
Towards Self-managed Pervasive Middleware
using OWL/SWRL ontologies

Weishan Zhang and Klaus Marius Hansen

Department of Computer Science, University of Aarhus
Aabogade 34, 8200 Århus N, Denmark
{zhangws, klaus.m.hansen}@daimi.au.dk

Abstract. Self-management for pervasive middleware is important to
realize the Ambient Intelligence vision. In this paper, we present an
OWL/SWRL context ontologies based self-management approach for
pervasive middleware where OWL ontology is used as means for context
modeling. The context ontologies are incorporating the dynamic context
information, including device and service run time information, which
can then be used for running status checking and diagnosis, QoS moni-
toring, and further to achieve other self-management features, such as the
self-configuration and self-adaptation. We demonstrate the OWL/SWRL
context ontologies based self-management approach with the self-diagnosis
in Hydra middleware, using device state machine and other dynamic con-
text information, for example web service calls. The evaluations in terms
of extensibility, performance and scalability show that this approach is
effective in pervasive service environment.

1 Introduction and Motivation

Context awareness[1] is one of the key features for pervasive middleware. It
can provide the potential to improve the flexibility and personality during ser-
vice provision, and alleviate the human attention and interaction bottlenecks by
providing self-management features using contexts, including self-configuration,
self-adaptation, self-optimization, self-protection and self-healing (through self-
diagnosis). This is vital to achieve the vision of Ambient Intelligence (AmI) that
should come with the pervasive middleware like Hydra (IST-2005-034891).

To facilitate achieving context-awareness, we agree that OWL1 ontology is
the best way for context modeling [2], which can provide reasoning potentials
for what contexts we are in, a capability not easily achievable by other context
modeling approaches. The definition of context in [1] is general enough to cover
the contexts in pervasive computing, but we want to point out that not only
static knowledge, but also dynamic and runtime context should be considered in
order to handle runtime-related requirements. For example, we can run a status
check of a system at runtime, and monitor the dynamic contexts of the system
and then make decisions on where the problem is, why the problem happens and
how to tackle the problem.
1 OWL homepage. http://www.w3.org/2004/OWL/.

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

2

Take a concrete agriculture scenario in the Hydra project:
Bjarne is an agricultural worker at a large pig farm in Denmark. As he checks
whether the pigs are provided with the correct amount of food, he is interrupted
by a sound from his PDA. Apparently, the ventilation system in the pig stable has
malfunctioned. After acknowledging the alarm, the system begins to diagnosis and
soon it decides that the cause of the problem is ’power supply off because of fuse
blown’. Then he can prepare a fuse and repair the ventilator. After repairing it,
he signs off the alarm, and chooses one of the predefined log messages, describing
what he has done.

As can be seen from the above scenario, it is very important that the Hy-
dra middleware can provide diagnosis functionality to the end user, or better to
achieve self-healing when there is malfunction. To this end, the run time infor-
mation, for example the device states should be monitored in order to make de-
cisions on diagnosis. Other self-managing work for the Hydra middleware among
others includes self-protection according to security rules, searching service and
negotiating QoS (Quality of Service) parameters with other services.

In this paper, we will show the Hydra context ontologies that considering
run time contexts, and present an OWL ontology and SWRL (Semantic Web
Rule Language)2 based self-management approach for Hydra, in particular the
self-diagnosis, which take into the characteristics of pervasive computing. We
demonstrate our approach with the Diagnosis Manager for Hydra middleware.
The evaluations in terms of extensibility, performance, and scalability shows
that the proposed Hydra OWL/SWRL context ontologies and self-management
approach based on OWL/SWRL context ontologies are effective to achieve the
self-diagnosis goals, and lay a solid foundation for other self-management work.

The rest of the paper is structured as follows: in Section 2 we will briefly
introduce the architecture of self-management based on OWL/SWRL ontologies
of the Hydra middleware; We then show the Hydra ontologies that facilitate
self-management, followed in Section 4 we present the complex context specifi-
cation with SWRL; In Section 5, we demonstrate the proposed approach with
the Diagnosis Manager together with some evaluations. We compare our work
with the related work in Section 6. Conclusions and future work end the paper.

2 Architecture of self-management in Hydra

The Hydra project is developing self-managed middleware for pervasive embed-
ded and network systems based on service-oriented architecture. Several compo-
nents are involved in achieving the self-management features, based on context
ontologies where dynamic contexts are encoded. These components include a
Diagnosis Manager, which is used to monitor the system conditions and states
in order to fulfill error detection, diagnosis, and provide recovery solutions; and
a QoS Manager negotiating QoS parameters with other services and manages
resources accordingly. Further, the QoS Manager provides device specific infor-

2 SWRL specification homepage. http://www.w3.org/Submission/SWRL/

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

3

mation to the Diagnosis Manager, and coordinates with Service Manager, On-
tology Manager and Orchistration Manager. Context events are managed using
an Event Manager where publish/subscribe functionalities are provided.

To build necessary intelligence into the Hydra middleware in order to support
the self-management, the related monitoring and dianosis rules, QoS rules and
service selection rules built on top of the ontologies, play a vital role. We chose
SWRL to develop these rules. SWRL is a W3C recommendation for the rule
language of the Semantic Web, which can be used to write rules to reason about
OWL individuals and to infer new knowledge about those individuals. SWRL
provides builtins such as math, string and comparisons that can be used to
specify extra contexts, which are not possible or very hard to achieve by OWL
itself. Therefore, SWRL is naturally chosen as the rule language in Hydra for
the implementation of self-management rules.

The architecture for all the self-management components is the same for Hy-
dra. We are following the three Layered architecture proposed by Kramer and
Magee [3]. Based on the current status of OWL/SWRL, we came up with the
following architecture as shown in Figure 1, in which the Goal Management,
Component Control and Change Management are enclosed with dashed line.
The bottom of the architecture is the ontologies/rules, in which knowledge of
devices, rule based QoS, and state based diagnosis are encoded. For the Compo-
nent Control layer, it is mainly used for state reporting and run time information
updating, for example battery level and QoS measurement. For the Change Man-
agement layer, it is used to response to the state reported from the Component
Control layer, and then execute rules developed based on these state and other
run time information. For the Goal Management layer, it is used to resolve the
rule conflicts based on QoS regulations or user preference etc.

3 Context ontologies in Hydra

Context-awareness, especially the awareness of those dynamic context informa-
tion, is the most important factor to fulfill the goal of various self-management
processes. In Hydra, the context awareness has the following awareness features:

– Resource awareness This includes hardware, for example CPU, and software,
for example operating system.

– Power awareness Different network carriers use different amount of energy
during transmission. This will be considered during service provision. Bat-
tery information for device is also need to be known.

– QoS awareness As one of the important criteria for the selection of service,
QoS is another context that shows both static and dynamic affects to the
middleware, for example latency.

– Security awareness The right information should be transferred to the right
user at the right time in the right place using the agreed service level agree-
ment, and in the appropriate format.

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

4

Reasoner

MasterCopyOfRules/Ontolgoies

RuleProcessing

RuleInterpretation/Eventpublishing

OntologyProcessing

ReasoningInterpretation

StateUpdating StatePublishing

RuleEngine

Component Control

Change

Management

RuleBasedPlaning

DynamicContextUpdate

(DeviceStateMachine, QoS, Power)

Goal Management

Fig. 1. Architecture of the self-management in Hydra

3.1 Structure and design of the Hydra ontologies

Although there are some pervasive computing ontologies, e.g. SOUPA3 ontolo-
gies, they are not enough for achieving the needed intelligence and handling of
dynamic context in order to achieve the above mentioned various awareness. The
openness and dynamism of pervasive computing, and the nature for pervasive
and embedded devices running as state machines, motivate the development of
Hydra context ontologies, whose high level structure is shown in Figure 2.

The Device ontology itself is used to define some basic information of a Hydra
device, for example device type classification(e.g. mobile phone, PDA, sensor),
device model and manufacturer, and so on. The device type classification in the
Device ontology is based mainly on AMIGO project ontologies [4]. To facilitate
diagnosis, there is a concept called HydraSystem to model a system composed
of devices to provide services. And there is a corresponding object property
hasDevice which has the domain of HydraSystem and range as HydraDevice.
There are also concepts used for the monitoring of web service calls, including
SocketProcess, SocketMessage and IPAddress. The HydraDevice concept has a
data-type property currentMalfunction which is used to store the inferred device
malfunction diagnosis information at run time and will be exemplified later.

The device Malfunction ontology is used to model knowledge of malfunction
and recovery resolutions. We separate the malfunctions into two categories: Error
(including device totally down) and Warning (including function scale-down,
and plain warning). There are also two other concepts, Cause and Remedy,
which are used to describe the origin of a malfunction and its resolution.

3 Semantic Web in Ubicomp. http://pervasive.semanticweb.org/.

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

5

Device

SoftwarePlatform StateMachineHardwarePlatformService Malfunction

Service Malfunction SocketMessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

DeviceRule

<<import>>

Person

Security

Location

SetBased

SemanticBased

GraphBased

Schedule

Network

Time

QoS

Component/

Connector

Fig. 2. Structure of the Hydra context ontologies

3.2 Dynamic context

The dynamic context information will reflect the running status of the underlying
system, therefore it is the key enabler for the functioning of self-management. For
example, the device status is important to check the device working condition
and is used to develop diagnosis and monitoring rules; the monitoring of QoS is
important to test whether service level agreement is meet due to service mobility.

A common sense of mobile and embedded devices used in pervasive envi-
ronments is that they are usually designed and operated as state machines. In
line with this, a state machine ontology is developed based on [5] with many
improvements:

– A data-type property isCurrent is used in order to indicate whether a state
is current or not.

– A doActivity object property is added to the State in order to specify the
corresponding activity in a state and this makes the state machine complete.

– A data-type property hasResult is added to the Action (including activity)
concept in order to check the execution result at runtime.

– Three data-type properties are added to model historical action results.

The dynamic context is modeled with runtime concepts and properties in the
related ontologies, mainly the StateMachine ontology, the Malfunction ontology,
QoS ontology, and other concepts and properties in the Device ontology, such as
currentMalfunction and HydraSystem. The currentMalfunction will be used to
store the current diagnosis information for the malfunction case, HydraSystem
is used to dynamically model the device joining and leaving and reflect the
composition of a system.

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

6

Because of the space limit, in this paper we only present the self-diagnosis
to demonstrate the effectiveness of the self-management using these ontologies.
Figure 3 shows a more detailed but simplified view of the ontologies facilitating
diagnosis.

Fig. 3. Partial details of the Diagnosis Manager used ontologies

4 Extending OWL ontologies with SWRL rules

A SWRL rule is composed of an antecedent part (body), and a consequent part
(head). Both the body and head consist of positive conjunctions of atoms. A
SWRL rule means that if all the atoms in the antecedent (body) are true, then
the consequent (head) must also be true. SWRL is built on OWL DL and shares
its formal semantics. In our practice, all variables in SWRL rules bind only to
known individuals in an ontology in order to develop DL-Safe rules to make
them decidable. In our example SWRL rules, the symbol ∧ means conjunction,
and ?x stands for a variable, → means implication, and if there is no ? in the
variable, then it is an instance.

4.1 Complex context specification with SWRL rules

SWRL has more expressive power than OWL using various builtins, and can be
used to specify complext contexts. As an example, we can specify a GPS distance

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

7

calculation with SWRL in order to define a farAwayFromHome context (e.g.
5 miles away from home using the GPS distance calculation formula4). Then
this new context can be used to take actions, for example, surveillance system is
switched automatically to the highest security level with all cameras turned on.
person : hasHome(?person, ?home) ∧

person : inLocation(?person, ?coord1) ∧

loc : hasCoordinates(?home, ?coord2) ∧

coord : latitude(?coord1, ?lan1) ∧

coord : latitude(?coord2, ?lan2) ∧

swrlb : subtract(?sub1, ?lan1, ?lan2) ∧

swrlb : multiply(?squaresublan, ?sub1, ?sub1) ∧

swrlb : multiply(?par1, ?squaresublan, 4774.81) ∧

coord : longitude(?coord1, ?long1) ∧

coord : longitude(?coord2, ?long2) ∧

swrlb : subtract(?sub2, ?long1, ?long2) ∧

swrlb : multiply(?squaresublong, ?sub2, ?sub2) ∧

swrlb : multiply(?par2, ?squaresublong, 2809) ∧

swrlb : add(?parameter, ?par1, ?par2) ∧

swrlm : sqrt(?distance, ?parameter) ∧

swrlb : greaterThan(?distance, 5) ∧

swrlb : StringConcat(?str,′′ true′′)

→ sqwrl : select(?person, ?home, ?distance) ∧ farAwayFromHome(?person, ?str)

Similarly, we can define QoS metrics and other QoS regulation with SWRL
rules, and we are investigating the specifying of service selection using SWRL
rules based on the Security ontology, Service ontology and QoS ontology. Here
is a simple example of querying the availability dynamically.
swrlb : add(?total, p1 : downtime, p1 : uptime) ∧

swrlb : divide(?availability, p1 : uptime, ?total)

→ sqwrl : select(?availability)

4.2 Complex dynamic context

To achieve self-management, for example self-diagnosis, the OWL context on-
tologies themselves are really weak to specify rules that are important to define
policies for security, QoS metric calculation and diagnosis rules. In these cases,
we are applying SWRL to specify these dynamic contexts.

For this paper, we will elaborate on the self-diagnosis contexts which rely on
the device state machine and other related concepts as mentioned in the former
section. In a similar way, the QoS monitoring rules could be developed based on
the dynamic information monitored.

Monitoring and diagnosis rules are the basis for the diagnosis service. We
have two level diagnosis rules, namely device level rules and system level rules.
Device level rules are used for a certain type of devices which are supposed to be

4 How to calculate the distance between two points on the Earth.
http://www.meridianworlddata.com/Distance-Calculation.asp

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

8

generic for that type of devices. The following example rule specifies the mobile
phone battery level monitoring. If the battery level is less than 10%, then a
warning will be published.
device : MobilePhone(?device) ∧

device : hasHardware(?device, ?hardware) ∧

Hardware : primaryBattery(?hardware, ?battery) ∧

Hardware : batteryLevel(?battery, ?level) ∧

swrlb : lessThanOrEqual(?level, 0.1)

→ V eryLowBattery(?device)

System level rules are used to specify rules that span multiple devices in a
system. For example, if the detected flow for feeding the pig is more than 6 gallon
per minute, then we can infer that the pipe is broken.

device : FlowMeter(?device) ∧

device : hasStateMachine(?device, ?statemachine) ∧

statemachine : hasStates(?statemachine, ?state) ∧

statemachine : doActivity(?state, ?action) ∧

statemachine : actionResult(?action, ?result) ∧

abox : isNumeric(?result) ∧

swrlb : greaterThan(?result, 6.0) → device : currentMalfunction(device : Flowmeter, ”PipeBroken”)

A more complex rule is the example of pig farm ventilating and monitoring
system, thermometers are used to measure both indoor and outdoor tempera-
ture. In the summer time, the indoor temperate should follow the same trend
as the outdoor temperature. A rule is developed to first obtain the trends by
the difference of continuous temperature measurements of both the indoor and
outdoor temperatures. If the trend is not the same, we infer that the ventilator
is down.

From our experiences, the loading of the OWL/SWRL ontologies is the main
performance bottleneck, therefore all the current rule sets are stored in one
separate ontology called DeviceRule as can be seen from Figure 2, and we load
it when the system initializes.

5 Evaluating OWL/SWRL context ontologies based
self-management with Diagnosis Manager

To evaluate the OWL/SWRL context ontologies based self-management ap-
proach, and the proposed Hydra ontologies, we will use the Diagnosis Manager
as an example to show the effectiveness and usability, in terms of extensability,
performance (as the main concern), and scalability.

5.1 Design and implementation of the Diagnosis Manager

Hydra implements a service-oriented architecture based on web service interac-
tion among devices. Initially we focus on device status reporting using state

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

9

changes as events through the Hydra Event Manager, and Web service re-
quest/reply reporting using IPSniffer tool. When there are state change events,
the device state machine instance in the state machine ontology need to be up-
dated, and also these state changes will be published with state machine state
changes as event topic. The Diagnosis Manager is an event subscriber to the
state machine state change events, it will then update the corresponding state
instances in the ontology. At the same time, this will trigger the diagnosis of the
device status, executing the SWRL rules to monitor the health status of devices,
and also trigger the reasoning of possible device errors and their resolutions. The
Diagnosis Manager will publish the diagnosis results as an event publisher.

We adopted a mix of the Blackboard architecture style and the Layered
architecture in the actual implementation due to the high overhead for loading
ontologies, and use the observer pattern in both the updating of state machine
ontology and parsing fo the inferred result from SWRL rules.

OWL ontology provides intelligence capabilities for diagnosis decisions. For
example, Bjarne get a high priorit warning of ”GrundfosPumpMQ345 failed to
start”. A diagnosis task is initiated to check what is wrong with the pump, but
as a newly installed pump, there is still no error resolution to this model of pump
in the Malfunction ontology. As a further step, the diagnosis system will conduct
subsumption reasoning and search for the device Type in the Device ontology,
which is found as FluidPump, and then its manufacturer is also queried. Now
another query to the Device ontology will get a similar pump called Grund-
fosPumpMQ335 as of the same type from the same manufacturer ”Grundfos”.
And based on the name of the error and pump type, the solution from a query
to Malfunction ontology is suggested ”replace a capacitor”, which is happily the
solution to solve the problem.

5.2 Evaluation of the Diagnosis Manager

We evaluated the extensibility of the OWL/SWRL based diagnosis Manager in
terms of scalability, performance, and extensibility. We started the development
of Diagnosis Manager with the rule for temperature monitoring. After finishing
the implementation and testing, we then try to handle the flowmeter diagnosis
rules. We only need to add the flowmeter rules to the existing rules set. No single
line of Diagnosis Manager code needs to be changed. In summary, the Diagnosis
Manager has good extensibility.

For the measurement of performance, the following software platform is used:
Protege 3.4 Build 125, JVM 1.6.02-b06, Heap memory is 266M, Windows Vista.
The hardware platform is: Thinkpad T60 Core2Duo 2G CPU, 7200rpm hard
disk, 2G DDR2 RAM. The time measurement is in millisecond. The size of
DeviceRule ontology is 210,394 bytes, and contains 22 rules, which is fair for
a small pervasive system in which monitoring and diagnosis functions are all
included. The performance figures are shown in Table 1. An interesting thing is
after some time of running, the Diagnosis Manager is running stably with the
total time in 260-270 ms for processing an event, a bit faster than the one when

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

10

it starts. Here the parsing of the inferred result is running in a multi-threaded
way in the Diagnosis Manager.

Update InferringTime AfterEventTillInferred
383 380 382
322 319 321
282 278 282
272 269 271
265 263 265
270 267 269
268 266 269

Table 1. Diagnosis Manager performance

For scalability, a number of events are published (almost in parallel) to mea-
sure how long it will be, starting from the publishing till the end of inferring
and publish related inferring result. Time needed (y-axis) is shown in Figure 4
(x-axis shows the number of events) . We can see that the time taken is in linear
with the events need to be processed.

y = 425.35x - 31.43

R² = 1.00

0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600

Fig. 4. Diagnosis Manager scalability

6 Related work

The work on Context OWL[6] considers that contexts are local. In the pervasive
computing environment, this is not always true as we have a global Time man-
ager which manages the consistent time for all users. Work in [7] also applied
SWRL-based context modeling, and illustrated three cases of applying SWRL
to manipulate context. We go beyond this work by the dynamic-state based
monitoring and diagnosis using the context ontologies. When compared to the
existing pervasive computing ontologies, such as SOUPA and Amigo[4], the Hy-
dra context ontologies have some unique features. Firstly, dynamic contexts are
incorporated which facilitate the achieving of self-management. Secondly, com-
plex contexts, especially those self-management needed complex and dynamic

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

11

contexts, are defined by SWRL, which are not expressible by OWL ontology
itself.

Kramer and Magee [3] recently proposed a reference model for self-managed
systems, which is composed of component control, change management and goal
management. In this paper, we largely followed this work for the Layered archi-
tecture, but mainly focus on the Component Control and Change Management.
At the same time, a mix of Blackboard architecture and Layered architecture
are applied to improve performance and extensibility.

Self-healing is one of the main challenges to autonomic pervasive computing.
Generally speaking, our approach applied the same idea of ETS [8], in terms
of the using of states for detecting source of failure, and then notification of
failure source. And this process is actually universal for error detection. Our
ontology and SWRL rule based approach provides a way of intelligent detection
and resolution, which is not easily achievable by ETS.

Work in [9] also use semantic web approach for achieving self-managing.
Our approach is non-intrusive, SWRL rules are automatically executed using
state machine instead of explicitly inserting sensor code to program, and is more
suitable for the characteristics of pervasive devices.

Various failures in a pervasive system are classified in [10], and an architec-
ture for fault tolerant pervasive computing is proposed. We focus not only on
device failure monitoring, but also on system level detection using the relation-
ships of different state machine instances. In addition, our approach can be more
intelligent in terms that ontology reasoning can help the diagnosis.

There are many researches dealing with the diagnosis in various field, e.g. [11]
from traditional artificial intelligence point of view. These traditional approaches
are not utilizing the context ontologies that are already there in pervasive sys-
tems and are used for context-awareness and other purposes. In our vision, the
open world assumption in OWL/SWRL, and hence in our approach, is very well
suited for the openness of the pervasive computing environment, which auto-
matically rejects the approaches using Prolog kind of rules that use close world
assumption.

7 Conclusions and future work

Self-management capabilities are important to achieve necessary dependability
in pervasive system, and is a challenge for pervasive computing. In Hydra, we
make use of the OWL/SWRL ontologies as the basis for the implementation
of self-management features, which is very suitable for the openness nature of
pervasive computing. These context ontologies are incorporating the dynamic
context information, including device and service run time information, which
can then be used for running status checking and diagnosis, QoS monitoring, and
further to achieve other self-management features, such as the self-configuration
and self-adaptation.

We illustrate the OWL/SWRL based self-management with the experiment
of the Diagnosis Manager, mainly using state machine ontology and SWRL rules

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

12

built based on it. The malfunction information and its resolution are encoded
in an OWL ontology, and can be used at run time to infer the solution to
the malfunction, and further to fulfill self-healing activities. SWRL is used to
develop monitoring and diagnosis rules, which can help make intelligent decisions
when there is malfunction occurs. The evaluations of the Diagnosis Manager in
terms of extensibility, scalability, and performance, relieved us for the worrying
of performance of the OWL/SWRL based self-management.

In the future, we will continue the implementation of the Goal and planning
layer of the three layered architecture. At the same time we are working on QoS
ontology rules and QoS-awareness service matching and service selection based
on the SWRL rules. Further work on full scope of self-management, such as self-
adaptation, self-configuration based on OWL/SWRL ontologies are under way,
which will be reported in the coming papers.

Acknowledgements

The research reported in this paper has been supported by the Hydra EU project
(IST-2005-034891).

References

1. Dey, A.: Understanding and Using Context. Personal and Ubiquitous Computing
5(1) (2001) 4–7

2. Strang, T., Linnhoff-Popien, C.: A Context Modeling Survey. Workshop on Ad-
vanced Context Modelling, Reasoning and Management, UbiComp (2004) 34–41

3. Kramer, J., Magee, J.: Self-Managed Systems: an Architectural Challenge. Inter-
national Conference on Software Engineering (2007) 259–268

4. IST Amigo Project: Amigo middleware core: Prototype implementation and doc-
umentation, deliverable 3.2. Technical report, IST-2004-004182 (2006)

5. Dolog, P.: Model-driven navigation design for semantic web applications with the
uml-guide. Engineering Advanced Web Applications, In Maristella Matera and
Sara Comai (eds.) (Dec. 2004)

6. Bouquet, P., Giunchiglia, F., van Harmelen, F.e.a.: C-OWL: Contextualizing on-
tologies. Second International Semantic Web Conference (2003) 164–179

7. Plas, D.J., Verheijen, M., Zwaal, H., Hutschemaekers, M.: Manipulating context
information with swrl. I/RS/2005/117, Freeband/A-MUSE/D3.12 (2006)

8. Ahmed, S., Sharmin, M., Ahamed, S.: ETS (Efficient, Transparent, and Secured)
Self-healing Service for Pervasive Computing Applications. International Journal
of Network Security 4(3) (2007) 271–281

9. Haydarlou, A.R., Oey, M.A., Overeinder, B.J., Brazier, F.M.T.: Use-case driven
approach to self-monitoring in autonomic systems. The Third International Con-
ference on Autonomic and Autonomous Systems (2007)

10. Chetan, S., Ranganathan, A., Campbell, R.: Towards fault tolerant pervasive
computing. Technology and Society Magazine, IEEE 24(1) (2005) 38–44

11. Barco, R., Dı́ez, L., Wille, V., Lázaro, P.: Automatic diagnosis of mobile commu-
nication networks under imprecise parameters. Expert Systems With Applications
(2007)

Fifth International Workshop Modeling and Reasoning in Context (MRC 2008), Held at HCP 08.

Delft, The Netherlands, 9-12 June 2008

