features that makes it very useful for building

ontologies in OWL, namely:

 Loaded or newly created ontologies can be maintained using form-based GUI. In various

visual ways of editing the classes, properties and individuals.

 Wizards to streamline complex tasks supporting common ontology-engineering patterns,

such as creating groups of classes, making a set of classes disjoint, creating a matrix of

properties in order to set many property values, and creating value partitions.
 Direct access to reasoners is used for three default types of reasoning: (1) consistency

checking, (2) classification (subsumption), and (3) instance classification).

 Multi-user support for synchronous knowledge entry.

 Support for multiple storage formats. Current formats include Clips, XML, RDF, N-

TRIPLE, N3, TURTLE and OWL.

Protégé-OWL's flexible architecture makes it easy to configure and extend the tool. Protégé-OWL is

integrated with Jena and has an open-source Java API for the development of custom-tailored user

interface components or arbitrary Semantic Web services.

Protégé has also strong ontology visualisation tools implemented as Protégé plug-ins. The well

known and commonly used are OWLViz and OntoViz plug-ins.

OWLViz is designed to be used with the Protege OWL plug-in. It enables the class hierarchies in an

OWL Ontology to be viewed and incrementally navigated, allowing comparison of the asserted class

hierarchy and the inferred class hierarchy. OWLViz integrates with the Protege-OWL plug-in, using
the same colour scheme so that primitive and defined classes can be distinguished, computed

changes to the class hierarchy may be clearly seen, and inconsistent concepts are highlighted in red.
OWLViz has the facility to save both the asserted and inferred views of the class hierarchy to various

concrete graphics formats including png, jpeg and svg.

The OntoViz Tab allows you to visualize Protege ontologies with the help of highly sophisticated

graph visualization software called GraphViz (http://www.graphviz.org/) from AT&T. The types of

visualizations are highly configurable and include:

 Picking a set of classes or instances to visualize part of ontology.

 Displaying slots and slot edges.

 Specifying colours for nodes and edges.

 When picking only a few classes or instances, you can apply various closure operators

(e.g., subclasses, super classes) to visualize their vicinity.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 48 of 74 2009-08-20

9. Appendix: Components implementing the MDA

This appendix describes the middleware software components that implement the main parts of the

semantic MDA, explaining their roles, functions and component structure. The corresponding

software deliverables are D6.7 and D6.8. For details of the overall Hydra architecture we refer to
deliverable D3.9.

Figure 30: Hydra Software components (managers) architecture

9.1 The Application Device Manager

The Application Device Manager manages all knowledge regarding devices that have been
discovered and are active in the Hydra network. It maintains the Device Application Catalogue (DAC)

and makes use of a set of Discovery Managers which are running locally on different gateways to do
physical discovery of devices (Bluetooth, z-wave, ZigBee, RF-switches, serial ports). Figure 31

displays the main class structure of the Application Device Manager.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 49 of 74 2009-08-20

Hydra Device

Unresolved Device

Discovery Manager

BlueTooth

Discovery Manager

RF Switch

Discovery Manager

-discoveredBy

*

-embeddedDevice*

Protocol X

 Discovery Manager

«DeviceOntologyClass»

Device

«traces»

Device Application Catalogue DAC

*

*

Figure 31: Application Device Manager (Discovery Manager) Main Structure

Main Functionalitie:

 Discovering devices

 Semantically resolving the device type and available services based on the Device Ontology

 Creating a service interface for the device

 Managing semantic device descriptions

 Providing semantic device aggregation

 Managing the Device Application Catalogue (DAC)

9.1.1 Related WP6 requirements

[Hydra-91] Any Hydra device should have an associated description

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: For management, search and discovery purposes, all Hydra enabled devices should be
described (classified) according to the Hydra device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a Hydra application is also included in the Hydra device ontology, and
its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-108] Device discovery

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 50 of 74 2009-08-20

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-110] Device Categorisation in runtime Created: 28/Nov/06 Updated: 09/Oct/07

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should after discovery of device be able to categorise a device based on device
ontology information.

Source: WP6 MDA Focus Group

Fit Criteria: 7 of 10 devices are correctly categorised and described.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

Dependencies: 101

[Hydra-111] Dynamic Web Service Binding

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to after device discovery and categorisation expose a new device as
a web service that can be called without re-compilation.

Source: WP6 SoA Focus Group

Fit Criteria: New devices are callable and controllable in 7 out of 10 cases.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[Hydra-112] Dynamic Web Service Generation

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Configuration tool that is able to generate the necessary interfaces to wrap the device
functionality as a web service.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 device functionalities are automatically represented as web services

Developer
Satisfaction:

very high

Developer high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-111
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-112

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 51 of 74 2009-08-20

Dissatisfaction:

 [Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

9.1.2 Internal Components

The figure below displays the three main subcomponents of the Application Device Manager that will

be described in more detail by the following subsections.

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 52 of 74 2009-08-20

Application Device Manager

Application Device Manager Interface

Device Discovery

Device Application Catalogue

Device Service Generator

Application Ontology Manager

Application Ontology Manager Interface

Application Event Manager

Application Event Manager Interface

Application Network Manager

Application Network Manager Interface

Application Security Manager

Application Securitry Manager Interface

Figure 32: Application Device Manager

9.1.2.1 Device Discovery

Purpose

One of the major functions of the Application Device Manager is to discover new devices in the

network. It will support user-initiated discovery as well as automatic schemes. Requirements 108

and 218 are associated with this module.

Main Functionalities

For each device protocol such as BlueTooth and ZigBee there is a dedicated discovery module that

manages the protocol specifics. Discovery managers run on Hydra gateways where they look for
physical devices such as Bluetooth devices.

Description

This is the base class for all discovery managers in Hydra. A discovery manager is part of the
Application Device Manager. A discovery manager keeps track of the devices it has discovered. As

long as the devices are unresolved they are treated as embedded devices of the Discovery Manager.
A discovery manager runs locally on a gateway/PC where it looks for remote devices such as

Bluetooth or RF switches devices. The discovery manager has direct access to the device objects it
has created. Furthermore, the corresponding DiscoveryManager class is inherited by specializations

such as BluetoothDiscoveryManager, DeviceControllerDiscoveryManager,
SerialPortDiscoveryManager, RfswitchDiscoveryManager, and ZigBeeDiscoveryManager

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 53 of 74 2009-08-20

9.1.2.2 Device Application Catalogue

Purpose

The Device Application Catalogue keeps track of and manages all devices that are currently active
within one application. It is a view on the Device Ontology and a current set of (discovered) devices.

Main Functionalities

 Maintains a database of discovered devices for an application

 Maintains a mapping of logical device names to Hydra Identifiers (HIDs)

 Provides a HID query interface for other managers

 Provides a search function over current DAC member devices

 Provides a search function onto the Device ontology

 Stores Energy Profiles and Policies for Devices and Applications

Description

The Device Application Catalogue can be queried about existing devices and their status. It can also

provide service interfaces for the different devices upon request. The Device Application Catalogue

will also keep track of when the device entered the system, when it was last heard of and its current
state. The Device Application Catalogue should also provide methods for removing devices.

Requirements 91, 98, 110 and 111 are associated with this module.

9.1.2.3 Device Service Generator

Purpose

The Device Service Generator is responsible for generating a service interface for a certain device. It

will create web services as well as UPnP services.

Main Functionalities

Generates five web services for a Hydra Device,

 A device type specific web service, exposing the device functions

 A Generic Hydra web service, exposing metadata and management functions common to all

Hydra Devices

 An Energy web service, providing a set of functions for the monitoring and control of energy

consumption of devices.

 A Memory Service which allows logging and storing of device internal data such as state

variables and energy consumption data.

 A Location Service which can be used to query the device about is location and position.

Description

Provides service interfaces for a Hydra device, to allow proxy-based access. The service interface is

created based on information in the device ontology.

9.2 Application Service Manager

The purpose of the Application Service Manager is to discover, create and execute semantic (web)

service services on top of devices. It adds a service layer above the Application Device Manager.
Services might map to several device functionalities.

Main Functions:

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 54 of 74 2009-08-20

 Discovering service

 Creating semantic services for service orchestration and mapping to device

service.

 Provide a service query interface to allow applications to locate services that

match their requirements.

 Service descriptions and annotations.

9.2.1 Related WP6 requirements

[Hydra-104] Automatic Discovery of Services

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: It should be possible to configure the middleware to discover available services that meets
defined criteria.

Source: St. Augustin

Fit Criteria: 8 of 10 services are automatically discovered.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

 [Hydra-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-114] Semantic enabling of device web services

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-119] Domain modelling support

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-104
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 55 of 74 2009-08-20

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The middleware and IDE should be able to interface with application domain frameworks
representing core concepts and functions of specific application domains. These could in the
most basic form be represented by UML Profiles, or domain ontologies.

Source: WP6 MDA focus group

Fit Criteria: The Hydra IDE supports at min 2 defined domain modelling frameworks.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Dependencies: 117

[Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-129] Support for Semantic Web Standards for Device Communication

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should support different semantic web standards, including OWL-S, WSMO, and
selected parts of WS-*

Source: WP SoA Focus Group

Fit Criteria: Support for at least OWL-S and WSMO

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-129
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 56 of 74 2009-08-20

Satisfaction:

Developer
Dissatisfaction:

high

9.2.2 Internal Components

Application Service Manager

Application Service Manager Interface

Service Discovery Semantic Service Catalogue

Application Ontology Manager

Ontology Manager Interface

Application Device Manager

Device Manager Interface

Application Security Manager

Securitry Manager Interface

Figure 33: Application Service Manager

9.2.2.1 Service Discovery Module

Purpose

The Service Discovery Module discovers new services in the Hydra network.

Main Functionalities

 Discovering services

 Managing semantic service descriptions and annotations.

Description

The Service Discovery Module discovers new services in the Hydra network; it provides a developer

with a service perspective on their device applications. The service discovery process is less
complicated than the device discovery process. Services can only be discovered if a device that

offers the service has been discovered.

 Application Service Manager asks DAC for the device it has discovered.

 For each device the Application Service Manager asks for its service description.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 57 of 74 2009-08-20

 Application Service Manager checks the SA-WSDL annotations of the service descriptions

and queries the Ontology manager about more information regarding the service.

 It updates the service catalogue with the newly discovered service.

9.2.2.2 Semantic Service Catalogue

Purpose

The Service Application Catalogue keeps track of all services that are currently associated with an
active device within one application. It is a service view on the Device Ontology and a current set of

(discovered) services.

Main Functionalities

 Maintains a database of discovered services for an application

 Provides a HID query interface for other managers

 Provides a search function over current DAC services

Description

The Semantic Service Catalogue keeps track of and manages all of the services offered within an

application. It can be queried for existing services and provides service interfaces for invocation. The
catalogue is based on service descriptions in the device ontology.

9.3 Application Orchestration Manager

The Application Orchestration Manager provides support for composite services and workflows. It is

an execution engine for the Hydra Device Orchestration Language (“DOLL”). The main purpose for

Application Orchestration Manager in this iteration is to focus on energy efficiency aspects. Therefore
DOLL has been specialised into an energy policy language.

Main Functions:

 Executing call sequences consisting of invocations of Device services

 Providing interpretation, execution and monitoring of energy policies.

9.3.1 Related WP6 requirements

[Hydra-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-392] Rules for selection of alternative devices

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 58 of 74 2009-08-20

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The developer user should be able to specify how devices can replace or complement each
other. This is relevant in situations when a device fails and another device exists which can
provide a replacement service, or, when different levels of quality of service are available.

Source: WP6 eHealth focus group

Fit Criteria: In the SDK, contructs are available that allow the developer to specify rules for when and how
devices and services can be interchanged and combined.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 59 of 74 2009-08-20

9.3.2 Internal Components

Orchestration Manager

Orchestration Manager

Energy Policy Monitor

Orchestration Manager Interface

Application Device ManagerApplication Service Manager

Figure 34: Application Orchestration Manager

9.3.2.1 Energy Policy Monitor

Purpose

In order to monitor and coordinate a collection of devices from en energy perspective, a developer
can also specify energy policies on a system-level. These policies typically operate on a set of Hydra

devices, which are related in different policy rules.

Main Functionalities

 Interpret energy policy

 Check energy constraints and execution actions

 Monitor and prevent service execution if energy policy is violated

Description

Hydra middleware provides both device developers and solution developers with support to control

the energy consumption of their devices, thus paving the way for new energy efficient applications.
This support consists of

 Energy Profiles, which describe the energy consumption characteristics of individual devices.

 Energy Policies, divided into,

o Device Energy policies, specifying operational constraints in order to control the
runtime aspects of energy consumption for a device.

o System-level energy policies, which specify run-time constraints for energy
consumption over sets of devices.

The system-level policies are managed and executed by the Application Orchestration Manager.

The energy policy monitor interprets energy policies and executes a set of services depending on the
policy. Devices can be selected by explicit reference to name/id or by selection criteria expressed

over their Energy Profiles and other device descriptions in the device in the Device Ontology.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 60 of 74 2009-08-20

Different categories of rules can be specified in the policy including device dependency constraints
and various run-time consumption restrictions. Examples of Device dependencies are rules specifying

replacement devices, in case of device failure or other unavailability, or, rules for mutual exclusion of

usage, preventing two sets of devices to be used simultaneously. Consumption rules include the
specification of thresholds for overall consumption or for subsets of devices, and the actions taken

such as disabling devices.

9.4 Application Ontology Manager

One of the key components in the Hydra middleware is the Device Ontology, where all meta-
information and knowledge about devices and device types are stored. The purpose of the

Application Ontology Manager is to provide an interface for using the Device Ontology. This manager
could possibly also maintain other models in addition to devices.

Main Functions:

 Device description & annotation

 Parsing & annotation of device description

 Parsing & annotation of device service descriptions

 Device search/query function

 Device services search/query function

 Run-time ontology update

 Reasoner module

This manager also maintains the run-time instances of hydra devices.

9.4.1 Related WP6 requirements

[Hydra-91] Any Hydra device should have an associated description

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: For management, search and discovery purposes, all Hydra enabled devices should be
described (classified) according to the Hydra device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a Hydra application is also included in the Hydra device ontology, and
its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-101] Manual device ontology definition

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The developer should be able to define and extend device ontologies. The IDE is required to
provide descriptors for devices and device classes

Source: WP6 MDA Scenario Focus Group

Fit Criteria: The Hydra IDE supports the manual editing of devices in the framework of device ontology.

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 61 of 74 2009-08-20

Developer
Satisfaction:

low

Developer
Dissatisfaction:

high

[Hydra-103] Automatic device ontology construction

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The construction of device ontology should be facilitated through finding and parsing product or
device descriptions to annotate and produce ontology entries. The component should handle
different input formats like Word, PDF, HTML, databases.

Source: St. Augustin Workshop

Fit Criteria: 5 of 10 device descriptions can be successfully processed

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-108] Device discovery

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-110] Device Categorisation in runtime

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should after discovery of device be able to categorise a device based on device
ontology information.

Source: WP6 MDA Focus Group

Fit Criteria: 7 of 10 devices are correctly categorised and described.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

Dependencies: 101

[Hydra-117] Hydra component ontology

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: In order to support and ease the management of the Hydra middleware, the Hydra middleware

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 62 of 74 2009-08-20

components should be described and mapped to a corresponding Hydra middleware software
component ontology.

Source: WP6 MDA focus group

Fit Criteria: All Hydra components can be identified through a software component ontology

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-119] Domain modelling support

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The middleware and IDE should be able to interface with application domain frameworks
representing core concepts and functions of specific application domains. These could in the
most basic form be represented by UML Profiles, or domain ontologies.

Source: WP6 MDA focus group

Fit Criteria: The Hydra IDE supports at min 2 defined domain modelling frameworks.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Dependencies: 117

[Hydra-126] Automatic Device ontology updates

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The device ontology should automatically update its device descriptions.

Source: WP6 MDA Focus Group

Fit Criteria: The device ontology can detect device updates and handle that in 7 of 10 cases.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Security must be defined to be resolved semantically

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 63 of 74 2009-08-20

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

9.4.2 Internal Components

Figure 35: Application Ontology Manager

9.4.2.1 Reasoner

The reasoner module is responsible for reasoning about devices and their status and provides

inference mechanisms for instance to conclude what type of device has entered the network.

9.4.2.2 Query module

The query module allows for retrieving information regarding devices and their capabilities.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 64 of 74 2009-08-20

9.4.2.3 Update module

The update module allows entering of new information, deletion and changes to the ontology at
both design time and run time.

9.4.2.4 Versioning

The versioning module is responsible for managing different version of the ontology. This

includes different versions of devices and services.

9.4.2.5 Parse & Annotate

The parse & annotate modules is responsible for automatically update the ontology with new

device types. It does so by analyzing and annotates existing device and product descriptions
which are fed into the ontology.

9.5 Application Diagnostics Manager

The purpose of the Application Diagnostics Manager (aka Self-* Manager) is to monitor the system

conditions and state. It will be responsible for error detection and logging of device events. The

Diagnostics Manager will be an important component in providing the self-* properties of Hydra (i.e.,
self-configuration, self-adaptation, self-diagnosis, and self-protection). Completely reliable failure

detection is impossible in a distributed system with the characteristics of Hydra, so the Diagnostics
Manager will need to work with imperfect failure detectors.

Main Functions:

 Systems diagnostics (e.g., a device is dead/ doesn't respond)

o dead/live lock detection

o software failure

o hardware failures
o network failures

 Device Diagnostics (device responds but...)

o service failure
o device status reports

 Application diagnostics / Monitoring

o global resource consumption

o overall property use (e.g., room is too warm)

 Logging

 Self-adaption

o QoS based adaptation

o Switching of communication protocols

o Energy awareness for adaptation

 Self-configuration

o QoS based configuration
o Energy awareness for configuration

 Self-management planning

o service selection based on multiple QoS requirements

o Multiple planning algorithm support

9.5.1 Related WP6 requirements

[Hydra-91] Any Hydra device should have an associated description

Status: Part of specification

Requirement Type: Functional

Work package: WP6

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 65 of 74 2009-08-20

Rationale: For management, search and discovery purposes, all Hydra enabled devices should be
described (classified) according to the Hydra device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a Hydra application is also included in the Hydra device ontology, and
its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-98] Detection of device failures

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The system should be able to detect malfunctioning devices in order to be robust.

Source: WP6 MDA focus group

Fit Criteria: Malfunctioning devices are detected in 8 out of 10 cases.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-98

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 66 of 74 2009-08-20

9.5.2 Internal Components

C
o

m
p

o
n

e
n

t

C
o

n
tr

o
l

C
h

a
n

g
e

M
a

n
a

g
e

m
e

n
t

G
o

a
l

M
a

n
a

g
e

m
e

n
t

Plan Requests
Change Plans

Request/Reply Events

State Change Events
Request/Reply Events

(e.g. Component adaption commands for Actuator)

Statemachine ServiceMessage OSGiComponent

ActuatorEventingPublishClient

RuleProcessing OntologyProcessingEventingPublishClient

EventingSubcriptionClient

GAOptimizer ConflictResolution

EventManager

EventingSubcriptionClient

EventingPublishClient

EventingSubcriptionClient QoSService

Filter

Statemachine

self-

management

ontologies/

Rules

Architecture

knowledge,

GA

algorithms

Architecture

FaultDetection

ProbeMessage

ArchitectureManage QoSManagement

OntologyManager Storage Manager QoS manager NetworkManager Data Acquistion (Resource Manager)

Figure 36: Application Diagnostics Manager

9.5.2.1 Device Status

The Device Status module is responsible for finding out the status of a device and if there are any
malfunctions detected. This component should be coordinated with the device state machine

running on Resource Manager (or Data Acquisition component) component in order to get all the
interested information. This is modeled in StateMachine component in the Component control layer.

9.5.2.2 Log Facility

The Log Facility is used to log all events and interactions between devices. This is used by several

other modules to implement their functionality. The log can also be used to detect different
erroneous states. The whole log facility will be coordinated with the Storage manager, and currently

we log 3 historical results of in the State Machine ontology.

9.5.2.3 Fault Detection

This component will execute rules or rule sets to discover if there is any malfunctioning or

strange behavior in the system. Recovery actions can also be published or taken in order to
achieve self-managing. The fault detection is realized when the diagnosis rules (detailed in D4.3

and D4.8.) executed.

9.5.2.4 Device Monitoring and management

This feature is used to for instance by monitoring the resource usage of certain devices, especially
the battery, memory consumption to achieve power awareness. This reporting of critical resource

changes is realized through the Data acquisition component to be implemented. The management

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 67 of 74 2009-08-20

layer is then conduct related management to check whether to switch transportation protocols, and
other rules execution. Then the Change management layer is used to process rules or rule sets to

monitor devices in order to be preemptive to avoid errors and malfunctions,

9.5.2.5 Communication Monitoring and management

This component is used to conduct packet sniffing on the host running the Web Services and then
can be used to make decisions on the working status of the device. This is realized with IPSniffer

(Flamencoprobe) ontology and the corresponding monitoring rules as detailed in D4.3 and D4.8.

9.5.2.6 QoS Monitoring and planning

This feature needs to be implemented within the QoS management features. It is used to conduct

QoS based self-management. This component is to be implemented by the QoS manager. If QoS is
changed, which can then trigger the planning layer (currently implemented using genetic

algorithms).

9.5.2.7 Architecture Monitoring and its change management

This component is realized through the OSGiComponent component and its associated
OSGiComponent ontology. This will monitor the component changes (introducing services changes),

the application architecture are then monitored.

9.6 Device Device Manager

The Device Device Manager handles service requests and manages the responses. The Device
Device Manager class is a generic class which is used as the base class for all Hydra Device

Managers.

Main Functions:

 Mapping of requests to the services offered by Device Service Manager

 Generation of response

 Advertising Hydra device descriptions including services

 Monitor device energy policies

 Provides memory services for event and state logging

 Provides location services (location data related to device).

9.6.1 Related WP6 requirements

[Hydra-91] Any Hydra device should have an associated description

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: For management, search and discovery purposes, all Hydra enabled devices should be
described (classified) according to the Hydra device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a Hydra application is also included in the Hydra device ontology, and
its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 68 of 74 2009-08-20

[Hydra-92] Rule-based configuration of devices

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The possibility for the developer to specify device behaviour using rules. It should be possible to
derive and re-use rules from pre-existing or generic rule sets for application domains.
Possibility to hide device specific details.

Source: WP6 MDA Focus Group and WP6 eHealth focus group

Fit Criteria: The functionality (services) of a device is accessible (by user or application) thru a rule-based
interface.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-108] Device discovery

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-109] Device Virtualization

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: The complexity of devices may be hidden, or simplified, by means of virtual device interfaces;
these would correspond to "views" on device descriptions as provided by the Hydra device
models (ontologies).

Source: WP6 MDA scenario focus group

Fit Criteria: An existing virtualization can be used to find exactly one proper Hydra device.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[Hydra-111] Dynamic Web Service Binding

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to after device discovery and categorisation expose a new device as
a web service that can be called without re-compilation.

Source: WP6 SoA Focus Group

Fit Criteria: New devices are callable and controllable in 7 out of 10 cases.

Developer
Satisfaction:

very high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-111

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 69 of 74 2009-08-20

Developer
Dissatisfaction:

very high

[Hydra-114] Semantic enabling of device web services

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 70 of 74 2009-08-20

9.6.2 Internal Components

Device Device Manager

Device Device Manager

Device Device Manager Interface

Request and Response

Device Service Manager

Advertise Hydra Device Description

Application Device Manager

Device Memory

Storage Manager

Figure 37: Device Device Manager

9.6.2.1 Request and Response Mapping

Purpose

Provides the interface with the Device Service Manager

Main Functionalities

 Map request to Device Service

 Translate Device Service Manager response to response to the external request.

Description

This module maps a request from an outside caller to an internal service in the device.

9.6.2.2 Advertise Hydra Device Description

Purpose

This module is responsible for broadcasting the existence of the device to the outside world. It will

support advertising thru several protocols, at least UPnP (Universal Plug and Play).

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 71 of 74 2009-08-20

Main Functionalities

 Create UPnP broadcast advertise message

 Create Hydra device model description

Description

This module can advertise and provide the service description of the device.

9.6.2.3 Device Memory

Purpose

Provides a virtual memory for the device.

Main Functionalities

 Storing of event log

 Storing of state variables and overall state.

Description

Provides a virtual memory for the device, using the Hydra Storage Manager

9.7 Device Service Manager

The Device Service Manager implements a service interface for physical devices. It should normally
not be used directly by any other manger than the Device managers.

Main Functions:

 Maps services to physical device operations

 Maps (physical) device events to Hydra enabled events

9.7.1 Related WP6 requirements

[Hydra-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[Hydra-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Work package: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 72 of 74 2009-08-20

Satisfaction:

Developer
Dissatisfaction:

high

9.7.2 Internal Components

Device Service

Manager

Device Service Manager

Device Service Manager Interface

Service mapping

Device Resource Manager

Event mapping

Device Context Manager

9.7.2.1 Service Mapping

This module maps device service request to internal device operations. One device can have
several service mappings.

9.7.2.2 Event Mapping

This module handles physical device events and maps them into Hydra-events.

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 73 of 74 2009-08-20

10. References

[AMIGO, 2006] IST Amigo Project (2006). Amigo middleware core: Prototype

implementation and documentation, deliverable 3.2. Technical report, IST-
2004-004182.

[Bailey, 2005] J. Bailey et al., Web and Semantic Web Query Languages: A Survey, LNCS
3564, Norbert Eisinger, Jan Maluszynski (editor(s)), 2005

[Chandrakasan, 2001] Amit Sinha and Anantha Chandrakasan, Dynamic Power Management in

Wireless Sensor Networks, IEEE Design & Test of Computers, Vol. 18, No. 2,
March-April 2001

[Chen, 2005] H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology for Pervasive
Computing. Ontologies for Agents: Theory and Experiences, 2005.

[DCMI, 2007] DCMI. (2007). "The Dublin Core Metadata Initiative: http://dublincore.org/."
fromhttp://dublincore.org/.

[FIPA 2002] FIPA Device Ontology Specification, Foundation for intelligent physical

agents, 2002.

[Flury, 2004] T. Flury, G. Privat, and F. Ramparany. OWL-based location ontology for

context-aware services. Proc. Artificial Intelligence in Mobile Systems,
Nottingham (UK), pages 52–58, 2004.

[Hydra, 2006] Hydra (2006). D2.2 Initial Technology Watch Report. Hydra Project

Deliverable, IST project 2005-034891.

[Hydra, 2007] Hydra (2007). D6.1 Quality Attribute Scenarios. Hydra Project Deliverable,

IST project 2005-034891.

[Hydra, 2007b] Hydra (2007). D4.2 Embedded Service SDK Prototype and Report. Hydra

Project Deliverable, IST project 2005-034891.

[Hydra, 2007c] Hydra (2007). D7.2 Draft of Virtualisation Ddesign Specification. Hydra

Project Deliverable, IST project 2005-034891.

[Matheus, 2005] C. Matheus. Using ontology-based rules for situation awareness and
information fusion. W3C Work. on Rule Languages for Interoperability,

2005.

[McGuinness, 2004] D.L. McGuinness, F. van Harmelen, OWL Web Ontology Language

Overview, W3C Recommendation, 2004

[Oberle, 2006] Oberle, D. (2006). Semantic Management of Middleware, Springer.

[Oconnor, 2007] M. J. O’Connor, S. W. Tu, A. K. Das, and M. A. Musen. Querying the

semantic web with swrl. In The International RuleML Symposium on Rule
Interchange and Applications (RuleML-2007), Orlando, FL, Oct. 2007. LNCS,

Springer-Verlag.

[OWL-S, 2004] D. Martin et al., OWL-S: Semantic Mark-up for Web Services,
http://www.daml.org/services/owl-s/1.1/overview/, 2004

[Plas, 2006] D.-J. Plas, M. Verheijen, H. Zwaal, and M. Hutschemaekers. Manipulating
context information with swrl. I/RS/2005/117, Freeband/A-MUSE/D3.12,

2006.

[RDF, 2007] RDF. (2007). "The Resource Description Framework (RDF):

http://www.w3.org/RDF/." from http://www.w3.org/RDF/.
[SAWSDL, 2007] SAWSDL (2007). Semantic Annotations for WSDL and XML Schema. W3C

Recommendation. J. Farrell and H. Lausen, W3C.

http://dublincore.org/
http://dublincore.org/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.w3.org/RDF/

Hydra D6.6 Updated MDA Design Document

Version 1.0 Page 74 of 74 2009-08-20

[Schmidt, 2002] Schmidt, D. C. (2002). "Middleware for real-time and embedded systems."
Communications of the ACM 45(6): 43-48.

[SPARQL, 2007] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C

Proposed Recommendation, 2007

[SWRL, 2004] SWRL, 2004 I. Horrocks, et al., SWRL: A Semantic Web Rule Language

Combining OWL and RuleML, W3C Member Submission, 2004

[Zhang, 2007] Weishan Zhang, Klaus Marius Hansen, Kristian Ellebæk Kjær. Exploring

OWL/SWRL based Diagnosis in aWeb Service-based Middleware for
Embedded and Networked Systems. Submitted to ICECCS2008

[Zheng, 2004] Jianliang Zheng and Myung J. Lee, Will IEEE 802.15.4 Make Ubiquitous

Networking a Reality?: A Discussion on a Potential Low Power, Low Bit Rate
Standard, Communications Magazine, IEEE, Vol. 42, No. 6. (2004), pp. 140-

146.

