
Ontology-Enabled Generation of Embedded Web Services

Klaus Marius Hansen and Weishan Zhang and Goncalo Soares
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{klaus.m.hansen,zhangws,afonso}@daimi.au.dk

Abstract

Web services are increasingly adopted as a service provi-
sion mechanism in pervasive computing environments. Im-
plementing web services on networked, embedded devices
raises a number of challenges, for example efficiency of web
services, handling of variability and dependencies of hard-
ware and software platforms, and of device state and con-
text changes. To address these challenges, we developed
a web service compiler, Limbo, in which Web Ontology
Language (OWL) ontologies are used to make the Limbo
compiler aware of its compilation context, such as targeted
hardware and software. At the same time, knowledge on
device details, platform dependencies, and resource/power
consumption is built into the supporting ontologies, which
are used to configure Limbo for generating resource effi-
cient web service code. A state machine ontology is used to
generate stub code to facilitate handling of state changes of
a device. A number of evaluations show that the design of
the Limbo compiler is successful in terms of performance
of the generated web service, completeness in being appli-
cable to a variety of embedded devices, and usability for
developers in creating new services.

1 Motivation and introduction

Pervasive computing is becoming a reality. Because of
their increasing ubiquity in business environments, web ser-
vices are increasingly needed to be adopted as service pro-
vision mechanisms in pervasive computing environment.
Consequently, in a number of applications, web services
are deployed on resource-constrained embedded and net-
worked devices. Implementing web services on embedded
devices raises a number of challenges. First, embedded de-
vices are constrained in memory, processor and energy re-
sources. The web services should be sufficiently resource
efficient in order to provide usable services. Second, de-
velopment environments for embedded web services must
be able to handle the variability of hardware and software,

power supply, and possible dependencies between platform
properties. At the same time, pervasive computing environ-
ments are highly dynamic, with, e.g., device statuses chang-
ing very often; something that affects end user applications.

A number of tools and approaches focusing on making
web services available on small embedded platforms exist.
One example is Microsoft’s Web Services on Devices1, and
Fast Infoset2. Fast Infoset is not a web service technology
per se, but provides a binary encoding of XML that may be
used to make web services more efficient in the sense that
they use less bandwidth in communication. These tools,
however, fall short in the flexibility of code generation and
complexity hiding of device details and web service details
for the developer. At the same time, they lack the extensi-
bility for using new protocols and technologies, when con-
sidering the huge variance of embedded and networked de-
vices.

To address these issues, in this paper, we present Limbo,
an ontology-enabled compiler for the generation of embed-
ded web services. A number of Web Ontology Language
(OWL3) ontologies are used to encode device details, plat-
form dependencies, resource/power consumption, and valid
Limbo components combinations, which are used to make
the Limbo compiler aware its compilation context, such as
the appropriate hardware and software for a given service.
Runtime states of a device are handled with a state machine
ontology and stub code is generated to support reporting de-
vice state changes.

The development of Limbo is part of a large, Euro-
pean research project, Hydra4 that develops secure, service-
oriented, and self-managed middleware for pervasive com-
puting application scenarios.

The rest of the paper is structured as follows: in Sec-
tion 2, we present the design and implementation of Limbo;
followed by is the section on how to use the generated code

1http://www.microsoft.com/whdc/rally/Rallywsd.
mspx

2https://fi.dev.java.net/
3http://www.w3.org/2004/OWL/
4http://www.hydra.eu.com/

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



for the development of web services. Section 3 discusses
ontologies used in Limbo. In Section 4, we present the con-
figuration algorithm used in Limbo. Then we evaluate the
Limbo compiler in Section 5, from the perspective of com-
plexity, usability and performance. We compare our work
with related work in section 6. Conclusions and future work
ends the paper.

2 Limbo design, implementation, and usage

2.1 Limbo design and implementation

Figure 1 shows the module structure of the Limbo com-
piler. The software architecture of Limbo follows the
“Repository” architectural pattern [5] in which a central
Repository stores data related to the transformation process
and on which Frontends and Backends operate to read and
write information. Frontends process source artifacts (in
particular web service interface descriptions in the form of
WSDL 5 files and ontology descriptions in the form of OWL
files). Conversely, Backends produce target artefact’s in the
form of code (primarily state machine stubs, web service
stubs and skeletons) and configuration files.

com.eu.hydra.limbo

frontend repository backend

wsdl

soap rest

generator

parser

statemachine transport

clientside serverside

ontology

Figure 1. Module structure of Limbo

Backends implement different features. An essential fea-
ture is the parser backends with different implementation
languages such as Java SE and Java ME (Java Standard Edi-
tion/Java Micro Edition). An example of generation can be
the generation of client-side stubs and/or server-side skele-
tons or transport code for network communication between
client and a server. To provide the possibility of handling
dynamicity of device state changes, a state machine back-
end generates state machine stubs. Figure 2 shows the com-
pilation process of the Limbo compiler. A “thermometer
service” is used to illustrate the compilation and the usage
of the generated artifacts. In the example, the service runs
on a thermometer device, Pico TH03, and provides a tem-
perature measurement upon request. The following steps
are involved:

5Web Services Description Language 1.1. http://www.w3.org/
TR/wsdl

Provide WSDL 

service description

Provide Limbo 

configuration

Generate based 

on configuration

Generate based 

on ontology

[Ontology available]

[Ontology not available]

Create embedded 

stubs and skeletons

Create proxy stubs

and skeletons

[Resources available

on device]
[Resources not available

on device]

Limbo compilation process

Figure 2. Limbo compiling process

• Provide WSDL service description: The main input
for Limbo is WSDL file, and Limbo also supports
that WSDL files references the Hydra device ontology.
An example of a Hydra ontology binding for the ther-
mometer in WSDL would be the following:

<hydra:binding device="http://hydra.eu.com/ontology/
Device.owl#thermometer"/>

The Limbo ontology front end will resolve this URI
and retrieve thermometer hardware and software infor-
mation.

• Generation based on configuration or ontology. If an
ontology instance for the device is available, device
specific platform information will be used to generate
client and/or server code. If the device associated state
machine instance available, state machine stub code
will be generated. Otherwise, generation configuration
is based solely on the developer-supplied parameters.

• Create embedded/proxy stubs and skeletons. Stubs and
skeletons for the device service are created accord-
ing to the device’s capabilities. If code cannot be di-
rectly embedded on the device, proxy code is gener-
ated based that will run on OSGi6. For the thermome-
ter, as it does not have any computing capability it-
self, according to the the retrieved platform informa-
tion from the ontology, proxy code will be generated
using OSGi.

2.2 Implementing services based on generated
code

For the thermometer with a configuration of a standalone
server using Java SE, the following classes are generated:

6http://www.osgi.org

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



• EndPoint.java - Abstract class that defines the end-
points (i.e. services) that are provided by the server

• th03OpsImpl.java - Implementation of the service
methods

• th03Service.java - A service class that handles requests
and returns the respective results

• LimboServer.java - Limbo server main class

• StateMachineStub_Thermometer.java - State machine
stub for thermometer

An OSGi configuration (Java SE) or a Java ME server
can be chosen, and Limbo can also generate clients either
for Java ME or Java SE. The generation of OSGi code is fol-
lowing the OSGi specification (e.g., an Activator instead of
an EndPoint, a servlet instead of a “th03Service”). Classes
are also generated to support this in the form of a state ma-
chine stub that will allow the service developer to model
and notify upon state changes. The following code is gener-
ated for the thermometer state machine shown in Figure 3,
and the measuring state of the thermometer is linked to the
getTemperature service.

public class StateMachineStub_Thermometer {
public void ThermometerStopping() { ... }
public void ThermometerStarting(){ ... }
public void ThermometerMeauring(){
event ev = new event();
...
ev.parts_add(new part("Result",

"" + service.getTemperature(this.deviceID)));
eventManager.publish("/statemachine/statechange", ev);
}
...
}

Based on the generated artifacts, the device developer
needs to implement the device service. This entails:

• Binding the device services to the actual device. For
the thermometer service this would include, e.g., cre-
ating a thread that continuously calculates the temper-
ature and stores the temperature in a local variable.
The actual service implementation would then read the
value of this variable and return the temperature.

• Sending state notifications. The state machine stub
needs to be invoked at proper places. In the case of
the thermometer, each successive call will at runtime
trigger an event being sent through the event manager
(Figure 3), when the thermometer is started, when it
is measuring, and when it stops as shown in the ther-
mometer state machine in the lower part of Figure 3.

• Create deployment artifacts. Next, device and
container-specific deployment artifacts (JAR files,
OSGi bundles etc.) need to be created in order to be
able to deploy the service.

The upper part of Figure 3 shows a typical runtime of
a deployed Limbo service. The thermometer service is de-
ployed on a Thermometer Device. A service that needs tem-
perature data (“Thermometer Client”) then uses the ther-
mometer service through its web service interface. Ther-
mometer state changes trigger events sent through a pub-
lish/subscribe mechanism.

:Thermometer

Service

:Themometer Device :Event Manager

:Event

Manager 

Service

:Thermometer

Client

EventManagerServiceThermometerService

starting Measuring stopping

Figure 3. Thermometer runtime and ther-
mometer state machine

3 Ontologies in Limbo

There are a number of reasons for us to use ontologies
in Limbo: first, details of device hardware and software,
and possible dependencies between them, are hidden in the
related ontologies. Web service developers only need to
know about the device URI and the service they are imple-
menting, as shown in the Thermometer example. Second,
in order to generate resource-efficient code, knowledge on
device software platform and resource/power consumption
comparisons are built into the related ontologies, and used
during the configuration of Limbo for code generation.

We have developed the supporting ontologies for Limbo
as shown in Figure 4. The usage of these ontologies can be
summarized as follows:

• LimboConfiguation ontology. Not all the combinations
of the frontends and backends in Limbo are valid. For
example, for OSGi, there is no need for the Server
generator as a web server is built into OSGi frame-
works. Therefore it is very important to regulate the
valid combinations of different Limbo components and
resolve dependencies among them, whether combina-
tions are explicit in the feature model or implicit. As
proposed in [6], we develop a LimboConfiguration on-
tology to formally specify what the legal feature com-
binations are.

• Device ontology and associated hardware platform
and software platform ontologies. These ontologies
are used to retrieve device specific information in order
to generate resource/power-awareness code for a cer-
tain device. The Device ontology is used to define high

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



level only information of a device, for example device
type classification (e.g., an alarm device is a sensor).

The HardwarePlatform ontology includes concepts
such as CPU, Memory and so on, and also relation-
ships between them, for example ”hasCPU”. Power
consumption concepts and properties for different
wireless network are added to the HardwarePlatform
ontology to facilitate power-awareness.

The SoftwarePlatform ontology defines VirtualMa-
chine, Middleware and object properties such as re-
quiresMoreMemory, reuqiresFasterCPU, and their re-
verse properties. In the Java ontology we define con-
cepts such as JavaVM, JavaByteCode and specify that
a specific Java platform (e.g., CLDC) provides a cer-
tain Library or Rendering Engine etc.

The OperatingSystem ontology provides a classifica-
tion of an operating system based on its characteristics
and version for example Win32/Win16, which can fa-
cilitate the restrictions on which operating system con-
sumes more memory than others.

• StateMachine ontology.

For every type of device in the Device ontology,
there is a corresponding state machine instance in the
StateMachine ontology. This state machine instance is
used to generate state machine stubs.

Device

SoftwarePlatform StateMachine

Limbo

Configuration

OperatingSystem JavaDotNet

HardwarePlatform

Service Info CapabilityClassification

<<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

<<import>>

Figure 4. Structure of ontologies used in
Limbo

4 Limbo configurations with ontologies

In order to generate resource efficient code, Limbo will
utilize the resource/power consumption knowledge built in
the ontologies. Therefore the LimboConfiguration ontology
imports the Device ontology, and hence all other ontologies
through the ontology import mechanism. Object proper-
ties in the LimboConfiguration ontology (requireCPU, re-
quireOS, requireVM and requireLibrary) are used to specify
a backend’s detailed requirements for the CPU, operating

system, virtual machine, and libraries. The Limbo config-
uration algorithm is shown as a UML activity diagram in
Figure 5 and described next.

check CPU get Backends for required CPU

Check whether the CPU/OS/

Virtual Machine (VM) is a 

COMPULSORY requirement 

for a backend and get the 

number of these backends 

[list.length=1] 

check OS get Backends for required OS

check VM get Backends for required VM

add to Backend list

List length

resolve options based on end user preference

resolve options based on CPU/memory usage

resolve options based on power/battery policy

[NoCPU] 

ProxyGeneration

Options including proxy/

embedded_service and 

their implementation 

platform

Figure 5. Limbo configuration algorithm

Step 1. Checking CPU/OS/VM details When a compil-
ing task is needed for a certain device, first the detailed
software and hardware information, especially CPU,
operating system, virtual machine will be retrieved us-
ing the ontology frontend.

Step 2. Iteratively checking the backends’ required CPU/OS/VM
After the detailed information on CPU, operating sys-
tem and virtual machine has been obtained from
related ontologies, this information will be checked
iteratively for whether this version of CPU, oper-
ating system and virtual machine are required for
the backends. This kind of information is stored
within instances of the backends associated with the
requireCPU, requireOS, requireVM object properties.

Step 3. Resolving choices using user preferences There
are situations where we can get multiple options for
backends. For example, Motorola MPx220 has Win-
dows Mobile as its operating system, but at the same
time it has J2ME MIDP2, which will be compared
with end user preferences. Then the generation can go
ahead with the chosen platform.

Step 4. Resolving choices based on CPU/Memory usage
For situations where memory and CPU usage should
be decided, for example J2SE, CDC and CLDC as
options, we will choose the one that consumes less
memory and requires a slower CPU for small devices
as default.

Step 5. Resolve options based on power/energy policy
The power consumption of various bearers supported
by a device is checked, and choose a correspond-
ing bearer according to the power consumption
expectation.

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



In our implementation of the above algorithm, we are
using SWRL7 to resolve options for multiple platforms as
detailed in [2].

5 Evaluation of Limbo

We have evaluated Limbo according to the evaluation
framework of one.world [1]. This includes evaluating:
Completeness: can useful services be generated; Perfor-
mance: is the generated services sufficiently resource ef-
ficient; Complexity and utility: how hard is it to create ser-
vices and can others build upon it.

5.1 Completeness

We evaluate this through the generation of services for a
set of prototypes for a home automation scenario to testify
whether useful services can be generated by Limbo. Here
services were primarily created by a member of the Hydra
team who has not participated in the development of Limbo
(four services) and by a member of the Limbo compiler
team (one service). For all services, Hydra helped in hid-
ing web service complexity and in generating efficient web
services. The generated services were:

• Nokia N80 SMS service. The service uses Limbo’s
Midlet generation option and runs a Limbo-generated
web server.

• Pico TH03 thermometer service, Grundfos Magna 32
pump service and Abloy EL582 door lock service.
These services run as proxies on an OSGi gateway and
interface with devices via device-specific protocols.

5.2 Performance

Here we report on time and memory usage measure-
ments compared to Apache Axis8. The purpose is not
to compare to Apache Axis per se since it was designed
for a multi-threaded server environment, but rather to see
that Limbo-generated services used significantly fewer re-
sources than a popular web service framework.

For measuring resource utilization, we used a setup
with a SOAP-based web service implementing an SMS
service. This web service was requested by a Limbo-
generated client and implemented using Apache Axis and
using Limbo on both Java SE and Java ME (on a Nokia N80
mobile phone). For the Apache Axis and Limbo SE imple-
mentations a PC (an Apple Mac Book Pro with a 2.33 GHz
Intel Core 2 Duo processor, 2 GB DDR2 SDRAM, MAC
OS X 10.4.10). The left part of Figure 6 shows the result

7SWRL homepage. http://www.w3.org/Submission/SWRL/
8Apache Axis. http://ws.apache.org/axis

Figure 6. Limbo time and memory usage mea-
surements

of our time measurements with the total execution time for
five consecutive calls made to the SMS web service. For
all implementations there is a high start-up cost due to the
establishment of sockets – in particular so in the Java ME
case. The Limbo ME implementation is also orders of mag-
nitudes slower than the SE implementations, a fact that is
due to the network setup of the Nokia N80 – and to the fact
that the ME implementation actually sends an SMS – since
the Limbo SE and Apache Axis implementations are com-
parable with respect to time usage.

The right part of Figure 6 shows the memory measure-
ments of Limbo and Apache Axis. Both the Limbo SE
and the Limbo ME versions use significantly less memory
than Apache Axis. In the SE cases, the measurements were
made using a JMX agent to measure the maximum amount
of memory used during processing of requests. In the ME
case, we measured maximum memory with SUN’s Wire-
less Tool Kit (Version 2.5). On average, the Limbo ME
service used 362.4 Kb memory. In conclusion, the resource
usage of Limbo generated services is significantly smaller
than that for Apache Axis-generated services.

5.3 Complexity and utility

Complexity and utility were evaluated by members of
the Hydra project that had not participated in the develop-
ment of Limbo. Two partial evaluations were made on eval-
uation of ontology construction and code generation. For
both, a case of implementing a blood pressure service on an
HTCP3300 smartphone9 was used.

It was possible to create a model of the HTCP3300 de-
vice including a state machine within a day of work for an
ontology engineer unfamiliar with the device and the asso-
ciated service. The Limbo compiler has been successfully
used to generate small applications to test their compati-
bility with Windows Mobile Smartphone and Eclipse ME-
generated classes.

9http://www.europe.htc.com/en/products/
htcp3300.html

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008



5.4 Evaluation conclusions

The Limbo compiler has been shown to be useful with
good resource consumption of the generated code. Clearly
there is a need for better documentation for both Limbo and
the used ontologies, and Windows Mobile concepts of the
OperatingSystem ontology need to be improved.

6 Related work

As said in the introduction, existing tools such as Mi-
crosoft’s Web Services on Devices and Fast Infoset, fall
short of the necessary flexibility of generating different code
artifacts for the large variant of devices based on different
protocols. These tools lack the versatility of being used for
different embedded devices.

In Limbo, we translate WSDL files into a local Regular
Tree Grammar (RTG) [4] that describes allowed SOAP en-
velopes as defined by the WSDL files. Though some frame-
works can produce grammar-specific parser of XML data
such as done by, e.g., XML Screamer [3], our work lever-
ages this work but casts it in the context of web services,
where ontologies are used to support the needed configu-
ration during the generation process. The ontologies are
helping to achieve generation-context-awareness and help
to make decisions on the targeted platform, with the objec-
tive of generating resource efficient code.

Apache Muse10 can simplify the building of web ser-
vice interfaces for manageable resources. While Muse has
a very specialized objective for the targeted specifications,
Limbo has a highly flexible architecture which can be eas-
ily extended with the generation of code for .NET code, and
other specialized platform such as LeJOS11. And more im-
portantly is that we are using ontologies and rule languages
to rigorously regulate and instruct the compilation, which
can bring us some wiser decisions that is not easily achieved
by Apache Muse and other existing approaches.

7 Conclusions and future work

There is an increasing requirement to run web services
on resource constrained devices in pervasive computing. In
this paper, we present an ontology-enabled compiler called
Limbo for the generation of embedded web services. Limbo
has followed the Repository architecture style where differ-
ent frontends and backends can be easily added.

Limbo gets device information from the targeted device
in compilation from a Device ontology that imports Hard-
warePlatform ontology and software platform related on-
tologies, where resource/power consumption comparisons

10Apache Muse project. http://ws.apache.org/muse/
11LeJOS homepage. http://lejos.sourceforge.net/

are specified, and used by Limbo to achieve the generation
of resource-efficient web services. A StateMachine ontol-
ogy is used to generate state machine stub code and using an
event mechanism to publish the state change events. We are
using a LimboConfiguration ontology to rigorously specify
the legal feature combination of Limbo compiler.

Our evaluations through the first Hydra prototype show
that the design of the Limbo compiler is successful in terms
of resource consumption of the generated web services,
complexity hiding of the web service itself and that devel-
opers can use Limbo to develop resource efficient web ser-
vices for a variant of different embedded devices.

A more flexible implementation using OSGi is under de-
velopment. Web service code generation for .Net platform
is planed. And more other hardware platform for example
LeJOS is also under exploration.

Acknowledgements

The research reported in this paper has been supported
by the Hydra EU project (IST-2005-034891).

References

[1] R. Grimm, D. Wetherall, J. Davis, E. Lemar, A. Mac-
beth, S. Swanson, T. Anderson, B. Bershad, G. Bor-
riello, and S. Gribble. System support for pervasive
applications. ACM Transactions on Computer Systems
(TOCS), 22(4):421–486, 2004.

[2] K. M. Hansen, G. Soares, and W. Zhang. Embed-
ded service sdk prototype and report. Technical Re-
port D4.2, Hydra Consortium, Dec. 2007. IST 2005-
034891.

[3] M. Kostoulas, M. Matsa, and N. e. a. Mendelsohn.
XML screamer: an integrated approach to high per-
formance XML parsing, validation and deserializa-
tion. 15th international conference on World Wide Web,
pages 93–102, 2006.

[4] M. Murata, D. Lee, M. Mani, and K. Kawaguchi. Tax-
onomy of XML schema languages using formal lan-
guage theory. ACM Transactions on Internet Technol-
ogy (TOIT), 5(4):660–704, 2005.

[5] M. Shaw. Some Patterns for Software Architectures.
Pattern Languages of Program Design, 2:255–269,
1996.

[6] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. A Se-
mantic Web Approach to Feature Modeling and Verifi-
cation. In 1st Workshop on Semantic Web Enabled Soft-
ware Engineering, Galway, Ireland, Nov 2005. LNCS.

The 20th International Conference on Software Engineering and Knowledge Engineering (SEKE'2008)

Redwood City, San Francisco Bay, USA 
July 1 - July 3, 2008




