

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for
Heterogeneous physical devices in a distributed architecture

 Validation Report for DDK Prototype

Integrated Project

SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 52 months

Published by the Hydra Consortium 31.08.2009

Project co-funded by the European Commission

within the Sixth Framework Programme (2002-2006)

Dissemination Level: PUBLIC

HYDRA Validation Report for DDK Prototype

Version 1.1 Page 2 of 56 14.11.2008

Document file: Hydra - D10.3 Validation Report for DDK Prototype

Work package: WP 10 – Validation & business modelling

Task: T10.1 – User validation

Document owner: INN

Document history:

Version Author(s) Date Changes made

0.1 A. Gugliotta, A. Guarise

(INN)

04-06-2009 Document organisation, objectives

and first structure

0.2 A. Gugliotta (INN), M.

Ahlsen (CNet), M. Ingstrup

(UAAR), M. Jahn (FIT), T.

Wahl (SIT), F. Milagro

(TID)

06-07-2009 Included list of requirements for the

second cycle of validation with

contributions from WP leaders

0.3 A. Gugliotta (INN), M.

Ahlsen (CNet), M. Ingstrup

(UAAR), M. Jahn (FIT), T.

Wahl (SIT), F. Milagro

(TID)

07-07-2009 Added text descriptions in sections

1,2 and 3 with contributions from

WP leaders

0.4 A. Gugliotta, A. Guarise

(INN)

29-07-2009 Added text descriptions in section 4

with contributions from WP leaders

0.5 A. Gugliotta (INN) 05-08-2009 Finalized the deliverable

1.0 A. Gugliotta (INN) 31-08-2009 Addressed the comments of

internal reviewers

Internal review history:

Reviewed by Date Comments

Trine Fuglkjær Sørensen (IN-

JET)

18-08-2009 Approved with comments

Adedayo Adetoye (UR) 26-08-2009 Approved with comments

HYDRA Validation Report for DDK Prototype

Version 1.1 Page 3 of 56 14.11.2008

Index

1. Introduction ... 5

1.1 Purpose and context .. 5

1.2 Outline 5

2. Object of the validation .. 6

2.1 Target users ... 6

2.2 Quality dimensions and assessment criteria .. 7

2.3 Requirements for the second iteration .. 8

3. Description of the validation methods .. 9

3.1 WP3 – Evaluated requirements ...10

3.2 WP4 – Evaluated requirements ...15

3.3 WP5 – Evaluated requirements ...17

3.4 WP6 – Evaluated requirements ...21

3.5 WP7 – Evaluated requirements ...24

4. Validation results ... 26

4.1 WP3 validation results ...26

4.2 WP4 validation results ...31

4.3 WP5 validation results ...35

4.4 WP6 validation results ...42

4.5 WP7 validation results ...46

4.6 Summary of the evaluated requirements ...49

5. Conclusions .. 54

6. References ... 56

List of figures

Figure 1: User validation second iteration - time plan ... 6

Figure 2: Storing and receiving cookies process .. 36

Figure 3: Replicated File System Device ... 36

Figure 4: Supernodes deployment ... 38

Figure 5: Non Hydra Device used within Hydra Discovery and Data Acquisition 39

Figure 6: PlayStation3 .. 40

Figure 7: Inaccess Home Gateway ... 40

Figure 8: Android G1 phone .. 40

Figure 9: Overall success percentages after 2nd validation cycle ... 52

Figure 10: Requirements fulfilment for WP3 .. 52

Figure 11: Requirements fulfilment for WP4 .. 52

Figure 12: Requirements fulfilment for WP5 .. 53

Figure 13: Requirements fulfilment for WP6 .. 53

Figure 14: Requirements fulfilment for WP7 .. 53

List of tables

Table 1: Validation plan milestones .. 6

Table 2: WP3 requirements resulted not/partly supported in the 1st cycle. 12

Table 3: WP3 selected requirements for the 2nd validation cycle. 14

Table 4: WP4 requirements resulted not/partly supported in the 1st cycle. 16

Table 5: WP4 selected requirements for the 2nd validation cycle. 16

Table 6: WP5 requirements resulted not/partly supported in the 1st cycle. 17

Table 7: WP5 selected requirements for the 2nd validation cycle. 20

Table 8: WP6 requirements resulted not/partly supported in the 1st cycle. 21

Table 9: WP6 selected requirements for the 2nd validation cycle. 23

Table 10: WP7 requirements resulted not/partly supported in the 1st cycle. 24

Table 11: WP7 selected requirements for the 2nd validation cycle. 25

Table 12: Summary of evaluation results .. 51

Table 13: Overall success rate. ... 54

Table 14: New requirements success rate. .. 54

1. Introduction

1.1 Purpose and context

This deliverable provides the results of the second iteration validation phase focussed on the DDK
prototype. The objective is to show the major outcomes found after applying the validation concepts
described in the revised Deliverable 10.1 “Validation Plan for prototypes” in order to better
understand the middleware and DDK prototype and be able to feed the lessons learnt back into the
next development iteration. The validation tests have been fulfilled during the implementation phase
and in a specific testing activity and it involved both the second Hydra prototypes (DDK) but also the
middleware which is under continuous development. The critical outcomes and those not planned or
foreseen to occur during the software code writing are also highlighted.

It is important to underline at this stage, that the level of implementation gathered for the DDK has
not yet reached the release phase. Indeed, the iterative approach followed in Hydra consists of
successive improvements of the software package, and the validation fulfilled during this second
loop involves the software components that have been developed so far and:

1) the group of requirements that have been considered as a reference and guiding specification for
the actual implementation;

2) the group of requirements that have been considered in the first validation phase (reported in
D10.2) but resulted in either “partial supported” or “not yet supported”.

1.2 Outline

The present validation report represents the second document of a series of three different
assessment studies, one per prototype and iteration, organised and structured as explained in the
validation plan (D10.1), which is considered as an input document. Therefore, this document follows
the same structure introduced in the report of the previous validation phase (D10.2). Section 2
recalls the objects of the validation, the targeted users and the reasoning for explaining the
requirements selection. As Hydra foresees to meet more than 450 requirements, it is necessary to
limit the number with a careful selection of the most important ones, given the fact that not all of
them have already been implemented at this point of the project and that a large part of the
technical (functional) specifications are considered to be met at debug level.

Section 3 briefly describes the assessment methodology applied to each requirement and
summarises them into groups divided per work package. The tables in this section (selection of
requirements) are revised in respect to those that were indicated in the Deliverable D10.1 and
D10.2, because (i) a short list has been made considering the most important ones among those so
far implemented and (ii) we distinguish between requirements tested in this and the previous
validation phase.

Section 4 reports the results obtained while applying the assessment procedures for the evaluation
of the fit criteria fulfilment. Each WP leader and the validation participants decided together on how
to give proof of the requirement verification (fit criterion) and the threshold level below which the
requirement is considered not met. In the worst case (requirement not reaching the threshold) the
requirement is marked to be re-evaluated at the next validation iteration, so that all requirements
are submitted to a continuous improvement. To conclude the section, a table summarises all the
requirements tested so far (first and second cycle) and their current state (supported, not yet
supported or partly supported).

Section 5 draws the major conclusions of the report. It gives some figures on the obtained results,
indicates the open issues and expected progress in the assessment procedure and how the
validation process shall improve the implementation part.

2. Object of the validation

The foreseen planning from the validation plan (considering also the revision made to D10.1) is
depicted in Figure 1. The validation started at due date, while second and third steps were adapted
as per partners’ request.

tM35 M36 M37M36 M37 M38

Prepare the evaluation
activities

Conduct the evaluation
activities

Analyse data

Feedback results
back to the loop

Figure 1: User validation second iteration - time plan

In the second validation cycle, the object of the evaluation is the DDK and middleware prototypes.
However, because some requirements, that resulted in being partial supported or not yet supported
in the first iteration, need to be validated again, the second iteration also considers the last version
of the SDK. In fact, every validation cycle assesses components that are not considered as the final
ones, but as the partial release of a subsequent delivery of improved prototypes.

Moreover, the requirements selection, even if based on the initial Deliverable 10.1 list, has also been
updated with the intention first of all to fine-tune the group of requirements towards a higher
number, and secondly to consider those already implemented so as to make the testing possible.
The tables in the next section eventually consider the new important specifications introduced after
the completion of the Validation Plan.

2.1 Target users

Hydra identified along the previous deliverables two main groups of users:

• developers that will use the middleware, considered as the major focus for the validation
report due to their direct involvement in the SW development process, which is the aim and
the reason why Hydra middleware has been conceived;

• end-users that will benefit from the Hydra enabled services created by the previous group,
the developers, and also considered as a major source of feedback due to their role in the
value chain and their fundamental part in the product´s successful commercialisation.

Therefore, we differentiate between the term developer-user from end-users, as the same difference
existing from those who create a product (developers, first group) from the real users of the product
itself. The validation plan divided the task activity into three different parts related to each project
iteration conclusion and depicted in the next table.

Type of user Object of the evaluation
Start of the user

validation (month)

Developer user SDK + middleware vers. 1 M24

Developer user DDK + middleware vers. 2 M36

Developer user IDE + middleware vers. 3 M48

End user Applications M48

Table 1: Validation plan milestones

As the actual object of the assessment is the middleware and the DDK, during this validation cycle
the target users are the application developers, from the first group indicated above.

The developer users are identified among Hydra internal resources where possible. This is done
mainly because it is difficult to find the commitment from companies not directly involved in the
Hydra consortium, especially from an economical point of view (external experts who are not Hydra
partners asking for a fee shall be paid with the means of subcontracting). This is also a challenge
because we must consider that evaluation with developer-users may or may not lead to new issues
if compared to traditional user validation. In order to diminish this risk the selected developers were
chosen from among those who were not directly involved in the Hydra implementation, otherwise
their judgement would be biased.

2.2 Quality dimensions and assessment criteria

Similarly to the previous validation cycle, the validation is made through the comparison between an
expected impact (requirement) and how the real application works. In Hydra the expected impact is
described with the means of the user requirements, derived in WP2 and collected throughout all
WPs. The user requirements consist of a list of features and properties of the Hydra middleware
including quality criteria, which are considered relevant by the users. Deliverable 3.2 “Updated
system requirements report” contains an updated overview of the requirements that shall be
necessary to the Hydra developed system as emerged in several focus groups with developer users.

Every requirement statement is composed of six fields to briefly describe it, as shown in the next
example.

ID: 31

Type: Non-functional / look and feel

Priority: Critical

(Short) description: An easy-to-use programming framework should be provided

Rationale: The programming framework provided by the prototype should be easy to use
in the sense that it is intuitive

Fit Criteria: 9 out of 10 developers recognise the IDE as intuitive

As quality is a relative or personal issue to be measured, a value must be attached to the cost and
benefit of quality-oriented actions. Features and properties requested by stakeholders have to
determine how to implement and what the optimal investment is.

There are different frameworks analysing quality attributes, with differing vocabulary, metrics etc.
that are relevant to software architecture design. Quality attributes are essential to the design of
software architecture, but it is a challenge to describe quality attribute (requirements) on a common
form. For this reason, together with the Volere schema for drafting user requirements, the SEI
quality framework (Bass et al., 2003) and the ISO 9126 (2001) international standard have been
studied. The SEI quality framework, also known as Quality Attribute Scenarios, is a well-established
way of defining architectural requirements in a uniform way and introduces the concept of
considering quality attribute requirements on a fixed and precise scenario form. This approach has
been integrated in the context of the Hydra project with the ISO 9126 international standard
defining a comprehensive quality model for software products. Deliverable 6.1 “Quality Attribute
Scenarios” gives a detailed and clear overview of the two frameworks.

The second validation report follows the same schema defined in the previous report on how to
measure the fit criteria pertaining to each different requirement. In particular, the assessment
procedures summarised in Section 3 tables and then applied in Section 4 have been identified in
D10.2 “Validation Report for SDK Prototype” to be used in the following validation cycles and, thus,
simplify the evaluation effort and for improving also the single requirement evaluation, in case some
of them were not satisfying the threshold condition.

2.3 Requirements for the second iteration

Developer-users are interested in requirements fulfilment, the technical aspects related to the
software instrument they want to use: a middleware, DDK, or another prototype. For this deliverable
the validation is applied through requirements technical tests and assessment fulfilled at the end of
the DDK cycle implementation.

The first group of requirements was identified in Deliverable 10.1, as the total number of
specifications had reached a large quantity. In the Validation Plan all major functional and non-
functional requirements were chosen, but the overall tables have been revised or updated during
project activity and in this report. As a major observation, the largest part of functional requirements
were considered to be verified during the debugging phase, otherwise the middleware component
would not work, so just the most important among them were taken into account for the validation
process. The specifications have been confirmed depending on their implementation status at the
time of the validation, and eventually substituted with those that have been already considered at
this stage of the project.

The final selection of requirements was performed by each work package leader in agreement with
the WP participants. Starting from the initial group, each WP first confirmed the possibility to assess
or not each requirement and then identified the major ones on which to apply the testing procedure,
eventually integrating or substituting the initial list in case new requirements were added, old
important ones had been left out or the previous selected group was not adequate or sufficient. The
need to have a short list of final requirements was due to the large number of entries so far
identified during the project course (more than 450) as the validation shall be completed into a
defined time frame (i.e. 2 months) for allowing the provision of the results back into the loop.

The requirement refinement is strongly related to two factors: the software development process,
which requires different needs for different components, and the iterative approach, which adds the
latest requirements at every implementation update.

The final list of the requirements selected for the second iteration is presented in the next section,
through tables divided depending on the particular WP. Differently to the previous report about the
first validation cycle (D10.2), in this validation report we define two tables for each WP:

• The first one collects all requirements that were not supported or partially supported after the
first validation cycle; these requirements have been tested again on the current middleware and
SDK, as well as tested for the first time (if applicable) on the DDK.

• The second one collects the requirements that have not been selected in the previous validation
cycle and need to be tested on the current middleware and the DDK.

3. Description of the validation methods

Once the validation testing procedures are defined, the tester has to follow the indications given to
perform the validation, which can be a laboratory test or a trial of the middleware/DDK. Different
expert evaluators do not find the same defects, and not in the same order. It is therefore advisable
to use at least two or three experts (even more if available).

The developer user can be assisted by colleagues actively involved in the Hydra project in case
something is not clear or misleading. The process of the validation by the software developer should
be linear if the planning is done carefully and the validation procedures are prepared with sufficient
details.

Experience shows that the more immature an implementation is, the faster defects will be found.
Users who are confronted with incomplete and faulty software become frustrated and cannot
provide much constructive feedback. So it is preferable to proceed with the first middleware
evaluation at an advanced stage, when the implementation of software has already reached certain
robustness. As the prototypes are recursively improved, the middleware assessment is repeated in
all iterations. The collected feedback allows having a constant improvement of the implemented
system.

First there will be a collection of data as a result of laboratory test by considering each requirement
referring to the middleware. This will be the case for those quality dimensions that need a specific
measurement (for example, an efficiency performance test). On the other hand requirements that
need a special evaluation, not feasible with a simple measurement, will be assessed through a
complete description of the reasoning developer users.

The DDK assessment is performed in the same way as it is done for the middleware, but
differentiating the domain applicability. The assessment used laboratory measurements, software
procedures and an assessment analysis completed by the developer users who exploited the Hydra
components.

Assessment procedure for verifying the fit criteria fulfilment

The assessment procedures for the requirement evaluation were deployed by the WP leader in
agreement with other WP partners. The testing has been decided in order to assure that the
methodology is able to verify that the fit condition is met with limited uncertainties. In case of
functional requirements usually this is proved by the means of a (numerical) threshold level; in case
of a non functional requirement where there is no clear indication of the expected result, the
assessment procedure contains the background methodology and the proper conditions able to
demonstrate the criterion verification.

As an example, requirement n. 31 mentioned above has already a fit criterion identifying the
numerical indication for which the requirement is considered as met.

ID: 31

Type: Non-functional / look and feel

Priority: Critical

(Short) description: An easy-to-use programming framework should be provided

Rationale: The programming framework provided by the prototype should be easy to use
in the sense that it is intuitive

Fit Criteria: 9 out of 10 developers recognise the IDE as intuitive

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 10 of 56 14.11.2008

3.1 WP3 – Evaluated requirements

ID Description Rationale Fit Criteria Assessment procedure

Outcome
1st Cycle

Outcome
2nd Cycle

Middle
ware

SDK
Middle
ware

SDK DDK

31 An easy-to-use
programming
framework
should be
provided

The programming
framework provided by
the SDK should be
easy to use in the
sense that it is
intuitive.

9 out of 10 developers
recognise the SDK as
intuitive.

Conduction of a
software-walkthrough
and a validation session
with developers
specifically addressing
the ease of use.

n.a. Not yet
supported

n.a. Partly
supported

n.a.

41 Hydra
Developer's
Companion

Complete and
comprehensible
documentation is very
important to the Hydra
software developer.

Complete documentation
is available. It is
considered "very helpful"
by at least 8 out of 10
developers.

Conduction of a technical
review of the
documentation. Run a
software walkthrough as
a preparation for the
training activities.

n.a. Partly
supported

n.a. Partly
supported

Partly
supported

136 Dynamic
architecture

The architecture of a
running Hydra system
can be easily modified
by increasing or
decreasing the degree
of centralisation in
order to balance the
utilisation of available
resources.

In 95% of all cases,
Hydra supports dynamic
migration of components
to realise centralised and
decentralised systems.

Implement and run a
test application and test
whether it can be
reconfigured or not.

Not yet
supported

n.a. Partly
supported

n.a. n.a.

185 Middleware
provides basic
services

In order to program
AmI applications, the
middleware must
provide basic services.
This makes life easier
for application
developers. Basic
services provide e.g.
methods to query
available devices and

services or to pass
messages between
components.

Middleware provides a
set of basic services that
at least contain basic
functionality that is
needed by all services,
like communication and
a service / device
registry.

Conduct a technical
review of the core Hydra
services with developers.
This review aims to
define the setup of a
basic Hydra
infrastructure, querying
available devices and
passing messages
between devices.

Partly
supported

n.a. Supported n.a Supported

199 Modules should
be extendable

Hydra modules should
be extendable in their
functionality by 3rd-
party solutions.

80% of all Hydra
modules are extendable
in their functionality by
integrating 3rd-party
code via a standard

An assessment
procedure that measures
the extensibility of
software is part of
current research. One

Partly
supported

Partly
supported

Partly
supported

Partly
supported

Partly
supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 11 of 56 14.11.2008

interface or replaceable
by 3rd-party modules
with equivalent
functionality.

approach could be to
count the number of
hooks that allow for the
modification of existing
modules or the addition
of new ones. Another
approach could be to let
a number of developers
implement extensions to
the Hydra middleware
and to assess the result.
Thus, a formal
assessment procedure
remains an open issue.

207 Service
selection by
context

In order to select an
appropriate service for
a specific task,
contextual information,
like the spatial
position, must be taken
into account. Hydra
must provide a method
to specify a desired
service by contextual
parameters. For
example, if a certain
room in a building is
specified in a search
request for a service,
only services that are
relevant in the current
user's location and
context are returned.

In search requests for a
specific service,
contextual information
like a spatial position is
allowed.

Build a prototype, which
combines location and
other context constraints
to select an appropriate
service. An example
scenario would be: A
user wishes to print a
coloured document to
the nearest printer
during a presentation.

Partly
supported

n.a. Partly
supported

n.a n.a

217 The middleware
should ensure
high robustness
of services

In order to ensure the
service support of
important components
in the system, the
middleware should
provide a highly robust
service structure.

Breakdown of crucial
services of the
middleware in less than
1 case per 100 hours of
operation.

Identify the crucial
services of the Hydra
middleware, build a test
application that is based
on that set of services
and conduct a long-term
operation stress test.

Partly
supported

n.a. Partly
supported

n.a. n.a.

234 The middleware
should be self
descriptive

The developer should
be enabled to
understand all
components and their
interplay of the system

in order to take full
advantage of the Hydra

Nine out of ten
developers have a clear
understanding of the
Hydra middleware after
one week of experience.

Conduct a software peer
review with developers.

Not yet
supported

Not yet
supported

Not yet
supported

Not yet
supported

Not yet
supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 12 of 56 14.11.2008

Middleware.

320 Separate
domain-oriented
services and
user interface
services
architecturally

This is a standard
architectural design
tactic to enhance
modifiability.

90% of the modules of
the architecture properly
separate layers for
domain services and
interfaces.

Analyse the SVN
repository which
contains all Hydra
managers and modules
and identify those that
mesh interface and
control logic.

Not yet
supported

n.a. Not yet
supported

n.a. n.a

335 Location
awareness /
positioning
support

Hydra should enable
developers to write
applications that
depend on context,
especially spatial
context.

A component for
acquiring spatial context
exists. At any time, min.
75% of all devices
attached to a Hydra
system can be spatially
located. Also, there is a
programming model for
using spatial context.

Build a location-aware
application based on the
Hydra middleware.

Partly
supported

n.a. Partly
supported

n.a. n.a.

Table 2: WP3 requirements resulted not/partly supported in the 1st cycle.

ID Description Rationale Fit Criteria Assessment procedure

Outcome

Middle
ware

DDK

515 Support of domain-
specific ontologies

To establish knowledge or
application domain
interoperability, HYDRA
should be able to support
domain-specific ontologies
on a structural level.
Interoperability can only be
established to the degree
external ontology support
exists.

HYDRA is able to support
domain-specific ontologies or
not.

Build a prototype that makes use of domain-
specific ontologies.

Partly
supported

n.a.

518 No external standards
should dictate the
virtual layer.

Hydra manages internal
standards in the virtual
layer. These cannot be
dictated by external
standards.

External standards do not
create limitations for HYDRA
internal. All access to the
virtual layer is done through
HYDRA middleware.

Set up a prototype to verify that Hydra middleware
handles all access to the virtual layer itself.

Supported n.a.

519 It should be possible
to implement
managers in either
programming model.

The architecture should be
fairly independent of any
specific programming
model.
It should be possible to
implement managers in
either programming model.

It is possible to implement
managers in either
programming model or not.

Build a Hydra application that plugs together
managers of different programming languages.

Supported Supported

522 All HYDRA entities If interoperability and A hydra-enabled entity must Build a prototype to ensure that a Hydra-enabled Supported Supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 13 of 56 14.11.2008

must have a semantic
model description

security are to be possible,
an entity must have a
semantic model description.
Otherwise other devices are
not able to discover if they
can communicate with the
device or if the device
security can be resolved
according to the security
policy. Devices or
applications that are unable
to present a semantic
model description cannot
be expected to be able to
pass a security resolution
according to security
policies.

have a semantic model
description.

device has a semantic model description.

524 Determination and
Description of the
dependencies among
Hydra Managers.

Some core managers
exhibit a type of predefined
collaboration between
them; others offer their
functionality to all
components of the entire
Hydra software
architecture. Managers of
the first group actually
demand direct inter-
manager calls or a
refactoring of the software
architecture focussing on
the fusion of functionality.
Managers of this second
group provide functionality
to all managers of the other
groups. Therefore, the
managers of the second
group offer functionality
that runs orthogonally with
respect to the basis
functionality. In addition,
this orthogonal functionality
cannot be separated from
the existing components.

The dependencies of all
Hydra Managers must be
determined clearly and
described in detail.

Examine relevant documentation and make sure all
Hydra managers and dependencies are covered.

Supported n.a.

525 Delimitation between
Application and Device
Elements.

In the first two cycles we
found that we need
clarification on the
delimitation between

No interdependencies
between Application and
Device Elements.

Make sure the Hydra architecture specification
clarifies this aspect and that it is applied to the
managers.

Supported n.a.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 14 of 56 14.11.2008

application and device
elements. The delimitation
between Application and
Device Elements seems to
blur.

526 Delineation between
middleware and
application in terms of
context provision.

The Context Manager is
mainly connected to the
application itself and not to
the middleware (as agreed
in discussion with the
partners); it was withdrawn
from the scope of the
ontology manager.

In terms of context provision
the middleware and the
application itself must be
delineated.

Check whether context- and ontology managers
are clearly delimitated.

Supported n.a.

528 Specification of the
information flow
among Hydra
Managers.

During software integration
of the first year prototype
some problems were
attributed to the event
management, which has
been overly used. The
application of JAX-WS and
Axis for event-driven
application worked fine,
although some latency has
been identified due to
multiple concurrent function
calls. In addition, the use of
web applications as Event
Manager in the role of both
publisher and consumer
works fine. However, the
development of web
applications for small
devices such as PDAs,
limits the usage of HTML,
JavaScript and CSS.

Complete specification that
clearly defines how the
information shall flow among
Hydra Managers.

Check the relevant documentation. Supported n.a.

Table 3: WP3 selected requirements for the 2nd validation cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 15 of 56 14.11.2008

3.2 WP4 – Evaluated requirements

ID Description Rationale Fit Criteria
Assessment
procedure

Outcome
1st Cycle

Outcome
2nd Cycle

Middle
ware

SDK
Middle
ware

SDK DDK

312 Support
profiling of
devices'
performance

The middleware should
contain services that allow
monitoring and reaction on
what devices are doing.
This includes monitoring
response time, device load
(e.g. CPU), and message
interchanges per second.

Said services
available in Hydra.

See § 4.2

Partly
supported

n.a.

Partly
supported

Partly
supported

Partly
supported

314 Faults should be
intercepted by
middleware,
notified to
interested
services

To create reliable and
available systems it is
essential to catch
faults/partial failures
before they become
failures/complete failures.
There needs to be
uniformity in how this is
done; thus it should be
supported by the
middleware.

The middleware has
support (through
components/services
) for sending and
receiving notifications
for partial failures.

Experiment with
behaviour when
services become
available, tested with
agriculture scenarios,
weather station
scenarios.

Partly
supported

n.a.

supported supported TBD

317 Support runtime
reconfiguration

To support monitoring
leading to adaptation, the
architecture should be
dynamic in the sense that
components/services
should be connectable in
new ways at runtime.

Services and devices
can be connected in
new ways during
runtime in Hydra-
based applications.

Test an example
application’s ability to
be reconfigured
according to specific
scenarios, tested with
configurations of
Hydra middleware
according to QoS
requirements.

Not yet
supported

Not yet
supported

supported supported TBD

334 There should be
support for
developing

auto-
configuration of
certain devices

A number of use scenarios
calls for the ability to bring
a device home, turn it on,

and have it function
reasonably.

The middleware
supports defining
auto-configuration

properties and using
these at runtime.
This is not in conflict
with security.

Test execution of
configuration script
for network manager

on osgi.
Not yet
supported

Not yet
supported

Supported Supported supported

366 Web services
should run on
embedded
devices

Service-orientation is a
good match for many
embedded devices. Web
services will provide a

Hydra supports web
services on
embedded devices
(Initial target should

See § 4.2
Not yet
supported

n.a.

supported supported supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 16 of 56 14.11.2008

gateway to many
applications and it would
be beneficial to be able to
structure all of the
communication in a
system using the same
primitives.

be Develco's DevCom
02 ZigBee module)

Table 4: WP4 requirements resulted not/partly supported in the 1st cycle.

ID Description Rationale Fit Criteria Assessment procedure

Outcome

Middle
ware

DDK

479 The EventManager
should support event
prioritisation

The EventManager should
handle events according to
their priorities. Some events
are critical to the health of
the system and should be
prioritized over others when
there are a high number of
events being routed through
the system.

Stress test of the event
notification system. If the
volume of events exceeds the
capacity, events with high
priority should be delivered
first, and only be discarded as
a last resort.

See § 4.2 supported supported

Table 5: WP4 selected requirements for the 2nd validation cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 17 of 56 14.11.2008

3.3 WP5 – Evaluated requirements

ID Description Rationale Fit Criteria Assessment procedure

Outcome
1st Cycle

Outcome
2nd Cycle

Middle
ware

SDK
Middle
ware

SDK DDK

276 New
communication
technologies

New communication
technologies might be
added to the system,
so that Hydra should
provide the means to
facilitate this inclusion.

80% of new technologies
are supported.

Integration of the ZigBee
protocol and discovery
mechanism.

Supported.
Although
percentage
yet to be
validated.

n.a.
Supported.
Although
percentage
yet to be
validated

n.a n.a

407 Storage
Manager –
Gateways
information
stored
synchronization

The information stored
in the Gateway must
be synchronized with
the information inside
the devices. The
dumping of devices
information could be
either initiated by the
device or controlled by
the Gateway.

90% of the information
stored in the Gateway is
synchronized with the
information stored inside
the devices.

Data will be annotated
with timing information,
which will be used to
evaluate applied (soft)
real-time constraints.

Not yet
supported

n.a. Not yet
supported

n.a n.a

465 Networks
overlapping

If two users of the
Hydra system wear a
personal Hydra Body
Area Network (HBAN)
and meet each other
in the same place, the
HBAN of one user
doesn't have to add
the devices of the
HBAN of the other
user. The middleware
must provide criteria to
distinguish when a
"new" device is
authorized to be added
to an existing Hydra
network and when it
belongs to another
Hydra network which is
temporary near to the
former device.

A device is not to be
added to an existing
Hydra network if it is
unauthorised or when it
belongs to another Hydra
network, which is
temporarily near to the
former device.

Validation session with
developers.

Not yet
supported.
Security
not in
place.

n.a. Not yet
supported.
Security
not in
place.

n.a. n. a.

Table 6: WP5 requirements resulted not/partly supported in the 1st cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 18 of 56 14.11.2008

ID Description Rationale Fit Criteria Assessment procedure

Outcome

Middle

ware
DDK

506 It should be possible to
lock files (Storage
Manager)

For many reasons it can be
important to know that an
application is updating data,
so that other applications
will wait using it until the
update is done. There
should be a read/write
locking.

All write access is aborted if a
file is locked.

A Lock Manager will be implemented that
provides the ability to get and release locks
on entities like files and directories. Validation
will be done by trying to sequentalize multiple
access.

Not yet supported n.a.

505 It should be possible to
access data in Storage
Manager using a well
defined protocol (e. g.
WebDav)

Using external Applications
it should also be possible to
access data without to much
trouble. Exporting storage
using WebDav gives the
User the ability to access it
as network devices on most
operating systems.

50% of the storage can be
accessed using WebDav.

The File System Device will be mountable
using Fuse. This will be tested by mounting a
File System Device on a Linux host and
accessing it using desktop applications.

Supported.
Storage can be
mounted under
Linux using FUSE

n.a.

504 It should be possible to
add and remove
physical stoage from a
Mirror/Striping-Set

If there is some striped
storage and it is not big
enough, it should be
possible to increase its size
by adding new physical
storage.

All striped devices can be
enlarged by adding new
physical storage.

Adding 10 devices to a striped and a mirrored
storage and removing them.

Not yet
supported.

n.a.

503 It should be possible to
combine different
storage for mirroring or
striping

To get better storage we
need to implement some
RAID-Technologies inside
Hydra to mirror data over
different Storage Manager
or to stripe data.

10% of the storage are
striped or mirrored.

Building a striped storage on top of two
mirrored ones and a mirrored one on top of
two striped ones.

Partly supported
(Only replicated
device is

implemented
now)

n.a.

502 It should be possible to
store simple key/value
pairs

Not every Application
storing data like sensor data
want to use the full
overhead of a file system
and files. The idea behind
this issue is to store
something like cookies in a
browser.

Storing and receiving cookies
to a given Manager does not
need more than 3 requests.

Building a test application not sending more
than 3 requests per access.

Not yet
supported.

n.a.

488 Modular and standard
device integration

In order to simplify and
speed up the integration of
new wireless devices in
Hydra, the discovery and
proxy creation process has
to be standardized and be

 30% of proxy modules rely
on common kernels.

Limbo tests on modularization. n. a. Supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 19 of 56 14.11.2008

as modular as possible, so
common parts can be
reused by proxies for
different wireless devices.

487 Improve handshake
protocol between
Network Managers for
exchanging certificates

Current protocol is quite low
level, just sending
certificates to other
partners, we should use
s.th. like SSL protocol
mechanisms, we also have
to consider the other trust
models, like Web of Trust
and user interaction.

In 95% of cases simple
protocol would work.

Use different managers, with different keys,
and different protocol standards to exchange
data between them. Turn on handshake
protocol and detect errors either in encryption
or keystore methods.

Supported.

486 Hydra proprietary
supernodes are needed
to support D2D
communication
between networks

At the moment, public
supernodes are used to act
as relays in D2D
communication. If these
supernodes are down,
communication between
networks is impossible.
Thus, we need to manage
our own supernodes in
partners’ servers.

80% of the time, own
supernodes are up and
running.

Supernode deployment on CNET and FIT. Supported.

446 Security parameters
negotiation

Since different applications/
devices request different
security parameters, it is
not advisable to use fixed
parameters for
communication but flexible
ones.

In 90% of all cases the
parameters should be flexible.

Make use of handshake protocol and the
security related mangers also with the
security ontology to test these negotiation
mechanisms. Rules set to different levels of
security. Test minimum and maximum levels.

Supported.

442 Proxy – Gateways can
filter and react to data
received from
associated non-hydra
devices

Part of the proxy
functionality may include
support for filtering of the
received data and possibly a
reaction to high or low
values. Non-hydra devices
can not be expected to

analyze the data
themselves, so the
gateways could take care of
this.

50 % of Gateways support
filtering and reaction to
received data.

Generated device proxy using Limbo and
using context manager on the gateway to test
the data acquisition.

n. a. Supported

427 D2D communication –
Group management

The D2D communication
system has to allow the
Hydra enabled device to
create, join and leave
groups of Hydra enabled
devices, so the components

90% of the devices involved
in the D2D communication
system can create, join and
leave groups.

Test group creation for applications. Not yet supported n.a.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 20 of 56 14.11.2008

of these groups share the
same credentials and can
communicate isolated from
non-group-members.

396 Hydra-enabled devices
– May be mobile or
fixed equipment

A subset of the Hydra
middleware (mainly Network
Manager) can be deployed
in mobile (PDA,
Smartphone) and in
resource constraint devices
(Home Gateway).

30% of State of the Art PDAs,
Smartphones and Home
Gateways can host part of the
Hydra middleware.

Test the implementation on Home Gateway
(Play Station 3) and Android mobile phone.

Supported n.a.

Table 7: WP5 selected requirements for the 2nd validation cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 21 of 56 14.11.2008

3.4 WP6 – Evaluated requirements

ID Description Rationale Fit Criteria Assessment procedure

Outcome
1st Cycle

Outcome
2nd Cycle

Middle
ware

SDK
Middle
ware

SDK DDK

91 Any Hydra
device should
have an
associated
description

For management,
search and discovery
purposes, all Hydra
enabled devices should
be described
(classified) according
to the Hydra device
ontology.

Any device associated to
a Hydra application is
also included in the
Hydra device ontology,
and its description can
be retrieved.

Check that a newly
discovered device
has/gets a corresponding
representation in the
Device Ontology.

Not yet
supported.

Not yet
supported.

Supported Supported Supported

110 Device
Categorisation
in runtime

Middleware should
after discovery of
device be able to
categorise a device
based on device
ontology information.

7 of 10 devices are
correctly categorised and
described.

Enter new devices into a
Hydra network, locally
and remotely.

Partly
supported.
Devices
executable

in
application

Partly
supported.
Devices
executable

in
application

Supported Supported Supported

114 Semantic
enabling of
device web
services

Middleware should be
able to attach semantic
descriptions to device
web services based on
device ontology.

7 of 10 devices are
semantically enabled.

Enter new devices into a
Hydra network, locally
and remotely.

Not yet
supported.
Requires
manual
interventio

n.

Not yet
supported.
Requires
manual
interventio

n.

Partly Partly Supported

122 Configurable
and easy to
install
middleware

The middleware should
be configurable and
easy to install/deploy.

The average installation
time is less than 1 hour.

Time a middleware
installation.

Not yet
supported.
Installation
still

manual.

Not yet
supported.
Installation
still

manual.

Not yet
supported.
Installation
still

manual.

Not yet
supported.
Installation
still

manual.

Not yet
supported.
Installation
still

manual.
376 Security

requirements
must be part of
the Hydra MDA

Security must be
defined to be resolved
semantically.

Security model can be
defined semantically.

A semantic security
model exists, check
resolution process.

Not yet
supported.
The

resolution
process is
not in
place.

Not yet
supported.
The

resolution
process is
not in
place.

Supported Supported Supported

Table 8: WP6 requirements resulted not/partly supported in the 1st cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 22 of 56 14.11.2008

ID Description Rationale Fit Criteria Assessment procedure

Outcome

Middle

ware
DDK

501 A Hydra enabled
device must support
UPnP discovery

UPnP has been proven as
a well-functioning network
discovery mechanism in
HYDRA.

All HYDRA enabled devices
support UPnP.

All Hydra devices are found thru UPnP. supported supported

500 Semantic annotations
of devices using
SAWSDL

Device developers should
via the DDK be able to
produce (SAWSDL)
annotations for devices, in
order to facilitate device
discovery and ontology
update.

For a given UPnP
discoverable device, it is
possible to create an
SAWSDL annotation which
can be accessed from the
UPnP discovery
information.

Annotations can be attached and retrieved for
any device.

supported supported

477 Device proxies should
make use of available
security features for
"last mile"
communication

If non-Hydra-enabled
devices are communicated
to the Hydra network by a
proxy, security features of
the protocol supported by
the device should be used.

Device proxies must
support WEP and WPA for
WiFi-connections as well
as Bluetooth
authentication and
encryption.

Device proxies can be created that use WEP
and WPA for WiFi-connections as well as
Bluetooth authentication and encryption.

supported supported

126 Automatic Device
ontology updates

The device ontology
should automatically
update its device
descriptions.

The device ontology can
detect device updates and
handle that in 7 of 10
cases.

Enter new devices into a Hydra network,
locally and remotely, device discovery results
in an ontology update.

N/A Partly
supported

122 Configurable and
easy to install
middleware

The middleware should be
configurable and easy to
install/deploy.

The average installation
time is less than 1 hour.

Time a middleware installation. Not yet
supported.

Installation still
manual.

Not yet
supported.

Installation still
manual.

120 Multiple Device
Virtualisations

It should be possible to
have several different
views/virtualisations of a
device depending on
context and applications.

Multiple Device
Virtualisations.

A developer is able to create at least two
different views onto the same physical device.

supported supported

117 HYDRA component
ontology

In order to support
automatic device proxy
creation, a HYDRA
middleware manager
ontology is needed. The
ontology will facilitate the
selection of the

appropriate device and
service managers to
implement the proxy,
depending on the
discovery protocol and

HYDRA device and service
managers can be identified
and selected through a
software component
ontology.

HYDRA device and service managers can be
identified and materialized/displayed.

Partly Partly

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 23 of 56 14.11.2008

device types.

114 Semantic enabling of
device web services

Middleware should be able
to attach semantic
descriptions to device web
services based on device
ontology.

7 of 10 devices are
semantically enabled.

Enter new devices into a Hydra network,
locally and remotely.

Partly Supported

113 Composition (of

services and devices)

In order to enhance or

replace application level
functions it will be useful
to be able to compose
services and devices from
different providers and/or
manufacturers into high
level services/devices.

Service composition during

design-time is possible.

Design an application composed of at least

two different devices of different type and
with different services.

supported supported

112 Dynamic Web Service
Generation

Configuration tool that is
able to generate the
necessary interfaces to
wrap the device
functionality as a web
service.

7 of 10 device
functionalities are
automatically represented
as web services.

Enter new devices into a Hydra network,
locally and remotely.

supported supported

104 Automatic Discovery
of Services

It should be possible to
configure the middleware
to discover available
services that meets
defined criteria.

8 of 10 services are
automatically discovered.

Enter new devices into a Hydra network,
locally and remotely.

Partly
supported

Partly
supported

Table 9: WP6 selected requirements for the 2nd validation cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 24 of 56 14.11.2008

3.5 WP7 – Evaluated requirements

ID Description Rationale Fit Criteria
Assessment
procedure

Outcome
1st Cycle

Outcome
2nd Cycle

Middle
ware

SDK
Middle
ware

SDK DDK

308 The Security
Level of an
existing network
should be
determinable

For a device entering an
existing network it can
be useful to determine
the security level of that
network. Depending on
the provided security
level the device can
decide to enter the

network or not.

Hydra middleware
provides at least one
mechanism enabling
devices to determine
the security level of an
existing network.

Evaluation of the
current status of the
middleware security
architecture.

Not yet
supported

n.a. Supporte
d (best
effort)

n.a. n.a.

468 Different levels
of security must
be supported

In the healthcare
scenario there are 2
communication types:

- the inter-BAN
communication
- the internet
communication

Each of them could
implement a different
security criterion.

The middleware could
support different security
levels during
communications with
wireless devices. For
example, a simple
accounting procedure for
devices near to the user
(a BAN in the healthcare
scenario) and a harder
codification for long
distance communications
where identity data are
transmitted are
supported.

It must always be
possible to implement
at least two different
security levels for an
application.

Evaluation of the
current status of the
middleware security
architecture.

Not yet
supported

n.a. Ambiguo
us, no
further
assessme
nt

n.a. n.a.

Table 10: WP7 requirements resulted not/partly supported in the 1st cycle.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 25 of 56 14.11.2008

ID Description Rationale Fit Criteria Assessment procedure

Outcome

Middle
ware

DDK

364 Hydra's Access-Control
policies support
credential based
authentication

Instead of identifying the user or
device, a session may be authenticated
through credentials recognised by the
application such as blinded certificates,

direct anonymous attestation,
previously agreed tickets, reuse of
previous accepted keys (e.g., PGP
keys). That means the network can
operate with authentication schemes
using credentials without having to
identify the device and/or user. The
point is that identification of people or
devices MUST NOT be MANDATORY.
Alternative mechanisms such as
credential based authentication MUST
be ALLOWED.

Access-control can be based on
credentials.

Evaluation of the Access Control
Policy Framework.

supported supported

498 Mechanisms used for
communication
security should be
replaceable by
configuration

Cryptographic algorithms, protocols
and authentication mechanism might
become insecure after a Hydra-based
application has been deployed. In that
case, it should be possible to exchange
security modules without having to
recompile/deploy the middleware.

For at least two of the
communication protection
mechanisms (Core / Inside /
Outside Hydra) it should be
possible to replace security
modules without recompiling
the middleware. Evaluation of
the current status of the
middleware security
architecture.

Evaluation of the current status of the
middleware security architecture.

supported supported

509 Enforcement of
Access-control policies

Access control decisions must be
enforced.

Policy enforcement points can
be attached to Hydra web
services so that access control
decisions can be enforced.

Evaluation of the Access Control
Policy Framework.

supported supported

510 Enforcement of
obligation policies

Security obligation policies dictate
certain actions that have to be taken
upon occurrence of an event trigger.
Components that are part of a policy
domain must negotiate on the action
they can enforce and must provide the
respective enforcement mechanism.

Hydra components negotiate
their capability to enforce
different actions with the policy
decision point and provide an
enforcement mechanism for at
least one action type.

Evaluation of the current status of the
middleware security architecture.

supported supported

Table 11: WP7 selected requirements for the 2nd validation cycle.

4. Validation results

This section contains the description of the applied assessment procedures and outcomes,
highlighting the major findings emerged during the validation fulfilment. The results are divided
depicting the analysis carried on for each single requirement evaluated and grouped depending on
their relative work package.

4.1 WP3 validation results

Requirements from the previous cycle

Req. ID: 31

Description: An easy-to-use programming framework should be provided.

Fit criteria: 9 out of 10 developers recognise the SDK as intuitive.

Assessment procedure: Conduction of a software-walkthrough and validation sessions with
developers specifically addressing the ease of use.

Description of the assessment result: Partly supported. The SDK is still under development.

Req. ID: 41

Description: Hydra Developer's Companion.

Fit criteria: Complete documentation is available. It is considered "very helpful" by at least 8 out of
10 developers.

Assessment procedure: Conduction of a technical review of the documentation. Run a software
walkthrough as a preparation for the training activities.

Description of the assessment result: Partly supported. Deliverables covering developer-centric
issues exist, describing SDK as well as DDK. Yet, an exhaustive developer’s companion is not
available.

Req. ID: 136

Description: Dynamic architecture.

Fit criteria: In 95% of all cases, Hydra supports dynamic migration of components to realise
centralised and decentralised systems.

Assessment procedure: Implement and run a test application and test whether it can be
reconfigured or not.

Description of the assessment result: Partly supported. This requirement mainly depends on
requirement 317 (WP4). From the architectural point of view, this can be seen as supported. A
Hydra application can be run inside an OSGi container, to allow dynamic reconfiguration of
components. This has been tested in the eHealth demonstrator.

Req. ID: 185

Description: Middleware provides basic services.

Fit criteria: Middleware provides a set of basic services that at least contain basic functionality that is
needed by all services, like communication and a service / device registry.

Assessment procedure: Conduct a technical review of the core Hydra services with developers. This
review aims at the setup of a basic Hydra infrastructure, querying available devices and passing
messages between devices.

Description of the assessment result: Supported. The core Hydra services exist and are consolidate:
the services and devices can be registered at the Hydra network. Experiments and demonstrators
show that these core elements work together properly.

Req. ID: 199

Description: Modules should be extendable.

Fit criteria: 80% of all Hydra modules are extendable in their functionality by integrating 3rd-party
code via a standard interface or replaceable by 3rd-party modules with equivalent functionality.

Assessment procedure: An assessment procedure that measures the extensibility of software is part
of current research. One approach could be to count the number of hooks that allow for the
modification of existing modules or the addition of new ones. Another approach could be to let a
number of developers implement extensions to the Hydra middleware and to assess the result.
Thus, a formal assessment procedure remains an open issue.

Description of the assessment result: Partly supported. The Hydra SDK will be published under an
open source licence, which guarantees at least maximum modifiability. Furthermore, the software
architecture follows several design patterns (see deliverable D3.9) that aim at a good extensibility.
Also DDK components are extendable. However, a formal assessment procedure could not be
conducted so far.

Req. ID: 207

Description: Service selection by context.

Fit criteria: In search requests for a specific service, contextual information like a spatial position is
allowed.

Assessment procedure: Build a prototype, which combines location and other context constraint to
select an appropriate service. An example scenario would be: A user wishes to print a coloured
document to the nearest printer during a presentation.

 Description of the assessment result: Partly supported. Respective components are under
development but have yet to be applied in demonstrators.

Req. ID: 217

Description: The middleware should ensure high robustness of services.

Fit criteria: Breakdown of crucial services of the middleware in less than 1 case per 100 hours of
operation.

Assessment procedure: Identify the crucial services of the Hydra middleware, build a test application
that is based on that set of services and conduct a long term operation stress test.

Description of the assessment result: Partly supported. As well as the building automation
demonstrator, the eHealth demonstrator proved to be a robust Hydra application. Nevertheless,
formal stress tests still need to be conducted.

Req. ID: 234

Description: The middleware should be self descriptive.

Fit criteria: Nine out of ten developers have a clear understanding of the Hydra middleware after one
week of experience.

Assessment procedure: Conduct a software peer review with developers.

Description of the assessment result: This requirement has not been fulfilled, yet. Such a software
peer review will be scheduled after the developments on the Hydra middleware are finished.

Req. ID: 320

Description: Separate domain-oriented services and user interface services architecturally.

Fit criteria: 90% of the modules of the architecture properly separate layers for domain services and
interfaces.

Assessment procedure: Analyse the SVN repository which contains all Hydra managers and modules
and identify those that mesh interface and control logic.

Description of the assessment result: No assessment results so far, since the set of Hydra managers
is not complete yet.

Req. ID: 335

Description: Location awareness / positioning support.

Fit criteria: A component for acquiring spatial context exists. At any time, min. 75% of all devices
attached to a Hydra system can be spatially located. Also, there is a programming model for using
spatial context.

Assessment procedure: Build a location-aware application based on the Hydra middleware.

Description of the assessment result: Partly supported. Please refer to requirement n. 207.

Requirements for this cycle

Req. ID: 515

Description: Support of domain-specific ontologies.

Fit criteria: Hydra is able to support domain-specific ontologies or not.

Assessment procedure: Build a prototype that makes use of domain-specific ontologies.

Description of the assessment result: Partly supported. The Ontology Manager provides support for
domain specific ontologies. Yet this has to be tested in a prototype.

Req. ID: 518

Description: No external standards should dictate the virtual layer.

Fit criteria: External standards do not create limitations for Hydra internal. All access to the virtual
layer is done through Hydra middleware.

Assessment procedure: Set up a prototype to verify that Hydra middleware handles all access to the
virtual layer itself.

Description of the assessment result: Supported. All access to the virtual layer is enabled via the
Hydra concept of HIDs. This is applied in the eHealth demonstrator.

Req. ID: 519

Description: It should be possible to implement managers in either programming model.

Fit criteria: It is possible to implement managers in either programming model or not.

Assessment procedure: Build a Hydra application that plugs together managers of different
programming languages.

Description of the assessment result: Supported. Hydra provides managers that are implemented in
different languages. The eHealth demonstrator shows that these managers work together smoothly.

Req. ID: 522

Description: All Hydra entities must have a semantic model description.

Fit criteria: A Hydra-enabled entity must have a semantic model description.

Assessment procedure: Build a prototype to ensure that a Hydra-enabled device must have a
semantic model description.

Description of the assessment result: Supported. In order for a device to be discoverable it must
have a semantic model description. This concept is applied in the eHealth demonstrator.

Req. ID: 524

Description: Determination and Description of the dependencies among Hydra managers.

Fit criteria: The dependencies of all Hydra managers must be determined and clearly described in
detail.

Assessment procedure: Examine relevant documentation and make sure all Hydra managers and
dependencies are covered.

Description of the assessment result: Supported. D3.9 Updated System Architecture Specification
provides comprehensive descriptions on the dependences among managers.

Req. ID: 525

Description: Delimitation between Application and Device elements.

Fit criteria: No interdependencies between Application and Device elements.

Assessment procedure: Make sure the Hydra architecture specification clarifies this aspect and that it
is applied to the managers.

Description of the assessment result: Supported. The updated system’s architecture specification
describes how managers are positioned regarding application and device elements. Since Hydra
supports a centralized approach as well as a decentralized, a strong distinction between the two
sides is no longer supported.

Req. ID: 526

Description: Delineation between middleware and application in terms of context provision.

Fit criteria: In terms of context provision, middleware and application must be delineated.

Assessment procedure: Check whether context- and ontology managers are clearly delimitated.

Description of the assessment result: Supported. The Context Manager is responsible for collecting
information from various context providers and performs low-level reasoning. The Ontology Manager
takes context data as input and in turn performs higher-level reasoning. The Context Manager was
withdrawn from the scope of the Ontology Manager.

Req. ID: 528

Description: Specification of the information flow among Hydra managers.

Fit criteria: Complete specification that clearly defines how the information shall flow among Hydra
managers.

Assessment procedure: Check the relevant documentation.

Description of the assessment result: Supported. D3.9 describes the information flow among all
dependent managers.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 31 of 56 14.11.2008

4.2 WP4 validation results

Requirements from the previous cycle

Req. ID: 312

Description: Support of profiling device performance. The middleware should contain services that
allow monitoring and reaction on what devices are doing. This includes monitoring response time
including service execution time, round trip invocation time, and device calling relationships. It also
includes the profiling of device load (e.g., CPU) and memory, and power consumption.

Fit criteria: The services are available for Hydra developer.

Assessment procedure:

The calculation of service execution time, round trip invocation time, and device calling relationships
is realized as service message probe, a plugin for Limbo, supported by a Messageprobe Ontology to
calculate these parameters. The profiling of device load (e.g., CPU) and memory is achieved through
the using of Nokia energy profiler, which support S60 3rd devices. The power consumption is
measured through multimeter. These measurements are then encoded in the QoS ontologies, and
are used by Self-management components and QoS manager if possible.

Description of the assessment result: supported, partly supported or not yet supported. The usage
of Messageprobe Ontology is described in a SASO paper, and also deliverable D4.8. The
measurements of service execution time, round trip time (RTT) are reported in D5.9. It was shown
that the Limbo generated probe code for services and clients are useful for QoS parameter
monitoring. And all the performance metrics are important as they are used for self-management.

Req. ID: 314

Faults should be intercepted by middleware, notified to interested services. To create reliable and
available systems it is essential to catch faults/partial failures before they become failures/complete
failures. There needs to be uniformity in how this is done; thus it should be supported by the
middleware.

Fit criteria: The middleware has support (through components/services) for sending and receiving
notifications for partial failures.

Assessment procedure: Scenarios are first developed for fault detection, based on the real
requirements for pig farm monitoring systems. Then the self-management components are used to
detect possible failures, both device level and system level. We then evaluated the performances of
our approach, both the Semantic Web based approach and the CPN based approach.

Description of the assessment result: It was shown that both approaches have acceptable
performances, and CPN is better in this aspect, but the Semantic web based approach has bigger
intelligence potential. The experiments have also shown that the extensibility is good for adding new
features to the system. The description of these tests is reported in the SASO papers, and a SEKE
paper.

Req. ID: 317

Description: support for run-time reconfiguration. To supporting monitoring leading to adaptation,
the architecture should be dynamic in the sense that components/services should be connectable in
new ways at runtime.

Fit criteria: Services and devices can be connected in new ways during runtime in Hydra-based
applications.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 32 of 56 14.11.2008

Assessment procedure: First the re-configuration scenario for Hydra middleware is developed, and
then reconfiguration based on QoS requirements are used to calculate the components for Hydra
middleware. Another scenario for self-protection is used related to run time reconfiguration, in terms
that they configure the security protocols based on the QoS objectives.

Description of the assessment result: The evaluations are published in an ICECCS paper and a
submission in ICSoC 2009. The tests shown that the performance for run time configuration is
acceptable, which can potentially find a global optimized solution, which has acceptable solution
quality.

Req. ID: 334

Description: There should be support for developing auto-configuration of certain devices. A number
of user scenarios calls for the ability to bring a device home, turn it on, and have it function
reasonably.

Fit criteria: The middleware supports defining auto-configuration properties and using these at
runtime. This is not in conflict with security.

Assessment procedure: Test execution of configuration script for network manager on osgi. An ASL
script describes in a procedural way how to get from one configuration to another. If the start
configuration is a bare device configuration then a script can capture and, when interpreted, enact a
desired default configuration. As an example default configuration we consider an instance of the
OSGi platform, in the case where the desired initial configuration is a running network manager
(including crypto manager) connected to the Hydra network.

The script that accomplishes this is:

init_device(local);
init_component(CryptoManager,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/Crypto
Manager_1.0.0.jar);
deploy_component(local,CryptoManager);
init_service(local,CryptoManager,local_CryptoManager);
init_component(javax.servlet,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/javax.
servlet_2.4.0.v200806031604.jar);
deploy_component(local,javax.servlet);
init_service(local,javax.servlet,local_javax.servlet);
init_component(Log4j,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/Log4j_1.1.0.ja
r);
deploy_component(local,Log4j);
init_service(local,Log4j,local_Log4j);
init_component(Network_Manager_Bundle,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmja
rs/Network_Manager_Bundle_1.6.0.jar);
deploy_component(local,Network_Manager_Bundle);
init_service(local,Network_Manager_Bundle,local_Network_Manager_Bundle);
init_component(NetworkManagerConfigurator,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/
nmjars/NetworkManagerConfigurator_1.0.1.jar);
deploy_component(local,NetworkManagerConfigurator);
init_service(local,NetworkManagerConfigurator,local_NetworkManagerConfigurator);
init_component(org.apache.commons.logging,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/
nmjars/org.apache.commons.logging_1.0.4.v20080605-1930.jar);
deploy_component(local,org.apache.commons.logging);
init_service(local,org.apache.commons.logging,local_org.apache.commons.logging);
init_component(org.apache.log4j,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/org
.apache.log4j_1.2.13.v200706111418.jar);
deploy_component(local,org.apache.log4j);
init_service(local,org.apache.log4j,local_org.apache.log4j);
init_component(org.apache.xml.serializer,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/n
mjars/org.apache.xml.serializer_2.7.1.v200902170519.jar);
deploy_component(local,org.apache.xml.serializer);
init_service(local,org.apache.xml.serializer,local_org.apache.xml.serializer);
init_component(org.eclipse.core.jobs,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjar
s/org.eclipse.core.jobs_3.4.1.R34x_v20081128.jar);
deploy_component(local,org.eclipse.core.jobs);
init_service(local,org.eclipse.core.jobs,local_org.eclipse.core.jobs);
init_component(org.eclipse.equinox.cm,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmja
rs/org.eclipse.equinox.cm_1.0.0.v20080121.jar);
deploy_component(local,org.eclipse.equinox.cm);
init_service(local,org.eclipse.equinox.cm,local_org.eclipse.equinox.cm);

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 33 of 56 14.11.2008

init_component(org.eclipse.equinox.common,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/
nmjars/org.eclipse.equinox.common_3.4.0.v20080421-2006.jar);
deploy_component(local,org.eclipse.equinox.common);
init_service(local,org.eclipse.equinox.common,local_org.eclipse.equinox.common);
init_component(org.eclipse.equinox.ds,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmja
rs/org.eclipse.equinox.ds_1.0.0.v20060828.jar);
deploy_component(local,org.eclipse.equinox.ds);
init_service(local,org.eclipse.equinox.ds,local_org.eclipse.equinox.ds);
init_component(org.eclipse.equinox.http.jetty,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resour
ces/nmjars/org.eclipse.equinox.http.jetty_1.1.0.v20080425.jar);
deploy_component(local,org.eclipse.equinox.http.jetty);
init_service(local,org.eclipse.equinox.http.jetty,local_org.eclipse.equinox.http.jetty);
init_component(org.eclipse.equinox.http.servlet,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/reso
urces/nmjars/org.eclipse.equinox.http.servlet_1.0.100.v20080427-0830.jar);
deploy_component(local,org.eclipse.equinox.http.servlet);
init_service(local,org.eclipse.equinox.http.servlet,local_org.eclipse.equinox.http.servlet);
init_component(org.eclipse.equinox.preferences,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resou
rces/nmjars/org.eclipse.equinox.preferences_3.2.201.R34x_v20080709.jar);
deploy_component(local,org.eclipse.equinox.preferences);
init_service(local,org.eclipse.equinox.preferences,local_org.eclipse.equinox.preferences);
init_component(org.eclipse.equinox.registry,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resource
s/nmjars/org.eclipse.equinox.registry_3.4.0.v20080516-0950.jar);
deploy_component(local,org.eclipse.equinox.registry);
init_service(local,org.eclipse.equinox.registry,local_org.eclipse.equinox.registry);
init_component(org.eclipse.osgi.services,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/n
mjars/org.eclipse.osgi.services_3.1.200.v20071203.jar);
deploy_component(local,org.eclipse.osgi.services);
init_service(local,org.eclipse.osgi.services,local_org.eclipse.osgi.services);
init_component(org.mortbay.jetty,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/or
g.mortbay.jetty_5.1.14.v200806031611.jar);
deploy_component(local,org.mortbay.jetty);
init_service(local,org.mortbay.jetty,local_org.mortbay.jetty);
init_component(org.os4os.forge.axisbundle,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/
nmjars/org.os4os.forge.axisbundle_3.0.6.jar);
deploy_component(local,org.os4os.forge.axisbundle);
init_service(local,org.os4os.forge.axisbundle,local_org.os4os.forge.axisbundle);
init_component(XMLSecurity,/Users/ingstrup/Documents/workspaces/Hydra2/ASL/resources/nmjars/XMLSecur
ity_1.0.0.jar);
deploy_component(local,XMLSecurity);
init_service(local,XMLSecurity,local_XMLSecurity);
start_service(local_org.eclipse.equinox.ds);
start_service(local_org.os4os.forge.axisbundle);
start_service(local_org.eclipse.equinox.registry);
start_service(local_org.apache.xml.serializer);
start_service(local_XMLSecurity);
start_service(local_NetworkManagerConfigurator);
start_service(local_Network_Manager_Bundle);
start_service(local_org.apache.commons.logging);
start_service(local_org.eclipse.osgi.services);
start_service(local_org.eclipse.equinox.preferences);
start_service(local_org.eclipse.core.jobs);
start_service(local_CryptoManager);
start_service(local_org.eclipse.equinox.http.servlet);
start_service(local_org.apache.log4j);
start_service(local_javax.servlet);
start_service(local_org.eclipse.equinox.cm);
start_service(local_org.mortbay.jetty);
start_service(local_org.eclipse.equinox.http.jetty);
start_service(local_org.eclipse.equinox.common);

The bare device configuration is in this case the Equinox osgi platform with the ASL interpreter
bundle installed. This configuration can be reached as a default by using the existing configuration
features of the equinox osgi platform. The script is device specific because it references files in a
local file system.

Description of the assessment result: The script executes without faults, and manual inspection of
the configuration was performed through (1) the osgi console to see what bundles were installed
and that their status was as intended (2) the axis html site http://localhost:8082/axis/services
showing that all web services were available as intended (3) the network manager status page
http://localhost:8082/NetworkManagerStatus showed the network manager to be running and
properly connected to the hydra overlay network. As such, inspecting the result reveals that the
configuration script correctly transforms the platform into the intended configuration with the

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 34 of 56 14.11.2008

network manager running and available on the local network. As a side remark it should be
mentioned that debugging the script prior to performing the experiment showed that better error
messages are needed from the ASL interpreter. Some of enhancements were implemented to this
end, including printing line-numbers and indicating what step in the interpretation process went
wrong (parsing, executing etc) in case of error.

Req. ID: 366

Description: Services should run on embedded devices. Service-orientation is a good match for many
embedded devices. Web services will provide a gateway to many applications and it would be
beneficial to be able to structure all of the communication in a system using the same primitives.
Depending on the resources (energy, processing capacity) available such a service may run on the
device or on a proxy.

Fit criteria: Validate support for JME, SUN Spot and Lego NXT.

Assessment procedure: Experience report on using the Limbo compiler to generate web services for
specific devices.

Description of the assessment result: Limbo has not been used to generate web services for ZigBee
devices, because the device we have does not have JVM. As long as it has JVM, we can run web
services directly on it. Web services for SUN Spot is also used (which does run iEEE 802.15.4), since
focus on the Hydra has been on a middleware stack for integrating small devices. In general, our
work so far has been on Java-based embedded devices: standard (JSE, JME) and product-specific
(SUN Spot, NXT) variants.

Requirements for this cycle

Req. ID: 479

Description: The Event Manager should handle events according to their priorities. Some events are
critical to the health of the system and should be prioritized over others when there are a high
number of events being routed through the system.

Fit criteria: Stress test of the event notification system. If the volume of events exceeds the
capacity, events with high priority should be delivered first, and only be discarded as a last resort.

Assessment procedure: Stress test of the event notification system.

Description of the assessment result: The system has been tested and found to satisfy the fit
criteria. There is a lower threshold in that the first events in a series of mixed-priority events
published may not be handled according to priority, but at most one event out of order is handled
this way.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 35 of 56 14.11.2008

4.3 WP5 validation results

Requirements from the previous cycle

Req. ID: 276

Description: New communication technologies.

Fit criteria: 80% of new technologies are supported.

Assessment procedure: Integration of the ZigBee protocol and discovery mechanism.

Description of the assessment result: The validation of this requirement was done based on the
integration of the ZigBee protocol and discovery mechanism into the existing set of technologies
already in the Hydra middleware (at the time of validation), i.e., Bluetooth, Radio, Serial, RFID,
UPnP/DLNA, IP/WIFI. Although this requirement is considered supported, the percentage expressed
in the fit criteria is yet to be met.

Req. ID: 407

Description: Storage Manager – Gateways information stored synchronization.

Fit criteria: 90% of the information stored in the Gateway is synchronized with the information
stored inside the devices.

Assessment procedure: Data will be annotated with timing information, which will be used to
evaluate applied (soft) real-time constraints.

Description of the assessment result: Not yet supported. Will be implemented.

Req. ID: 465

Description: Networks overlapping.

Fit criteria: Device is not to be added to an existing Hydra network if it is unauthorised or when it
belongs to another Hydra network, which is temporary near to the other present Hydra network.

Assessment procedure: Validation session with developers.

Description of the assessment result: This requirement is not yet supported. Resolution and
enforcement of authorization is not in place yet.

Requirements for this cycle

Req. ID: 502

Description: It should be possible to store simple key/value pairs.

Fit criteria: Storing and receiving cookies to a given Manager do not need more than 3 requests.

Assessment procedure: Building a test application that does not send more than 3 requests per
access.

Description of the assessment result: Supported. Using the Cookie Manager, it is at first necessary to
create a container to hold the key/value pairs. This can be done by one request. Storing a key/value
pair is then done with one request. Reading a value can also be done in one request. Figure 2
describes the required requests.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 36 of 56 14.11.2008

Figure 2: Storing and receiving cookies process

Req. ID: 503

Description: It should be possible to combine different storage for mirroring or striping.

Fit criteria: Replicated and Striped devices can be built on top of each other.

Assessment procedure: Building a striped storage on top of two mirrored ones and a mirrored one
on top of two striped ones.

Description of the assessment result: Partly supported. At the moment only the Replicated File
System Device is implemented. This device can work on arbitrary devices, at the moment local and
replicated. This has been tested by building a Replicated device on top of two other replicated
devices as shown in Figure 3, each using two local devices as backend. The device was tested by
using it as backend for the assessment described in 505.

Figure 3: Replicated File System Device

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 37 of 56 14.11.2008

Req. ID: 504

Description: It should be possible to add and remove physical storage from a Mirror/Striping-Set.

Fit criteria: All striped devices can be enlarged by adding new physical storage.

Assessment procedure: Adding 10 devices to a storage device and removing them.

Description of the assessment result: Not yet supported.

Req. ID: 505

Description: It should be possible to access data in Storage Manager using a well-defined protocol
(e. g. WebDav).

Fit criteria: 50% of the storage can be accessed by non-Hydra applications.

Assessment procedure: The File System Device will be mountable using Fuse. This will be tested by
mounting a File System Device on a Linux host and accessing it using desktop applications.

Description of the assessment result: Supported. Using the File System Device FUSE Client any File
System Device can be mounted on Linux systems. We mounted a Local and a replicated device and
tested it by following procedure:

• Read Root Directory

• Create a directory

• Create a File in the directory

• Write data to the File

• Read the File

• Read the directory

• Remove File

• Remove directory

All steps succeeded.

Req. ID: 506

Description: It should be possible to lock files (Storage Manager).

Fit criteria: All write access is aborted if a file is locked.

Assessment procedure: A Lock Manager will be implemented that provides the ability to get and
release locks on entities like files and directories. Validation will be done by trying to sequentalize
multiple accesses.

Description of the assessment result: Not yet supported.

Req. ID: 488

Description: In order to simplify and speed up the integration of new wireless devices in Hydra, the
discovery and proxy creation process has to be standardized and be as modular as possible, so
common parts can be reused by proxies for different wireless devices.

Fit criteria: 30% of proxy modules rely on common kernels.

Assessment procedure: Limbo tests on code reuse and modularization. We will create two proxies
and check the code modularization and the reuse of code.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 38 of 56 14.11.2008

Description of the assessment result: We have created two proxies, one for a Door Trap and one for
a Dimmer Switch using Limbo Tool. The generated code is very similar in both cases. They share the
same core packages for the proxy (UPnP, BundleActivators, Servlets) except for the device-specific
services (i.e. the code depends on the methods and services of each device). The main difference
between the generated code is the implementation of the services specific for each device, in which
the developer has to provide the implementation. Also, the different parts of the code are clearly
separated and there is a specific package for each specific functionality (UPnP, Servlets, Parsers, WS
code, etc.).

Therefore, we can state that the generated proxy code is reusable and modular so this requirement
has been fulfilled and validated.

Req. ID: 486

Description: At the moment, public supernodes are used to act as relays in D2D communication. If
these supernodes are down, communication between networks is impossible. Thus, we need to
manage our own supernodes in partner’s servers.

Fit criteria: 80% of the time, own supernodes are up and running and Network Managers can join
the Hydra Network (even when they are located behind firewalls or NATs).

Assessment procedure: Supernode deployment on CNET and FIT servers and test that Network
Managers can join the Hydra Network.

Description of the assessment result: We have set up two super nodes, one in CNET premises and
one in FIT premises, as it is shown in Figure 4. These special Network Managers help with the
network creation and bootstrapping. After this setup, we have started several (up to 15) Network
Managers and all of them, 100%, joined the Hydra Network successfully and were able to
communicate with each other. Thus, this requirement has been validated successfully.

 Figure 4: Supernodes deployment

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 39 of 56 14.11.2008

Req. ID: 442

Description: Proxy-Gateways can filter and react to data received from associated non-hydra
devices. Part of the proxy functionality may include support for filtering of the received data and
possibly a reaction to high or low values. Non-Hydra devices cannot be expected to analyze the data
themselves, so the gateways could take care of this.

Fit criteria: 50 % of Gateways supports filtering and reaction to received data.

Assessment procedure: Generate device proxies using Limbo and use Context Manager on the
gateway to test the Data Acquisition.

Description of the assessment result:

Figure 5 shows the interaction of a Non Hydra Device within the Hydra Data Acquisition Process,
which is described in the dedicated deliverables about data acquisition and context management.

Basically the following steps are processed:

• Hydra Limbo service is generated to Hydra and enable the Non Hydra Device to deploy web
services for accessing the device.

• The DAC is used by the Data Acquisition component to access the data produced by the
device. The generic DAqC is configured through an interface which can be accessed by the
Context Manager as well as by other Hydra components.

• Within the DAqC a first data validation is performed to check the plausibility of the incoming
data.

• The Hydra Component or Application shown in the figure is usually the Context Manager
which is configured through the application by developer. There the semantics of the data is
further processed with the help of the Ontology Manager (not shown in the figure).

Figure 5: Non Hydra Device used within Hydra Discovery and Data Acquisition

Req. ID: 427

Description: The D2D communication system has to allow the Hydra enabled device to create, join
and leave groups of Hydra enabled devices, so the components of these groups share the same
credentials and can communicate isolated from non-group-members.

Fit criteria: 90% of the devices involved in the D2D communication system can create, join and
leave groups.

Assessment procedure: Test group creation for applications.

Description of the assessment result: Group creation is not yet supported in the current version of
the middleware, so this requirement cannot be assessed.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 40 of 56 14.11.2008

Req. ID: 396

Description: Hydra-enabled devices may be mobile or fixed equipment. A subset of the Hydra
middleware (mainly Network Manager) can be deployed in mobile (PDA, Smartphone) and in
resource-constrained devices (Home Gateways).

Fit criteria: 30% of state of the art PDAs, Smartphones and Home Gateways can host part of the
Hydra middleware.

Assessment procedure: Test the implementation on Home Gateway, Play Station 3, and Android
mobile phone.

Description of the assessment result: The Lite Version of Network Manager has been tested on a
Play Station 3, Inaccess Home Gateway and Android mobile phone. In all the cases the Network
Managers were able to communicate with each other and with standard Network Managers deployed
on PCs.

Figure 6: PlayStation3

Figure 7: Inaccess Home Gateway

Figure 8: Android G1 phone

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 41 of 56 14.11.2008

Therefore, it is tested that this version runs on mobile and resource constrained devices. The
requirements for running these versions are:

Network

Manager
Version

Current
version

CPU Memory Storage Java VM

J2SE 2.0 1GHz 64 MB 20 MB J2SE

Lite CDC 1.0 400 MHz 30 MB 8 MB J2ME CDC

Lite CLDC 1.0 250 MHz 10 MB 1 MB J2ME CLDC MIDP 2.0

Req. ID: 446

Description: Security parameters negotiation.

Fit criteria: In 90% of all cases the parameters should be flexible.

Assessment procedure: Make use of handshake protocol and the security related mangers also with
the security ontology to test these negotiation mechanisms. Rules set to different levels of security.
Test minimum and maximum levels.

Description of the assessment result: The integration of the handshake protocol has been tested
successfully. It is integrated in the Network Manager and communicates with Crypto and Trust
Manager to use the services for encryption and decryption as well as for token verification. The
obligation policy framework can be used to set up different security configurations.

 Req. ID: 487

Description: Improve handshake protocol between Network Managers for exchanging certificates.

Fit criteria: In 95% of the cases simple protocol would work.

Assessment procedure: Use different managers, with different keys, and different protocol standards
to exchange data between them. Turn on handshake protocol and detect errors either in encryption
or keystore methods.

Description of the assessment result: The handshake protocol has been integrated into the Network
Manager. It can be used to exchange certificates between two managers to initialize a security
session for inside hydra security.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 42 of 56 14.11.2008

4.4 WP6 validation results

 Requirements from the previous cycle

Req. ID: 91

Description: Any Hydra device should have an associated description.

Fit criteria: Any device associated to a Hydra application is also included in the Hydra device
ontology, and its description can be retrieved.

Assessment procedure: Check that a newly discovered device has/gets a corresponding
representation in the Device Ontology.

Description of the assessment result: As a part of the discovery process all devices will also be
resolved against the devices ontology (semantic discovery). Interfaces exist that allows a developer
to browse and retrieve the device descriptions in the device ontology. Devices can also be manually
classified.

Req. ID: 110

Description: Device categorization in run-time.

Fit criteria: 7 of 10 devices are correctly categorized and described.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely.

Description of the assessment result: The last step in the discovery process is to categorise a device
based on device ontology information (aka the semantic discovery). The accuracy of this
categorization depends on the completeness of the device descriptions and taxonomy in the device
ontology. However, all devices that are discovered on the physical and network levels will also be
resolved against the device ontology.

Req. ID: 114

Description: Semantic enabling of web services.

Fit criteria: 7 of 10 devices are semantically enabled.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely.

Description of the assessment result: The intention here is that the system should be able to
associate semantic descriptions to device (web) services based on the device ontology.

After a device has been discovered (physically and thru UPnP) the discovery process will try to
resolve the device semantically against the device ontology. Depending on the result of this
resolution, the discovery process will generate the necessary web service interfaces for the device.
This requirement is currently partly supported, in that it may require manual intervention by
updating the device ontology.

Req. ID: 122

Description: Configurable and easy to install middleware.

Fit criteria: The average installation time is less than 1 hour.

Assessment procedure: Time of middleware installation.

Description of the assessment result: The final installation procedures and scripts are under
development. The current Hydra implementation and configuration can meet the installation time
constraint in most cases, but still requires manual intervention.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 43 of 56 14.11.2008

Req. ID: 376

Description: Security requirements must be part of the Hydra MDA.

Fit criteria: Security model can be defined semantically.

Assessment procedure: A semantic security model exists, check resolution process.

Description of the assessment result: We can conclude that security requirements can be included in
the MDA (the model driven architecture) of Hydra, i.e., the security meta model describes security
requirements and policies, and a security ontology is in place. To validate this requirement, it is
necessary to define security at the application and device levels and to resolve it semantically.

Requirements for this cycle

Req. ID: 501

Description: A Hydra enabled device must support UPnP discovery

Fit criteria: All HYDRA enables devices support UPnP.

Assessment procedure: All Hydra devices are found thru UPnP.

Description of the assessment result: The UPnP is an integral part of the Hydra discovery process.
Hence, any device discovered by Hydra will also be UPnP enabled.

Req. ID: 500

Description: Semantic annotations of devices using SAWSDL.

Fit criteria: For a given UPnP discoverable device, it is possible to create an SAWSDL annotation
which can be accessed from the UPnP discovery information.

Assessment procedure: Annotations can be attached and retrieved for any device.

Description of the assessment result: Interfaces exist that allow a (device) developer to annotate
device WSDLs using SAWSDL. These SAWSDL annotations refer to the properties of device
descriptions in the Device Ontology. SAWSDL annotations can also be generated from the device
descriptions in the ontology.

Req. ID: 477

Description: Device proxies should make use of available security features for "last mile"
communication.

Fit criteria: Device proxies must support WEP and WPA for WiFi-connections as well as Bluetooth
authentication and encryption.

Assessment procedure: Device proxies can be created that use WEP and WPA for WiFi-connections
as well as Bluetooth authentication and encryption.

Description of the assessment result: The proxy architecture of Hydra does not constrain or
prescribe the use of the underlying protocol for communicating with a device. Any device proxy
implementation can be designed to use the available security features of the current protocol.

Req. ID: 126

Description: Automatic Device ontology updates.

Fit criteria: The device ontology can detect device updates and handle that in 7 of 10 cases.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely, device
discovery results in an ontology update.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 44 of 56 14.11.2008

Description of the assessment result: The Ontology Manager supports this requirement by the
automatic update of device descriptions from the parsing of WSDL and SAWSDL files associated to
devices.

Req. ID: 120

Description: Automatic Multiple Device Virtualisations.

Fit criteria: Multiple Device Virtualisations.

Assessment procedure: A developer is able to create at least two different views onto the same
physical device.

Description of the assessment result: A Device Virtualization is here understood as the logical Hydra
representation of a physical device. It is possible to create several different views/virtualisations of
a physical device depending on network context and applications. The descriptions in the Device
Ontology determine the initial device view after the device has been discovered.

Req. ID: 117

Description: HYDRA component ontology.

Fit criteria: HYDRA device and service managers can be identified and selected through a software
component ontology.

Assessment procedure: HYDRA device and service managers can be identified and
materialized/displayed.

Description of the assessment result: The discovery process currently works with an implicit software
component model. This model represents the device managers and service managers that are
selected for automatic proxy generation. This model is currently not available to the developer, but
the device and service manager objects are, and can be specialized.

This requirement is also supported by the ASL (Architecture Scripting Language) of WP4 which
works with an explicit software component model for deploying Hydra component configurations.

Req. ID: 114

Description: Semantic enabling of device web services.

Fit criteria: 7 of 10 devices are semantically enabled.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely.

Description of the assessment result: The Device Ontology includes a service model subset which
can be used to for semantic web service description. The association of semantic descriptions to the
device web services can be based on the parsing of device WSDL and SAWSDL files.

Req. ID: 113

Description: Composition (of services and devices).

Fit criteria: Service composition during design-time is possible.

Assessment procedure: Design an application composed of at least two different devices of different
types and with different services.

Description of the assessment result: A developer is able to compose services and devices from
different providers and/or manufacturers into high level services/devices in an application. This is
currently done using the programming language of the SDK/DDK. Composition and aggregation is

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 45 of 56 14.11.2008

also supported by constructs for Semantic Devices, which are higher level programming constructs
(devices), based on the combination existing Hydra Devices.

Req. ID: 112

Description: Dynamic Web Service Generation.

Fit criteria: 7 of 10 device functionalities are automatically represented as web services.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely.

Description of the assessment result: As a result of the device discovery process and device proxy
creation, web service interfaces are generated. There are three categories of services generated,
Generic Hydra Services, Energy Profile Services, and the Device Specific Service.

Req. ID: 104

Description: Automatic Discovery of Services.

Fit criteria: 8 of 10 services are automatically discovered.

Assessment procedure: Enter new devices into a Hydra network, locally and remotely.

Description of the assessment result: The current discovery model is based on the discovery of
physical devices. The device services can be “discovered” in subsequent steps by the application. It
is also possible to use the Ontology Managers search and browser interfaces to find services by
various selection criteria.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 46 of 56 14.11.2008

4.5 WP7 validation results

Requirements from the previous cycle

Req. ID: 308

Description: The Security Level of an existing network should be determinable.

Fit criteria: Hydra middleware provides at least one mechanism enabling devices to determine the
security level of an existing network.

Assessment procedure: Evaluation of the current status of the middleware security architecture.

Description of the assessment result: As already stated in D10.2, the term “Security level” in this
requirement is relatively fuzzy. In order to fulfil this requirement completely, it must be possible to
observe the security mechanisms that are used in a network and to estimate their “Security level”,
i.e. their strength. The second point is fulfilled: Hydra’s security ontology allows to reason about
assurances that have been provided by certain institutions for different security algorithms and
protocols. However, it is impossible to automatically observe security mechanisms that are used by
entities in a network for a device that wants to join the network. Many security mechanisms,
especially those which are implemented in layers below the Hydra middleware, are transparent to
the middleware layer in general and so information about these layers has to be offered explicitly.
One way to do this is to use the domain controller which can inform a joining device about the
security level of his domain. The joining device might accept this information depending on the trust
relationship to the domain controller. In detail, the domain controller might sign his “security level”
claims with a certificate that is somehow trustable for the joining device.

Even though the arguments presented in D10.2 for the first unsuccessful assessment of this
requirement are still valid and the implemented mechanisms regarding a determinability of “secure
level” haven’t changed significantly, we now declare this requirement as supported. The reason for
the changed conclusion is that the implemented domain model now allows negotiating security
mechanisms based on trust, and the security ontology is able to support the estimation of
corresponding security level for a joining device.

Req. ID: 468

Description: Different levels of security must be supported.

Fit criteria: It must always be possible to implement at least two different security levels for an
application.

Assessment procedure: Evaluation of the current status of the middleware security architecture.

Description of the assessment result: In terms of cryptography for message protection, this
requirement is fulfilled as the modules for Core Hydra and Inside Hydra communication protection
are based on XMLEncryption1 and XMLSignature2. Both standards define a message format for
protected data but leave it up to the developer to use a suitable cryptographic algorithm from a list
of recommended ones. In that way, different “security levels” in terms of “algorithms” and “key
lengths” are supported.

Besides, “security level” could also be understood in the sense of a set of access-control policies.
The “security level” could be higher the more access to different services is restricted by those
policies. Even in that way, the requirement can be considered fulfilled as Hydra’s policy framework
will provide the basis for defining and enforcing such access-control rules.

1 http://www.w3.org/TR/xmlenc-core/
2 http://www.w3.org/TR/xmldsig-core/

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 47 of 56 14.11.2008

D10.2 stated that it was not clear what the original intention of that requirement had been. In many
aspects the requirement is supported by Hydra, but overall we marked this requirement ambiguous
and won’t continue further assessments.

Requirements for this cycle

Req. ID: 364

Description: Hydra's Access-Control policies support credential based authentication.

Fit criteria: Access-control can be based on credentials.

Assessment procedure: Evaluation of the Access Control Policy Framework.

Description of the assessment result: Credentials are used for authentication in the Hydra Access-
Control Policy Framework, with the use of various credentials relating to the subject and resource of
a request that are supplied by the Network Manager. These credentials include the HIDs of the
subject / resource, as well as the attributes associated with the cryptoHID (certificate bound to HID)
of the subject / resource. This includes such (secure) credentials as a Service Identifier, Service
Description and a Persistent Identifier. The implementation of this feature has been tested
successfully, but integration and testing are ongoing.

 Req. ID: 498

Description: Mechanisms used for communication security should be replaceable by configuration.

Fit criteria: For at least two of the communication protection mechanisms (Core / Inside / Outside
Hydra) it should be possible to replace security modules without recompiling the middleware.

Assessment procedure: Evaluation of the current status of the middleware security architecture.

Description of the assessment result: Both the communication mechanisms for core and inside Hydra
security support the reconfiguration of security mechanisms without a need to recompile elements of
the middleware. The basic functionality for communication security is provided by the security library
and the communications protocols which are explained in D7.8 “Security and Privacy components for
DDK prototype” and D7.7 “Security Architectural Models Design Specification”.

Req. ID: 509

Description: Enforcement of Access-control policies.

Fit criteria: Policy enforcement points can be attached to Hydra web services so that access control
decisions can be enforced.

Assessment procedure: Evaluation of the Access Control Policy Framework.

Description of the assessment result: Policy Enforcement Points have been attached to Network
Managers. These Network Managers can route the requests to its local services through the PEP,
along with collected credentials about the subject and resource of the request, for an access
decision.

Req. ID: 510

Description: Enforcement of obligation policies.

Fit criteria: Hydra components negotiate their capability to enforce different actions with the policy
decision.

Assessment procedure: Evaluation of the current status of the middleware security architecture.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 48 of 56 14.11.2008

Description of the assessment result: An obligation enforcement bundle has been implemented
which is able to hand obligations to different types of enforcement plugins. Currently, two different
types of enforcement plugins are available: one to manage and execute instructions of the OSGi
framework and one to execute ASL-scripts. Therefore the requirement is supported. Further details
of the obligation policy framework are available in deliverable D7.7.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 49 of 56 14.11.2008

4.6 Summary of the evaluated requirements

In the following table we summarise the results obtained for the validation of the selected
requirements in both the first and second cycle.

WP3 I Cycle II Cycle

18 Support for different software architectural patterns
Supported

31 An easy-to-use programming framework should be provided
Not yet supported Partly supported

33 Enable manufacturers to develop devices and applications that
can be connected to Hydra Supported

41 Hydra Developer's Companion
Partly supported Partly supported

136 Dynamic architecture
Not yet supported Partly supported

185 Middleware provides basic services
Partly supported Supported

186 GUI for configuring middleware parameters
Supported

199 Modules should be extendable
Partly supported Partly supported

207 Service selection by context
Partly supported Partly supported

217 The middleware should ensure high robustness of services
Partly supported Partly supported

234 The middleware should be self descriptive
Not yet supported Not yet supported

320 Separate domain-oriented services and user interface services
architecturally Not yet supported Not yet supported

327 The Hydra middleware should be flexible as to allow for opt-in
and opt-out on parts Supported

329 Middleware provides domain-independent services
Supported

335 Location awareness / positioning support
Partly supported Partly supported

515
Support of domain-specific ontologies

Partly supported

518
No external standards should dictate the virtual layer

Supported

519 It should be possible to implement managers in either
programming model.

Supported

522 All HYDRA entities must have a semantic model description
Supported

524 Determination and Description of the dependencies among Hydra
Managers.

Supported

525
Delimitation between Application and Device Elements.

Supported

526 Delineation between middleware and application in terms of
context provision

Supported

528
Specification of the information flow among Hydra Managers.

Supported

WP4

312 Support profiling of devices' performance
Partly supported Partly supported

314 Faults should be intercepted by middleware, notified to interested
services

Partly supported Supported

317 Support runtime reconfiguration
Not yet supported Supported

318 Devices should be able to be added to the system at runtime
Supported

334 There should be support for developing auto-configuration of
certain devices Not yet supported Supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 50 of 56 14.11.2008

366 Web services should run on embedded devices
Not yet supported Supported

479 Event prioritisation
Supported Supported

WP5

264 Common message protocol
Supported

276 New communication technologies
Supported Supported

336 Discovery protocol should support multiple networks
Supported

407 Storage Manager – Gateways information stored synchronization
Not yet supported Not yet supported

419 Device services and resources provision through its Gateway
Supported

425 D2D communication Overlay Hydra network
Supported

445 The level of protection should be independent from the currently
used low-layer protocol Supported

455 Identity - Update of the correspondences between identifier and
physical addresses Supported

465 Networks overlapping
Not yet supported Not yet supported

475 Multimedia streaming in the Hydra network
Supported

476 Network Manager Configuration and Testing
Supported

396 Hydra-enabled devices – May be mobile or fixed equipment
Supported

427 D2D communication – Group management
Not yet supported

442 Proxy – Gateways can filter and react to data received from
associated non-hydra devices

Supported

446 Security parameters negotiation
Supported

486 Hydra proprietary supernodes are needed to support D2D
communication between networks

Supported

487 Improve handshake protocol between Network Managers for
exchanging certificates

Supported

488 Modular and standard device integration
Supported

502 It should be possible to store simple key/value pairs
Not yet supported

503 It should be possible to combine different storage for mirroring or
striping

Partly supported

504 It should be possible to add and remove physical storage from a
Mirror/Striping-Set

Not yet supported

505 It should be possible to access data in Storage Manager using a
well defined protocol (e. g. WebDav) Supported

506 It should be possible to lock files (Storage Manager)
Not yet supported

WP6

91 Any HYDRA device should have an associated description
Not yet supported Supported

101 Manual device ontology definition
Supported

108 Device discovery
Supported

110 Device Categorisation in runtime
Partly supported Supported

111 Dynamic Web Service Binding
Supported

114 Semantic enabling of device web services
Not yet supported Partly supported

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 51 of 56 14.11.2008

122 Configurable and easy to install middleware
Not yet supported Not yet supported

129 Support for Semantic Web Standards for Device Communication
Supported

210 Middleware should support different architectural styles
Supported

376 Security requirements must be part of the Hydra MDA
Not yet supported Supported

389 Service browsing in device ontology
Supported

104 Automatic Discovery of Services
Partly supported

112 Dynamic Web Service Generation
Supported

113 Composition (of services and devices)
Supported

114 Semantic enabling of device web services
Partly supported

117
HYDRA component ontology

Partly supported

120 Multiple Device Virtualisations
Supported

122 Configurable and easy to install middleware
Not yet supported

126
Automatic Device ontology updates

Partly supported

477 Device proxies should make use of available security features for
"last mile" communication

Supported

500 Semantic annotations of devices using SAWSDL
Supported

501 A Hydra enabled device must support UPnP discovery
Supported

WP7

308 The Security Level of an existing network should be determinable
Not yet supported Supported

468 Different levels of security must be supported
Not yet supported

No further
assessment

472 Provide application developers with the functionality of checking
tokens against a trust model Supported

473 Support of arbitrary trust models
Supported

474 Core Hydra security mechanisms should run on embedded
devices

Supported

364 Hydra's Access-Control policies support credential based

authentication

Supported

498 Mechanisms used for communication security should be
replaceable by configuration

Supported

509 Enforcement of Access-control policies
Supported

510 Enforcement of obligation policies
Supported

Table 12: Summary of evaluation results

From the table it is possible to sketch the graphics on the successfulness rate for the actual
validation, in terms of requirements’ percentages reaching the threshold.

On the average, 86% of the tested requirements have been partly or completely covered, as it
appears in Figure below.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 52 of 56 14.11.2008

Figure 9: Overall success percentages after 2nd validation cycle

In the next summarising table we present the results obtained divided per WP. The indication is not
relevant in terms of quantitative aspects, but it is considered as a basic reference for the future
development and validation activities to be fulfilled during the next project iteration.

Figure 10: Requirements fulfilment for WP3

Figure 11: Requirements fulfilment for WP4

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 53 of 56 14.11.2008

Figure 12: Requirements fulfilment for WP5

Figure 13: Requirements fulfilment for WP6

Figure 14: Requirements fulfilment for WP7

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 54 of 56 14.11.2008

5. Conclusions

The validation methodology has been built and applied by the comparison between an expected
impact (requirement) and how the real prototype or application behaves. The assessment procedure
was applied from the (potential) Hydra user, who is a developer or a software expert able to
recognise if the promised features and properties of the Hydra middleware are met. The
environment selected for the validation was the software laboratory of the Hydra partners, where
potential developer users, not previously working in the Hydra implementation, were selected and
carried out the assessment.

More in details, the validation methodology consisted in the verification that each selected
requirement fit criterion has reached the threshold level, or whether the requirement has been
partially met or has not been met. The selection of the requirements to be validated has been
fulfilled by considering the following parameters:

• effective implementation or not of the requirements (in respect to the actual timing or status
of the project)

• relevance for the overall architecture (cross related features)

• requirement type and priority

In total, i.e. considering the first and the second validation cycles, 83 requirements have been
assessed. The overall results are summarised into the following table.

 Assessment threshold level N. of requirements fulfilling the threshold

Supported 58 (70%)

Partly supported 13 (16%)

Not yet supported 10 (12%)

Table 13: Overall success rate.

Notice that the number of supported requirements is improved compared to previous cycle (it was
52%). In particular, the number of requirements “not yet supported” has decreased (it was 31%).

Specifically, in the second validation cycle, in total 57 requirements have been assessed:

• 22 requirements have been re-assessed, because they were not yet or partly supported in
the first validation cycle.

• 35 requirements have been assessed for the first time.

Focusing on the re-assessed requirements only, we can state that 12 requirements out of 22 (54%)
moved from not yet supported to supported or partly supported, or moved from partly supported to
supported; i.e. we had a substantial improvement in the development of SDK and middleware in the
last year.

Focusing on the newly assessed requirements only, the results are summarised into the following
table.

Assessment threshold level N. of requirements fulfilling the threshold

Supported 24 (69%)

Partly supported 6 (17%)

Not yet supported 5 (14%)

Table 14: New requirements success rate.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 55 of 56 14.11.2008

Notice that the success rate for the new requirements of this second validation cycle has improved
compared to the success rate of the first validation cycle (it was 52%).

These validation outcomes clearly show that the Hydra platform implementation is properly (and
with an increasing speed) pursuing the target objectives. Most likely, the improved know-how of
researchers and developers about the involved technologies and features of the platform helped the
achievement of these improved results.

However, it is worth to highlight that this is just an intermediate result. The next validation cycle
should confirm (and possibly improve) the obtained results, following the current development
trend.

Similarly to the previous validation cycle, the results of this phase and, thus, the user feedbacks, are
given back to the developers of the system by continuing the iterative approach. The data emerged
in the present analysis will be distributed to the Hydra consortium (starting from each technical
Work Package, but also looped back to WP2), as a mean for refining the user requirements, better
detailing the project lessons learnt and continuously improving the system characteristics.

HYDRA Validation Report for SDK Prototype

Version 1.1 Page 56 of 56 14.11.2008

6. References

Foglia, T. and Costa, N. (2007). Validation Framework. Technical Report D2.6, Hydra Consortium. EU
Project IST 2005-034891

Guarise, A. and De Bona, M. (2008). Validation Plan for prototypes. Technical Report D10.1, Hydra
Consortium. EU Project IST 2005-034891

Hansen, K.M. (2007). Quality Attribute Scenarios. Technical Report D6.1, Hydra Consortium. EU
Project IST 2005-034891

Klaus Marius Hansen, Weishan Zhang, Mads Ingstrup: Towards
Self-Managed Executable Petri Nets. SASO 2008: 287-296

Kupries, M. and Hansen, K.M. (2007). Updated Systems Requirements Report. Technical Report
D3.2, Hydra Consortium. EU Project IST 2005-034891

International Standards Organisation website
http://www.iso.org/

Wahl, T., Hoffmann, M. and Schütte, J. (2008). Impact of architectural security implications.
Technical Report D7.6, Hydra Consortium. EU Project IST 2005-034891

Weishan Zhang, Klaus Marius Hansen: An Evaluation of the NSGA-II and
MOCell Genetic Algorithms for Self-management Planning in a Pervasive
Service Middleware. Proceedings of the 14th IEEE International
Conference on Engineering of Complex Computer Systems.

Weishan Zhang, Julian Schütte, Mads Ingstrup, Klaus M. Hansen. A
Genetic Algorithms-based Approach for Optimized Self-protection in a
Pervasive Service Middleware.(submitted for ICSoC 2009).

Weishan Zhang, Klaus Marius Hansen: An OWL/SWRL Based Diagnosis
Approach in a Pervasive Middleware. SEKE 2008: 893-898

Zimmermann, A. (2008). Updated System Architecture Report. Technical Report D3.9, Hydra
Consortium. EU Project IST 2005-034891

