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ABSTRACT 
The paper describes the approach for modelling and using 
semantic descriptions of devices in the HYDRA project 
middleware (“HYDRA: Networked Embedded System 
Middleware for Heterogeneous Physical Devices in a Distributed 
Architecture”) funded within the FP6 IST Programme). The 
concept of semantic device is introduced and the main use cases 
for semantic device descriptions are presented with a focus on the 
Model-Driven Architecture (MDA) approach in HYDRA. An 
overview of the ontologies representing the semantic device 
descriptions is presented. 

 

1.INTRODUCTION 
In the ambient world of the near future, interconnected intelligent 
devices will surround us, at home, work, or while travelling. 
These devices and their local networks will also be connected to 
the outside world through broadband and/or wireless networks. 
Numerous services to support us in our personal life will be 
provided through these ambient devices and over the connection 
to the outside world. In order to cope with the huge variety of 
capabilities of the devices, there should be a mechanism providing 
the necessary adaptations to whatever interfaces or 
communication protocols these devices offer. To achieve this, the 
capabilities of the devices must be described in such way that an 
automatic agent can understand and use them.  

One of the goals of the HYDRA project [3] is to provide a 
middleware solution for interconnecting the various 
heterogeneous devices with different services and capabilities. 
HYDRA aims to develop a middleware based on a Service-
oriented Architecture (SOA) providing the interoperable access to 

data, information and knowledge across heterogeneous platforms, 
including web services, and support true ambient intelligence for 
ubiquitous networked devices. The SOA and its related standards 
provide interoperability at a syntactic level. However, HYDRA 
also aims at providing interoperability at a semantic level. One of 
the objectives is to extend the syntactic interoperability to the 
application level, i.e., in terms of semantic interoperability. This is 
done by combining the use of ontologies with semantic web 
services. HYDRA introduces the Semantic Model Driven 
Architecture (Semantic MDA) which aims to facilitate application 
development and to promote semantic interoperability for services 
and devices. The semantic MDA of HYDRA includes a set of 
models, i.e., ontologies, and describes how these can be used both 
in design-time and in run-time. The basic idea behind the HYDRA 
Semantic MDA is to differentiate between the physical devices 
and the application's view of the device. We introduce the concept 
of Semantic Devices, which represent the models of the real 
devices and serve as the logical units which can be semantically 
discovered and providing the information about device 
capabilities and services.  

 

2.SEMANTIC DEVICES 
 

The services offered by physical devices are generally designed 
independently of the particular applications in which the devices 
might be used. A semantic device on the other hand represents 
what a particular application would like to have. As an example , 
when we are designing the lighting system for a building it would 
be more appropriate to model the application as working with a 
logical lighting system that provides services like “working light”, 
“presentation light”, and “comfort light” rather than working with 
a set of independent lamps that can be turned on/off. These logical 



devices might in fact consist of aggregates of physical devices, 
and use different devices to deliver the service depending on the 
situation. The service “Working light” might be achieved during 
daytime by pulling up the blind (if it is down) and during evening 
by turning of a lamp (blind and lamp being HYDRA devices). We 
call these logical aggregates of devices and their services for 
Semantic Devices.  

Semantic Devices should be seen as a programming concept. The 
application programmer designs and programs his application 
using semantic devices. The semantic device “Heating System” 
consist of three physical devices: a pump that circulates the water, 
a thermometer that delivers the temperature and a light that 
flashes when something is wrong. The developer will only have to 
use the services offered by the semantic device “Heating System”, 
for instances “Keep temperature:20 degrees Celsius” and “Set 
warning level:17 degrees Celsius”, and does not need to know the 
underlying implementation of this particular heating system. The 
Semantic Device concept is flexible and will support both static 
mappings as well as dynamic mappings to physical devices. 

Static mappings can be both 1-to-1 from a semantic device to a 
physical device or mappings that allow composition.  

• An example of a 1-to-1 mapping would be a 
“semantic pump” that is exposed with all its 
services to the programmer.  

• An example of a composed mapping is a semantic 
heating system that is mapped to three different 
underlying devices – a pump, a thermometer and a 
digital lamp. 

Static mappings will require knowledge about which devices 
exists in the runtime environment, for instance the heating system 
mentioned above will require the existence of the three underlying 
devices – pump, thermometer and lamp – in for instance a 
building. 

Dynamic mappings will allow semantic devices to be 
instantiated at runtime. Consider the heating system above. We 
might define it as consisting of the following devices/services: 

• a device that can circulate the water and increase 
its temperature 

• a device that can measure and deliver temperature 

• a device that can create an alarm/alert signal if 
temperature is out of range. 

When such a device is entered into the runtime environment it 
will use service discovery to instantiate itself and it will query the 
physical devices it discovers as to which can provide the 
services/functions the semantic device requires. In this example 
the semantic device most probably starts by finding a circulation 
pump. But then it might find two different thermometers which 
both claims they can measure temperature. The semantic device 
could then query about which of the thermometers can deliver the 
temperature in Celsius, with what resolution and how often. In 
this case it might only be one of the thermometers that meet the 
requirements. Finally the semantic device could search the 
network if there is a physical device that can be used to generate 
an alarm if the temperature drops below a threshold or increases 
to much. By some reasoning the semantic device can deduct that 

by flashing the lamp repeatedly it can generate an alarm signal, so 
the lamp is included as part of the semantic heating system. 

The basic idea behind semantic devices is to hide all the 
underlying complexity of the mapping to, discovery of and access 
to physical devices. The programmer just uses it as a normal 
object in his application focusing on solving the application’s 
problems rather then the intrinsic of the physical devices. The 
descriptions of semantic devices are based on a device ontology 
(described below).  

The concept of semantic devices supports the semantic MDA 
approach used. There are two uses of the semantic MDA in 
HYDRA. Firstly, it is relevant at design-time, supporting both 
device developers as well as application developers, and secondly, 
at run-time where HYDRA applications can use knowledge 
provided be the semantic MDA.  

2.1 Semantic MDA at design-time 
 

2.1.1Model-driven code generation for Semantic 
Devices 
 

The semantic descriptions of devices and their services are used at 
design time to find suitable services for the application that the 
HYDRA developer is working on. The descriptions of these 
services will be used to generate code to call the service, query the 
device that implements the service, and manipulate the data that 
the service operates on. We are currently making the HYDRA 
SDK available in an object-oriented language environment, 
integrating the objects a developer can use to access the devices 
and services (thru device and service proxies) as well as the 
properties from the device ontology connected to devices and 
services. A HYDRA developer can specify a service to be used, 
and leave the device as generic as possible. The necessary code 
will be generated both for the service and the device. 

These device objects could be used when creating a semantic 
device or a HYDRA application from the selected devices and 
services. The services could also be used by a service 
orchestration engine (however, considering that some applications 
will be standalone and have a fairly small footprint, this may not 
be suitable for all HYDRA applications).  

How the application uses the device ontology should be 
configurable, so that the middleware supports both standalone 
applications that only use the device ontology at design time as 
well as applications that always query the device ontology for new 
types of services that match the descriptions. 

2.1.2Model-driven code generation for physical 
devices 
 

For devices that have sufficient computing capacity to host a web 
service interface, HYDRA provides a tool to generate skeleton 
code. Such a tool takes as inputs an interface description   and a 
semantic description of the device on which a web service should 
run. The interface description is assumed to be in the form of a 
WSDL file and the semantic description is a link to an OWL 



description of the device (ontologies used are described in the 
next chapter). 

The semantic description is used to: 

• Determine the compilation target. Depending on 
the available resources of a device, either 
embedded stubs or skeletons are created for the 
web service (to run on the target device) or proxy 
stubs and skeletons are created for the web service 
(to run on an OSGi gateway). 

• Provide support for reporting device status. Based 
on a description of the device states at runtime 
(through a state machine), support code is 
generated for reporting state changes. This should 
be also used as the support of self-* properties of 
HYDRA.  

 

2.2Semantic MDA in run-time 
 

2.2.1Models for discovery 
 

At design time, the HYDRA application developer selects the 
HYDRA devices and services that will be used to implement the 
application. These devices may be defined at a fairly general level, 
e.g. the application may only be interested e.g. in "HYDRA SMS 
Service" and any device entering the network (or application 
context) that fits in these general categories will be presented to 
the application. The application will then work against the more 
general device descriptions. This means that an application should 
only know of the (types of) devices and services selected by the 
developer when it was defined. This still means that the 
application could use a device that was designed and built after 
the application was deployed, as long as the device can be 
classified through the device ontology as being of a device type or 
using a service that is known to the application, e.g., a HYDRA 
application built in 2008 could specify the use of "HYDRA 
Generic Smart phone" and "HYDRA SMS Service" and thus use 
also a "Nokia N2010 Smartphone" released two years later.  

When a device is discovered, the device type is looked up in the 
device ontology and be mapped to a specific device.  

A HYDRA application may present an external interface so that it 
can be integrated with other applications and devices. It will do 
this by announcing itself as a HYDRA device with a set of 
services. This is transparent to other devices, which means that 
some devices or services used in the application will be composite 
ones: based on other HYDRA applications that have exposed 
external interfaces. When such an application is discovered, the 
applications interested in that type of device and its services will 
be notified. 

2.2.2Use of models for resolving security 
requirements 
 

The dynamic and networked execution environment of HYDRA 
requires strong yet adaptable security mechanisms to be in place. 

In order to establish the ability to securely connect any 
application/device to any other application/device, HYDRA also 
uses the semantic MDA to define and enforce security policies. A 
basic design objective for the HYDRA security model is to 
provide a secure information flow with a minimum of pre-
determined assumptions, while being able to dynamically resolve 
security requirements. The security policies of HYDRA can thus 
be defined and enforced based upon knowledge in the device 
ontology as well as on knowledge of the context of devices, and 
also makes use of virtual devices. 

 

3.Semantic description of devices 
 

The HYDRA device ontology presents the basic high level 
concepts describing device related information. The semantic 
device model can be viewed from two perspectives: 

• Design/development phase: Every ontology module can be 
further extended by creating new concepts according to the 
needs of representation of the new information about new 
device types and models. The concepts can also be further 
specialized. For example, if a new device type is needed, the 
adequate concept in the device classification module can be 
further subclassed by more specialized concepts and the new 
properties can be added. Specific device models are created 
as the instances of device ontology concepts are filled with 
real data.   

• Run-time phase: Each instance created in the development 
phase represents a specific device model and serves as the 
template for run-time instances of real devices discovered 
and connected into HYDRA. In device discovery process, 
the discovery information is resolved using the ontology and 
the most suitable template is identified. The identified 
template is cloned and a new unique run-time instance 
representing the specific device is created. Each real device 
instance has an assigned unique HYDRA Id. Using this Id, it 
is possible to retrieve and update the all relevant information 
related to the general description of the device and its actual 
run-time properties. 

The ontology structure was designed to support the 
maintainability and future extensions of used concepts. The 
ontologies have been developed using the OWL language [4]. The 
different parts of the model are contained in separate ontology 
files. The references between more general and specific ontologies 
are realized using the OWL import mechanism. The core of the 
device ontology consists of the basic device information. The 
basic HydraDevice concept is sub classed by the taxonomy of 
device types and serves as the root ontology concept. The 
important property of the HydraDevice concept is the deviceId, 
which represents the unique device URI. Device URI is the 
unique identifier of the device template or the HYDRA Id 
assigned to specific run-time device instance. In order to create 
aggregate devices, there can be a recursive property 
hasEmbeddedDevice of the concept, which enables to create more 
sophisticated models composed of multiple devices. The basic 
device information is contained in the concept InfoDescription, 
which contains the device name, manufacturer information etc. 



Part of the core device taxonomy and basic information is 
illustrated in Figure 1. 

The structure of the semantic device description is divided 
into four modules connected to the core ontology concepts: 

• device capabilities (hardware, software properties 
and state machines) 

• device services  

• device malfunctions 

• device security properties 

The initial device ontology structure was extended from the FIPA 
device ontology specification [2]. The initial device taxonomy 
was extended from AMIGO project vocabularies for device 
descriptions [1]. 

 

Figure 1. Device taxonomy 

 

3.1Device capabilities 
 

Semantic description of device capabilities represents the 
extended device information.). The device capabilities are divided 
into three modules directly referred by HydraDevice concept: 

• the hardware model is based on the hardware description part 
from W3C deliveryContext ontology [8]. It includes the 
hardware related device properties, such as connection and 
communication protocols (e.g. Bluetooth or various network 
bearers, etc.), description of hardware interfaces (such as 
camera, display, etc.).  The model was refined with concepts 
related to power-awareness and additional network 
connections. The root of the hardware model is the Hardware 
concept referred by HydraDevice concept. All hardware 
capabilities are represented as the subclasses of Hardware 
concept. Device hardware capabilities are used for generation 
of embedded device services code.  

• the software platform related model is important for 
generating the code for embedded device services. It 
provides descriptions, such as software platform 
classification, rigorous specification of platform 
dependencies and resource consumption relationships. The 
software model is composed of several parts, including a 
software platform, operating system, Java and .Net models.  

• a special case of capability is the state machine model 
representing the concepts of states and transitions, which are 
updated in the run-time and represent the device/service 
actual status.  The state machine ontology is also used to 
generate state and transition related code.   

 

3.2Device services  
 

The device services ontology component presents the semantic 
description of device services on the higher, technology 
independent level. The HYDRA service model enables the 
interoperability between devices and services, employing the 
service capabilities and input/output parameters.  

The Semantic service specification is based on the OWL-S [6] 
standard, which is currently the most complete description of 
semantic markup for services following the web service 
architecture. The OWL-S approach was taken as the starting point 
for HYDRA service model. 

Each service is represented by the Service concept, which serves 
as the root concept for subclasses creating the service taxonomy. 
The Service taxonomy represents the service categorization. As a 
service may belong to multiple categories, the instance of specific 
service may be of more rdf:types representing several categories 
(e.g. light switch device may be of type ScheduledService and/or 
PowerSwitchService). In the actual model, each service represents 
one WSDL operation, thus an important property of Service 
concept is the serviceOperation, which contains the WSDL 
operation name and serves as the identifier of the service. Each 
HydraDevice concept may have as many services, as needed 
(depending of which services are provided by the specific device). 
The Service concept references three components: 

• ServiceProfile concept presents the basic service description 
used mainly for service discovery process. Service profile 
describes the general information, such as human readable 
service name and description, service capabilities and service 
inputs and outputs. Capability concept is used to describe the 
specific service capabilities related to service functional 
properties, such as ability to handle various media formats or 
to handle required device states. ServiceInput and 
ServiceOutput parameters are specific subclasses of general 
ServiceParameter class and should be annotated to semantic 
model describing various input and output types in the 
syntactic (for example, string, number) and semantic way 
(for example, address, user name, etc.). Capabilities and 
input/output descriptions can be used for suitable service 
discovery or service composition, but also for semi-
automatic or fully automatic generation of self-descriptive 
service user interfaces. 



• The ServiceProcess concept aims to describe the service 
process model, which defines if the service represents the 
immediately invocable atomic process or work-flow of 
composite processes. In the actual implementation, the 
ServiceProcess concept is empty and each service is treated 
as the atomic process. 

• ServiceGrounding concept aims to specify the details, how to 
access the service and physically realize the service 
invocation. In the actual implementation, the 
ServiceGrounding concept is empty. For grounding 
information, HydraDevice concept has the (SA) WSDL 
document reference (using hasWSDLDocument property), 
which contains the operations modeled by Service instances 
of device. For more, in specific cases, the service models can 
be generated from (SA) WSDL document. 

 

 

 

Figure 2. Illustration of SAWSDL references to ontology 

 

 

In general, devices in HYDRA are provided with semantic 
descriptions by combining the device ontology with the SAWSDL 
standard for annotating device WSDL files (see Figure 2).     

 

3.3Device malfunctions 
 

The semantic model of device malfunctions represents possible 
errors that may occur on devices. Each malfunction, represented 
by the Malfunction concept, is described by the error code and the 
human readable name information. The model contains the one-
to-many relation of malfunction to cases, represented by 
MalfunctionCase concepts, which describe the possible cases and 
remedies for each fault.  

In order to have a flexible model of malfunctions, the Malfunction 
concept can be further sub classed to several malfunction levels or 
severity, such as error, fatal, warning, info, etc. Possible severity 
levels can be further extended by the hierarchy of specific faults. 

Connecting the device taxonomy to the malfunction taxonomy 
creates a flexible representation of fault states, which may occur 
on various device types and the possibilities of their solutions.  

 

3.4Security capabilities 
 

Security capabilities ontology represents the security properties of 
devices and the services, such as protocols, policies, mechanisms 
or objectives. The main concept of security ontology, the 
SecurityConcept, is referred by HydraDevice and Service 
concepts using the hasSecurityProperty connection The NRL 
ontology [5] was selected as a starting point for this model and 
has been modified and extended to match HYDRA’s 
requirements. The NRL ontology is a set of various security 
related models covering the representation of credentials, 
algorithms, assurances, but also the service security aspects 
directly supporting the SOA approach. The NRL ontology was 
designed to describe the security concepts related to any resource 
type, to cover the information on the various levels of detail and 
to be easily extendible. Information contained in the ontology is 
designed with main focus to the functional aspects of capability, 
content and parameters.  

 

4.CONCLUSIONS 
 

In this paper, we have given a brief overview of the semantic 
device concept used in the HYDRA middleware, with main focus 
to middleware MDA design. The first part of paper introduced the 
semantic devices modeled in ontologies and widely used to 
support the HYDRA MDA in both design and run-time phase. 
The usage cases of semantic device were briefly presented in the 
tasks of model-driven code generation for physical and semantic 
devices, device discovery and security requirements resolvence. 
The second part of paper has provided the brief description of 
ontologies used to represent the semantic devices properties, 
services and capabilities. 
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