
Semantic Devices for Ambient Environment Middleware
Peter Kostelnik

Technical University of Kosice
Letna 9, Kosice

04001, Slovak Republic

Peter.kostelnik@tuke.sk

Matts Ahlsen
CNet Svenska AB

Svärdvägen 3B
182 33 Dandaryd, Sweden

Matts.ahlsen@cnet.se

Mathias Axling
CNET Svenska AB
CNet Svenska AB
Svärdvägen 3B

182 33 Dandaryd, Sweden

Mathias.axling@cnet.se

Martin Sarnovsky
Technical University of Kosice

Letna 9, Kosice
04001, Slovak Republic

Martin.sarnovsky@tuke.sk

Peter Rosengren
CNet Svenska AB
Svärdvägen 3B

182 33 Dandaryd, Sweden

Peter.rosengren@cnet.se

Jan Hreno
Technical University of Kosice

Letna 9, Kosice
04001, Slovak Republic

Jan.hreno@tuke.sk

Peeter Kool
CNet Svenska AB
Svärdvägen 3B

182 33 Dandaryd, Sweden

Peeter.kool@cnet.se

ABSTRACT
The paper describes the approach for modelling and using
semantic descriptions of devices in the HYDRA project
middleware (“HYDRA: Networked Embedded System
Middleware for Heterogeneous Physical Devices in a Distributed
Architecture”) funded within the FP6 IST Programme). The
concept of semantic device is introduced and the main use cases
for semantic device descriptions are presented with a focus on the
Model-Driven Architecture (MDA) approach in HYDRA. An
overview of the ontologies representing the semantic device
descriptions is presented.

1.INTRODUCTION
In the ambient world of the near future, interconnected intelligent
devices will surround us, at home, work, or while travelling.
These devices and their local networks will also be connected to
the outside world through broadband and/or wireless networks.
Numerous services to support us in our personal life will be
provided through these ambient devices and over the connection
to the outside world. In order to cope with the huge variety of
capabilities of the devices, there should be a mechanism providing
the necessary adaptations to whatever interfaces or
communication protocols these devices offer. To achieve this, the
capabilities of the devices must be described in such way that an
automatic agent can understand and use them.

One of the goals of the HYDRA project [3] is to provide a
middleware solution for interconnecting the various
heterogeneous devices with different services and capabilities.
HYDRA aims to develop a middleware based on a Service-
oriented Architecture (SOA) providing the interoperable access to

data, information and knowledge across heterogeneous platforms,
including web services, and support true ambient intelligence for
ubiquitous networked devices. The SOA and its related standards
provide interoperability at a syntactic level. However, HYDRA
also aims at providing interoperability at a semantic level. One of
the objectives is to extend the syntactic interoperability to the
application level, i.e., in terms of semantic interoperability. This is
done by combining the use of ontologies with semantic web
services. HYDRA introduces the Semantic Model Driven
Architecture (Semantic MDA) which aims to facilitate application
development and to promote semantic interoperability for services
and devices. The semantic MDA of HYDRA includes a set of
models, i.e., ontologies, and describes how these can be used both
in design-time and in run-time. The basic idea behind the HYDRA
Semantic MDA is to differentiate between the physical devices
and the application's view of the device. We introduce the concept
of Semantic Devices, which represent the models of the real
devices and serve as the logical units which can be semantically
discovered and providing the information about device
capabilities and services.

2.SEMANTIC DEVICES

The services offered by physical devices are generally designed
independently of the particular applications in which the devices
might be used. A semantic device on the other hand represents
what a particular application would like to have. As an example ,
when we are designing the lighting system for a building it would
be more appropriate to model the application as working with a
logical lighting system that provides services like “working light”,
“presentation light”, and “comfort light” rather than working with
a set of independent lamps that can be turned on/off. These logical

devices might in fact consist of aggregates of physical devices,
and use different devices to deliver the service depending on the
situation. The service “Working light” might be achieved during
daytime by pulling up the blind (if it is down) and during evening
by turning of a lamp (blind and lamp being HYDRA devices). We
call these logical aggregates of devices and their services for
Semantic Devices.

Semantic Devices should be seen as a programming concept. The
application programmer designs and programs his application
using semantic devices. The semantic device “Heating System”
consist of three physical devices: a pump that circulates the water,
a thermometer that delivers the temperature and a light that
flashes when something is wrong. The developer will only have to
use the services offered by the semantic device “Heating System”,
for instances “Keep temperature:20 degrees Celsius” and “Set
warning level:17 degrees Celsius”, and does not need to know the
underlying implementation of this particular heating system. The
Semantic Device concept is flexible and will support both static
mappings as well as dynamic mappings to physical devices.

Static mappings can be both 1-to-1 from a semantic device to a
physical device or mappings that allow composition.

• An example of a 1-to-1 mapping would be a
“semantic pump” that is exposed with all its
services to the programmer.

• An example of a composed mapping is a semantic
heating system that is mapped to three different
underlying devices – a pump, a thermometer and a
digital lamp.

Static mappings will require knowledge about which devices
exists in the runtime environment, for instance the heating system
mentioned above will require the existence of the three underlying
devices – pump, thermometer and lamp – in for instance a
building.

Dynamic mappings will allow semantic devices to be
instantiated at runtime. Consider the heating system above. We
might define it as consisting of the following devices/services:

• a device that can circulate the water and increase
its temperature

• a device that can measure and deliver temperature

• a device that can create an alarm/alert signal if
temperature is out of range.

When such a device is entered into the runtime environment it
will use service discovery to instantiate itself and it will query the
physical devices it discovers as to which can provide the
services/functions the semantic device requires. In this example
the semantic device most probably starts by finding a circulation
pump. But then it might find two different thermometers which
both claims they can measure temperature. The semantic device
could then query about which of the thermometers can deliver the
temperature in Celsius, with what resolution and how often. In
this case it might only be one of the thermometers that meet the
requirements. Finally the semantic device could search the
network if there is a physical device that can be used to generate
an alarm if the temperature drops below a threshold or increases
to much. By some reasoning the semantic device can deduct that

by flashing the lamp repeatedly it can generate an alarm signal, so
the lamp is included as part of the semantic heating system.

The basic idea behind semantic devices is to hide all the
underlying complexity of the mapping to, discovery of and access
to physical devices. The programmer just uses it as a normal
object in his application focusing on solving the application’s
problems rather then the intrinsic of the physical devices. The
descriptions of semantic devices are based on a device ontology
(described below).

The concept of semantic devices supports the semantic MDA
approach used. There are two uses of the semantic MDA in
HYDRA. Firstly, it is relevant at design-time, supporting both
device developers as well as application developers, and secondly,
at run-time where HYDRA applications can use knowledge
provided be the semantic MDA.

2.1 Semantic MDA at design-time

2.1.1Model-driven code generation for Semantic
Devices

The semantic descriptions of devices and their services are used at
design time to find suitable services for the application that the
HYDRA developer is working on. The descriptions of these
services will be used to generate code to call the service, query the
device that implements the service, and manipulate the data that
the service operates on. We are currently making the HYDRA
SDK available in an object-oriented language environment,
integrating the objects a developer can use to access the devices
and services (thru device and service proxies) as well as the
properties from the device ontology connected to devices and
services. A HYDRA developer can specify a service to be used,
and leave the device as generic as possible. The necessary code
will be generated both for the service and the device.

These device objects could be used when creating a semantic
device or a HYDRA application from the selected devices and
services. The services could also be used by a service
orchestration engine (however, considering that some applications
will be standalone and have a fairly small footprint, this may not
be suitable for all HYDRA applications).

How the application uses the device ontology should be
configurable, so that the middleware supports both standalone
applications that only use the device ontology at design time as
well as applications that always query the device ontology for new
types of services that match the descriptions.

2.1.2Model-driven code generation for physical
devices

For devices that have sufficient computing capacity to host a web
service interface, HYDRA provides a tool to generate skeleton
code. Such a tool takes as inputs an interface description and a
semantic description of the device on which a web service should
run. The interface description is assumed to be in the form of a
WSDL file and the semantic description is a link to an OWL

description of the device (ontologies used are described in the
next chapter).

The semantic description is used to:

• Determine the compilation target. Depending on
the available resources of a device, either
embedded stubs or skeletons are created for the
web service (to run on the target device) or proxy
stubs and skeletons are created for the web service
(to run on an OSGi gateway).

• Provide support for reporting device status. Based
on a description of the device states at runtime
(through a state machine), support code is
generated for reporting state changes. This should
be also used as the support of self-* properties of
HYDRA.

2.2Semantic MDA in run-time

2.2.1Models for discovery

At design time, the HYDRA application developer selects the
HYDRA devices and services that will be used to implement the
application. These devices may be defined at a fairly general level,
e.g. the application may only be interested e.g. in "HYDRA SMS
Service" and any device entering the network (or application
context) that fits in these general categories will be presented to
the application. The application will then work against the more
general device descriptions. This means that an application should
only know of the (types of) devices and services selected by the
developer when it was defined. This still means that the
application could use a device that was designed and built after
the application was deployed, as long as the device can be
classified through the device ontology as being of a device type or
using a service that is known to the application, e.g., a HYDRA
application built in 2008 could specify the use of "HYDRA
Generic Smart phone" and "HYDRA SMS Service" and thus use
also a "Nokia N2010 Smartphone" released two years later.

When a device is discovered, the device type is looked up in the
device ontology and be mapped to a specific device.

A HYDRA application may present an external interface so that it
can be integrated with other applications and devices. It will do
this by announcing itself as a HYDRA device with a set of
services. This is transparent to other devices, which means that
some devices or services used in the application will be composite
ones: based on other HYDRA applications that have exposed
external interfaces. When such an application is discovered, the
applications interested in that type of device and its services will
be notified.

2.2.2Use of models for resolving security
requirements

The dynamic and networked execution environment of HYDRA
requires strong yet adaptable security mechanisms to be in place.

In order to establish the ability to securely connect any
application/device to any other application/device, HYDRA also
uses the semantic MDA to define and enforce security policies. A
basic design objective for the HYDRA security model is to
provide a secure information flow with a minimum of pre-
determined assumptions, while being able to dynamically resolve
security requirements. The security policies of HYDRA can thus
be defined and enforced based upon knowledge in the device
ontology as well as on knowledge of the context of devices, and
also makes use of virtual devices.

3.Semantic description of devices

The HYDRA device ontology presents the basic high level
concepts describing device related information. The semantic
device model can be viewed from two perspectives:

• Design/development phase: Every ontology module can be
further extended by creating new concepts according to the
needs of representation of the new information about new
device types and models. The concepts can also be further
specialized. For example, if a new device type is needed, the
adequate concept in the device classification module can be
further subclassed by more specialized concepts and the new
properties can be added. Specific device models are created
as the instances of device ontology concepts are filled with
real data.

• Run-time phase: Each instance created in the development
phase represents a specific device model and serves as the
template for run-time instances of real devices discovered
and connected into HYDRA. In device discovery process,
the discovery information is resolved using the ontology and
the most suitable template is identified. The identified
template is cloned and a new unique run-time instance
representing the specific device is created. Each real device
instance has an assigned unique HYDRA Id. Using this Id, it
is possible to retrieve and update the all relevant information
related to the general description of the device and its actual
run-time properties.

The ontology structure was designed to support the
maintainability and future extensions of used concepts. The
ontologies have been developed using the OWL language [4]. The
different parts of the model are contained in separate ontology
files. The references between more general and specific ontologies
are realized using the OWL import mechanism. The core of the
device ontology consists of the basic device information. The
basic HydraDevice concept is sub classed by the taxonomy of
device types and serves as the root ontology concept. The
important property of the HydraDevice concept is the deviceId,
which represents the unique device URI. Device URI is the
unique identifier of the device template or the HYDRA Id
assigned to specific run-time device instance. In order to create
aggregate devices, there can be a recursive property
hasEmbeddedDevice of the concept, which enables to create more
sophisticated models composed of multiple devices. The basic
device information is contained in the concept InfoDescription,
which contains the device name, manufacturer information etc.

Part of the core device taxonomy and basic information is
illustrated in Figure 1.

The structure of the semantic device description is divided
into four modules connected to the core ontology concepts:

• device capabilities (hardware, software properties
and state machines)

• device services

• device malfunctions

• device security properties

The initial device ontology structure was extended from the FIPA
device ontology specification [2]. The initial device taxonomy
was extended from AMIGO project vocabularies for device
descriptions [1].

Figure 1. Device taxonomy

3.1Device capabilities

Semantic description of device capabilities represents the
extended device information.). The device capabilities are divided
into three modules directly referred by HydraDevice concept:

• the hardware model is based on the hardware description part
from W3C deliveryContext ontology [8]. It includes the
hardware related device properties, such as connection and
communication protocols (e.g. Bluetooth or various network
bearers, etc.), description of hardware interfaces (such as
camera, display, etc.). The model was refined with concepts
related to power-awareness and additional network
connections. The root of the hardware model is the Hardware
concept referred by HydraDevice concept. All hardware
capabilities are represented as the subclasses of Hardware
concept. Device hardware capabilities are used for generation
of embedded device services code.

• the software platform related model is important for
generating the code for embedded device services. It
provides descriptions, such as software platform
classification, rigorous specification of platform
dependencies and resource consumption relationships. The
software model is composed of several parts, including a
software platform, operating system, Java and .Net models.

• a special case of capability is the state machine model
representing the concepts of states and transitions, which are
updated in the run-time and represent the device/service
actual status. The state machine ontology is also used to
generate state and transition related code.

3.2Device services

The device services ontology component presents the semantic
description of device services on the higher, technology
independent level. The HYDRA service model enables the
interoperability between devices and services, employing the
service capabilities and input/output parameters.

The Semantic service specification is based on the OWL-S [6]
standard, which is currently the most complete description of
semantic markup for services following the web service
architecture. The OWL-S approach was taken as the starting point
for HYDRA service model.

Each service is represented by the Service concept, which serves
as the root concept for subclasses creating the service taxonomy.
The Service taxonomy represents the service categorization. As a
service may belong to multiple categories, the instance of specific
service may be of more rdf:types representing several categories
(e.g. light switch device may be of type ScheduledService and/or
PowerSwitchService). In the actual model, each service represents
one WSDL operation, thus an important property of Service
concept is the serviceOperation, which contains the WSDL
operation name and serves as the identifier of the service. Each
HydraDevice concept may have as many services, as needed
(depending of which services are provided by the specific device).
The Service concept references three components:

• ServiceProfile concept presents the basic service description
used mainly for service discovery process. Service profile
describes the general information, such as human readable
service name and description, service capabilities and service
inputs and outputs. Capability concept is used to describe the
specific service capabilities related to service functional
properties, such as ability to handle various media formats or
to handle required device states. ServiceInput and
ServiceOutput parameters are specific subclasses of general
ServiceParameter class and should be annotated to semantic
model describing various input and output types in the
syntactic (for example, string, number) and semantic way
(for example, address, user name, etc.). Capabilities and
input/output descriptions can be used for suitable service
discovery or service composition, but also for semi-
automatic or fully automatic generation of self-descriptive
service user interfaces.

• The ServiceProcess concept aims to describe the service
process model, which defines if the service represents the
immediately invocable atomic process or work-flow of
composite processes. In the actual implementation, the
ServiceProcess concept is empty and each service is treated
as the atomic process.

• ServiceGrounding concept aims to specify the details, how to
access the service and physically realize the service
invocation. In the actual implementation, the
ServiceGrounding concept is empty. For grounding
information, HydraDevice concept has the (SA) WSDL
document reference (using hasWSDLDocument property),
which contains the operations modeled by Service instances
of device. For more, in specific cases, the service models can
be generated from (SA) WSDL document.

Figure 2. Illustration of SAWSDL references to ontology

In general, devices in HYDRA are provided with semantic
descriptions by combining the device ontology with the SAWSDL
standard for annotating device WSDL files (see Figure 2).

3.3Device malfunctions

The semantic model of device malfunctions represents possible
errors that may occur on devices. Each malfunction, represented
by the Malfunction concept, is described by the error code and the
human readable name information. The model contains the one-
to-many relation of malfunction to cases, represented by
MalfunctionCase concepts, which describe the possible cases and
remedies for each fault.

In order to have a flexible model of malfunctions, the Malfunction
concept can be further sub classed to several malfunction levels or
severity, such as error, fatal, warning, info, etc. Possible severity
levels can be further extended by the hierarchy of specific faults.

Connecting the device taxonomy to the malfunction taxonomy
creates a flexible representation of fault states, which may occur
on various device types and the possibilities of their solutions.

3.4Security capabilities

Security capabilities ontology represents the security properties of
devices and the services, such as protocols, policies, mechanisms
or objectives. The main concept of security ontology, the
SecurityConcept, is referred by HydraDevice and Service
concepts using the hasSecurityProperty connection The NRL
ontology [5] was selected as a starting point for this model and
has been modified and extended to match HYDRA’s
requirements. The NRL ontology is a set of various security
related models covering the representation of credentials,
algorithms, assurances, but also the service security aspects
directly supporting the SOA approach. The NRL ontology was
designed to describe the security concepts related to any resource
type, to cover the information on the various levels of detail and
to be easily extendible. Information contained in the ontology is
designed with main focus to the functional aspects of capability,
content and parameters.

4.CONCLUSIONS

In this paper, we have given a brief overview of the semantic
device concept used in the HYDRA middleware, with main focus
to middleware MDA design. The first part of paper introduced the
semantic devices modeled in ontologies and widely used to
support the HYDRA MDA in both design and run-time phase.
The usage cases of semantic device were briefly presented in the
tasks of model-driven code generation for physical and semantic
devices, device discovery and security requirements resolvence.
The second part of paper has provided the brief description of
ontologies used to represent the semantic devices properties,
services and capabilities.

5.ACKNOWLEDGEMENTS

The work presented in the paper is supported by the EC within the
FP6 IST-2005-034891 Project “HYDRA – Networked Embedded
System Middleware for Heterogeneous Physical Devices in a
Distributed Architecture”

6.REFERENCES

[1] Amigo middleware core: Prototype implementation and
documentation, deliverable 3.2. Technical report,
Amigo Project, IST-2004-004182, 2006.

[2] FIPA Device Ontology Specification, Foundation for
intelligent physical agents, 2002.

[3] HYDRA: Networked Embedded System middleware for
Heterogeneous physical devices in a distributed
architecture”, Project Proposal, September 2005.

[4] D.L. McGuinness, F. van Harmelen, OWL Web
Ontology Language Overview, W3C Recommendation,
2004.

[5] Naval Research Lab. Nrl security ontology.
http://chacs.nrl.navy.mil/projects/4SEA/ontology.html,
2007.

[6] OWL-S: Semantic Markup for Web Services, 2004.

[7] Ian Horrocks, et. al., SWRL: A Semantic Web Rule
Language. W3C Member Submission, 2004.

[8] Delivery Context Ontology. W3C Working Draft, 2007.

