Semantic Devices for Ambient Environment Middleware

Peter Kostelnik
Technical University of Kosice
Letna 9, Kosice
04001, Slovak Republic

Peter.kostelnik@tuke.sk

Matts Ahlsen
CNet Svenska AB
Svéardvéagen 3B
182 33 Dandaryd, Sweden

Matts.ahlsen@cnet.se

Mathias Axling
CNET Svenska AB
CNet Svenska AB
Svardvagen 3B
182 33 Dandaryd, Sweden

Mathias.axling@cnet.se

ABSTRACT

The paper describes the approach for modelling asihg

semantic descriptions of devices in the HYDRA peoje
middleware (“HYDRA: Networked Embedded
Middleware for Heterogeneous Physical Devices Disdributed
Architecture”) funded within the FP6 IST Programméhe

concept of semantic device is introduced and thim mse cases
for semantic device descriptions are presented avfbtus on the
Model-Driven Architecture (MDA) approach in HYDRAAN

overview of the ontologies representing the semadivice
descriptions is presented.

1.INTRODUCTION

In the ambient world of the near future, intercasted intelligent
devices will surround us, at home, work, or whiksselling.
These devices and their local networks will alsctenected to
the outside world through broadband and/or wiretega/orks.
Numerous services to support us in our persoraWifl be
provided through these ambient devices and ovecdhaection
to the outside world. In order to cope with the &wgriety of
capabilities of the devices, there should be a mgisim providing
the necessary adaptations to whatever interfaces or
communication protocols these devices offer. Taeaehthis, the
capabilities of the devices must be described ah suay that an
automatic agent can understand and use them.

One of the goals of the HYDRA project [3] is to pide a
middleware solution for interconnecting the various
heterogeneous devices with different services apdluilities.
HYDRA aims to develop a middleware based on a 8ervi
oriented Architecture (SOA) providing the interogigle access to

Martin Sarnovsky
Technical University of Kosice
Letna 9, Kosice
04001, Slovak Republic

Martin.sarnovsky@tuke.sk

Peter Rosengren
CNet Svenska AB
Svérdvéagen 3B
182 33 Dandaryd, Sweden

Peter.rosengren@cnet.se

System

Jan Hreno
Technical University of Kosice
Letna 9, Kosice
04001, Slovak Republic

Jan.hreno@tuke.sk

Peeter Kool
CNet Svenska AB
Svéardvéagen 3B
182 33 Dandaryd, Sweden

Peeter.kool@cnet.se

data, information and knowledge across heterogenplatiforms,
including web services, and support true ambietetligence for
ubiquitous networked devices. The SOA and its eelatandards
provide interoperability at a syntactic level. Hosg HYDRA
also aims at providing interoperability at a sentalevel. One of
the objectives is to extend the syntactic interapiity to the
application level, i.e., in terms of semantic iofgrability. This is
done by combining the use of ontologies with sefamb
services. HYDRA introduces the Semantic Model Dmive
Architecture (Semantic MDA) which aims to faciliaapplication
development and to promote semantic interoperglidit services
and devices. The semantic MDA of HYDRA includestaf
models, i.e., ontologies, and describes how thasée used both
in design-time and in run-time. The basic idea betthe HYDRA
Semantic MDA is to differentiate between the phgkdevices
and the application's view of the device. We introelthe concept
of Semantic Devices, which represent the modetkefeal
devices and serve as the logical units which casebsantically
discovered and providing the information about devi
capabilities and services.

2.SEMANTIC DEVICES

The services offered by physical devices are gdéipedasigned
independently of the particular applications in eththe devices
might be used. A semantic device on the other hapdesents
what a particular application would like to haves &n example ,
when we are designing the lighting system for ading it would
be more appropriate to model the application askingrwith a
logical lighting system that provides services liw®rking light”,
“presentation light”, and “comfort light” ratherah working with
a set of independent lamps that can be turnedfofituése logical

devices might in fact consist of aggregates of jmayevices,
and use different devices to deliver the servigeedding on the
situation. The service “Working light” might be aeted during
daytime by pulling up the blind (if it is down) amldiring evening
by turning of a lamp (blind and lamp being HYDRAvi®s). We
call these logical aggregates of devices and theivices for
Semantic Devices.

Semantic Devices should be seen as a programmimgept The
application programmer designs and programs hidicatipn
using semantic devices. The semantic device “Hgafigstem”
consist of three physical devices: a pump thautates the water,
a thermometer that delivers the temperature andgte that
flashes when something is wrong. The developeramily have to
use the services offered by the semantic devicatibg System”,
for instances “Keep temperature:20 degrees Celsaumsl “Set
warning level:17 degrees Celsius”, and does nod neé&now the
underlying implementation of this particular hegtisystem. The
Semantic Device concept is flexible and will sugpaoth static
mappings as well as dynamic mappings to physicatds.

Static mappings can be both 1-to-1 from a semaidgidce to a
physical device or mappings that allow composition.

e An example of a 1-to-1 mapping would be a
“semantic pump” that is exposed with all its
services to the programmer.

¢ An example of a composed mapping is a semantic
heating system that is mapped to three different
underlying devices — a pump, a thermometer and a

digital lamp.

Static mappings will require knowledge about whitdvices
exists in the runtime environment, for instancelibating system
mentioned above will require the existence of tiree underlying
devices — pump, thermometer and lamp - in for ntsaa
building.

Dynamic mappings will allow semantic devices to be
instantiated at runtime. Consider the heating systbove. We
might define it as consisting of the following dess/services:

¢ a device that can circulate the water and increase

its temperature

e adevice that can measure and deliver temperature

¢« a device that can create an alarm/alert signal if

temperature is out of range.

When such a device is entered into the runtimerenmient it
will use service discovery to instantiate itselflanwill query the
physical devices it discovers as to which can mevihe
services/functions the semantic device requireshis example
the semantic device most probably starts by findirgrculation
pump. But then it might find two different thermotmes which
both claims they can measure temperature. The sendevice
could then query about which of the thermometersdeiver the
temperature in Celsius, with what resolution andv haften. In
this case it might only be one of the thermomethes meet the
requirements. Finally the semantic device couldrcdeahe
network if there is a physical device that can beduto generate
an alarm if the temperature drops below a thresbolshcreases
to much. By some reasoning the semantic devicedednct that

by flashing the lamp repeatedly it can generatalarm signal, so
the lamp is included as part of the semantic hgatystem.

The basic idea behind semantic devices is to hillethe

underlying complexity of the mapping to, discovefyand access
to physical devices. The programmer just uses i asormal

object in his application focusing on solving thgpkcation’s

problems rather then the intrinsic of the physidalices. The
descriptions of semantic devices are based on melewntology
(described below).

The concept of semantic devices supports the sandMbDA

approach used. There are two uses of the semarfi& M

HYDRA. Firstly, it is relevant at design-time, sugpng both
device developers as well as application developers secondly,
at run-time where HYDRA applications can use knalgke
provided be the semantic MDA.

2.1 Semantic MDA at design-time

2.1.1Model-driven code generation for Semantic
Devices

The semantic descriptions of devices and theirices\vare used at
design time to find suitable services for the aggilon that the
HYDRA developer is working on. The descriptions thiese
services will be used to generate code to calsémeice, query the
device that implements the service, and maniputetedata that
the service operates on. We are currently makimg HYDRA
SDK available in an object-oriented language emvitent,
integrating the objects a developer can use tosacttee devices
and services (thru device and service proxies) el as the
properties from the device ontology connected twicds and
services. A HYDRA developer can specify a servicdé used,
and leave the device as generic as possible. Toessary code
will be generated both for the service and thea®evi

These device objects could be used when creatisgnzantic
device or a HYDRA application from the selected ides and
services. The services could also be used by aicserv
orchestration engine (however, considering thatesapplications
will be standalone and have a fairly small footprihis may not
be suitable for all HYDRA applications).

How the application uses the device ontology shoblel
configurable, so that the middleware supports bstindalone
applications that only use the device ontology egigh time as
well as applications that always query the devit®logy for new
types of services that match the descriptions.

2.1.2Model-driven code generation for physical
devices

For devices that have sufficient computing capateithost a web
service interface, HYDRA provides a tool to generakeleton
code. Such a tool takes as inputs an interfacerigésc and a
semantic description of the device on which a walise should
run. The interface description is assumed to bthénform of a
WSDL file and the semantic description is a linkaéno OWL

description of the device (ontologies used are rilest in the
next chapter).

The semantic description is used to:

In order to establish the ability to securely cartneny
application/device to any other application/devie®,DRA also
uses the semantic MDA to define and enforce secpdlicies. A
basic design objective for the HYDRA security modgl to
Determine the compilation target. Depending on provide a secure information flow with a minimum pfe-
the available resources of a device, either determined assumptions, while being able to dynalfyicesolve
embedded stubs or skeletons are created for theSecurity requirements. The security policies of H®can thus
web service (to run on the target device) or proxy be defined and enforced based upon knowledge indéwice
stubs and skeletons are created for the web serviceontology as well as on knowledge of the contextiefices, and

(to run on an OSGi gateway).

¢ Provide support for reporting device status. Based

on a description of the device states at runtime

also makes use of virtual devices.

(through a state machine), support code is 3-Semantic description of devices

generated for reporting state changes. This should
be also used as the support of self-* properties of

HYDRA.

2.2Semantic MDA in run-time

2.2.1Models for discovery

At design time, the HYDRA application developerests the
HYDRA devices and services that will be used tolengent the
application. These devices may be defined at by fgémeral level,
e.g. the application may only be interested e.JHWDRA SMS
Service" and any device entering the network (opliegtion
context) that fits in these general categories hdllpresented to
the application. The application will then work aga the more
general device descriptions. This means that aticatipn should
only know of the (types of) devices and servicdected by the
developer when it was defined. This still meanst thiae
application could use a device that was designebharilt after
the application was deployed, as long as the devame be
classified through the device ontology as being dévice type or
using a service that is known to the applicatiag,,ea HYDRA
application built in 2008 could specify the use "6fYDRA
Generic Smart phone" and "HYDRA SMS Service" anasthse
also a "Nokia N2010 Smartphone" released two yieaes.

When a device is discovered, the device type ikddaup in the
device ontology and be mapped to a specific device.

A HYDRA application may present an external inteef&o that it
can be integrated with other applications and asvidt will do

this by announcing itself as a HYDRA device withsat of

services. This is transparent to other deviceschvimeans that
some devices or services used in the applicatiirbericomposite
ones: based on other HYDRA applications that haxgosed

external interfaces. When such an application ssaliered, the
applications interested in that type of device #sdervices will

be notified.

2.2.2Use of models for resolving security
requirements

The dynamic and networked execution environmentléDRA
requires strong yet adaptable security mechanisn tin place.

The HYDRA device ontology presents the basic highel
concepts describing device related information. Heenantic
device model can be viewed from two perspectives:

« Design/development phase: Every ontology module can be
further extended by creating new concepts accortbnie
needs of representation of the new information almaw
device types and models. The concepts can alsarteef
specialized. For example, if a new device typeesded, the
adequate concept in the device classification n®dah be
further subclassed by more specialized conceptsrendew
properties can be added. Specific device modelsraaed
as the instances of device ontology concepts Heel fivith
real data.

¢ Run-time phase: Each instance created in the development

phase represents a specific device model and sas/éise
template for run-time instances of real devicexalisred
and connected into HYDRA. In device discovery pesce
the discovery information is resolved using theotody and
the most suitable template is identified. The idsat
template is cloned and a new unique run-time irgtan
representing the specific device is created. Eaahdevice
instance has an assigned unique HYDRA Id. UsingIthiit

is possible to retrieve and update the all relewr@formation
related to the general description of the deviad is1actual
run-time properties.

The ontology structure was designed to support the
maintainability and future extensions of used cptee The
ontologies have been developed using the OWL layg{4. The
different parts of the model are contained in sagaontology
files. The references between more general andfispaatologies

are realized using the OWL import mechanism. The af the
device ontology consists of the basic device infitiam. The
basic HydraDevice concept is sub classed by the taxonomy of
device types and serves as the root ontology concEpe
important property of thélydraDevice concept is theleviceld,
which represents the unique device URI. Device URIthe
unique identifier of the device template or the HY® Id
assigned to specific run-time device instance. rileoto create
aggregate devices, there can be a recursive pyopert
hasEmbeddedDevice of the concept, which enables to create more
sophisticated models composed of multiple devidége basic
device information is contained in the concépfoDescription,
which contains the device name, manufacturer inéion etc.

Part of the core device taxonomy and basic infoionatis
illustrated in Figure 1.

The structure of the semantic device descriptiodivéded
into four modules connected to the core ontologycepts:

¢ device capabilities (hardware, software properties

and state machines)
« device services
« device malfunctions
« device security properties

The initial device ontology structure was extenftedn the FIPA
device ontology specification [2]. The initial de&i taxonomy
was extended from AMIGO project vocabularies forvide
descriptions [1].

[0 HydraDevics

| hasHarware : hardnareHardnare

[haslp © IPAdehess

[hasMalfunction * errorMaffunction[0.] foDascrpbon
| hasPracess : SacketProcess | friendyNarne : stringl0..1]

[hasService : service Service | manufacturer : stringl0..1]

[hasSoftware softnarePlatformSoftwarePlatform . |B manufscturerURL © stringl1.1]
[hasStateMachine : stateMachine StateMaching[0.1] 1% | modelDescripton ¢ sring[0.1]
I info : InfoDescription{0..11 I modell ame : string[0..1]

|8 cumentMalfunction : stringl0.1] I rodelburmber © string[0. 1]
[deviceld : string[1.1]

I hasW5DLD ocurne: it string
| DeviceTermplate : baolean

Device [@ rerpherabeics | [applarce |

| »q\

DiplexDevics |

O Regulstor | [0 storageDavice | | 10Davice |

Robot |
]

[@ rotsbiestorage | |

staticstorage | [@R || Modem | | OutputDevia |
]

[E o4 1|]
[®us | Portableion | [wo || Fopy | | prner || Saresn |
[[/ I I I I |

Figure 1. Device taxonomy

3.1Device capabilities

Semantic description of device capabilities repmesethe
extended device information.). The device capabdliare divided
into three modules directly referred HydraDevice concept:

¢ the hardware model is based on the hardware déscaripart

from W3C deliveryContext ontology [8]. It includes the
hardware related device properties, such as copneahd

communication protocols (e.g. Bluetooth or varioe$work

bearers, etc.), description of hardware interfa(eeh as
camera, display, etc.). The model was refined withcepts
related to power-awareness and additional
connections. The root of the hardware model itaeware
concept referred byHydraDevice concept. All hardware
capabilities are represented as the subclassesamfwidre
concept. Device hardware capabilities are useddaeration
of embedded device services code.

network

« the software platform related model is important fo
generating the code for embedded device services. |
provides descriptions, such as software platform
classification, rigorous specification of platform
dependencies and resource consumption relationshipes
software model is composed of several parts, inctid
software platform, operating system, Java and nietels.

* a special case of capability is the state machirazlein
representing the concepts of states and transijtwinish are
updated in the run-time and represent the deviceése
actual status. The state machine ontology is akexd to
generate state and transition related code.

3.2Device services

The device services ontology component presentsséneantic
description of device services on the higher, tetdgy
independent level. The HYDRA service model enabiles
interoperability between devices and services, ewipy the
service capabilities and input/output parameters.

The Semantic service specification is based onQWé_-S [6]

standard, which is currently the most complete dgson of

semantic markup for services following the web ®erv
architecture. The OWL-S approach was taken ast#grg point
for HYDRA service model.

Each service is represented by the Service conedyth serves

as the root concept for subclasses creating théceetlaxonomy.
The Service taxonomy represents the service caregion. As a
service may belong to multiple categories, theainse of specific
service may be of more rdfitypes representing sé\ategories
(e.g. light switch device may be of tyfeheduledService and/or
PowerSwitchService). In the actual model, each service represents
one WSDL operation, thus an important property efvige
concept is theserviceOperation, which contains the WSDL
operation name and serves as the identifier ofséreice. Each
HydraDevice concept may have as many services, as needed
(depending of which services are provided by trex#ig device).
The Service concept references three components:

« ServiceProfile concept presents the basic senaseription
used mainly for service discovery process. Serpiagile
describes the general information, such as humadalde
service name and description, service capabilitiesservice
inputs and outputs. Capability concept is usedetscdbe the
specific service capabilities related to servicencfional
properties, such as ability to handle various méatiamats or
to handle required device statesServicelnput and
ServiceOutput parameters are specific subclasses of general
ServiceParameter class and should be annotated to semantic
model describing various input and output typesthe
syntactic (for example, string, number) and semantay
(for example, address, user name, etc.). Capahiliind
input/output descriptions can be used for suitadgevice
discovery or service composition, but also for semi
automatic or fully automatic generation of self-acigstive
service user interfaces.

¢ The ServiceProcess concept aims to describe thécaser
process model, which defines if the service reprsséhe
immediately invocable atomic process or work-flo o
composite processes. In the actual implementatibe,

ServiceProcess concept is empty and each service is treated

as the atomic process.

« ServiceGrounding concept aims to specify the dethibw to
access the service and physically realize the crvi
invocation. In the actual implementation, the
ServiceGrounding concept is empty. For grounding
information, HydraDevice concept has the (SA) WSDL
document reference (usingasWwSDLDocument property),
which contains the operations modeled by Servis&airces
of device. For more, in specific cases, the semiodels can
be generated from (SA) WSDL document.

HYDRA Ontology

D1

WwsDL 02

WsOL

[modelRsference]

Figure2. lllustration of SAWSDL referencesto ontology

In general, devices in HYDRA are provided with setm@a
descriptions by combining the device ontology wita SAWSDL
standard for annotating device WSDL files (see Fd).

3.3Device malfunctions

The semantic model of device malfunctions represguossible
errors that may occur on devices. Each malfunctiepresented
by the Malfunction concept, is described by therecode and the
human readable name information. The model conthi@sone-
to-many relation of malfunction to cases, represgntoy

MalfunctionCase concepts, which describe the possible cases and

remedies for each fault.

In order to have a flexible model of malfunctiotise Malfunction
concept can be further sub classed to several nwifin levels or
severity, such as error, fatal, warning, info, €&lossible severity
levels can be further extended by the hierarchgpetific faults.

Connecting the device taxonomy to the malfunctiarohomy
creates a flexible representation of fault statdsch may occur
on various device types and the possibilities efrteolutions.

3.4Security capabilities

Security capabilities ontology represents the sgcproperties of
devices and the services, such as protocols, pslichechanisms
or objectives. The main concept of security ontgloghe
SecurityConcept, is referred by HydraDevice and Service
concepts using théwasSecurityProperty connection The NRL
ontology [5] was selected as a starting point fas tmodel and
has been modified and extended to match HYDRA's
requirements. The NRL ontology is a set of varimesurity
related models covering the representation of crigals,
algorithms, assurances, but also the service $gcaspects
directly supporting the SOA approach. The NRL oogyl was
designed to describe the security concepts retatethy resource
type, to cover the information on the various leved detail and
to be easily extendible. Information contained hie bntology is
designed with main focus to the functional aspe€tsapability,
content and parameters.

4.CONCLUSIONS

In this paper, we have given a brief overview o gemantic
device concept used in the HYDRA middleware, withimfocus
to middleware MDA design. The first part of papsiréduced the
semantic devices modeled in ontologies and widedgduto
support the HYDRA MDA in both design and run-timbage.
The usage cases of semantic device were briefgepted in the
tasks of model-driven code generation for physicad semantic
devices, device discovery and security requiremessgslvence.
The second part of paper has provided the briefrgg®n of
ontologies used to represent the semantic devicepefies,
services and capabilities.

5. ACKNOWLEDGEMENTS

The work presented in the paper is supported b¥@evithin the
FP6 IST-2005-034891 Project “HYDRA — Networked Ehtbed
System Middleware for Heterogeneous Physical Dsvite a
Distributed Architecture”

6.REFERENCES

(1]

(2]

(3]

[4]

[5]

[6]
[7]

(8]

Amigo middleware core: Prototype implementatiand
documentation, deliverable 3.2. Technical report,
Amigo Project, IST-2004-004182, 2006.

FIPA Device Ontology Specification, Foundatidor
intelligent physical agents, 2002.

HYDRA: Networked Embedded System middleware for
Heterogeneous physical devices in a distributed
architecture”, Project Proposal, September 2005.

D.L. McGuinness, F. van Harmelen, OWL Web
Ontology Language Overview, W3C Recommendation,
2004.

Naval Research Lab. Nrl security ontology.
http://chacs.nrl.navy.mil/projects/4SEA/ontologyriht
2007.

OWL-S: Semantic Markup for Web Services, 2004.

lan Horrocks, et. al., SWRL: A Semantic Web &ul
Language. W3C Member Submission, 2004.

Delivery Context Ontology. W3C Working Drap07.

