
Semantic Web ontologies for Ambient Intelligence
Runtime Monitoring of Semantic Component Constraints

Klaus Marius Hansen and Weishan Zhang and Joao Fernandes and Mads Ingstrup
Department of Computer Science, University of Aarhus

Aabogade 34, 8200 Århus N, Denmark
{klaus.m.hansen,zhangws,jfmf,ingstrup}@daimi.au.dk

ABSTRACT
Semantic web-based context modeling is widely used in per-
vasive computing systems to achieve context awareness which
is essential for Ambient Intelligence (AmI). In the Hydra
middleware for pervasive services, context awareness is ex-
tended for self-management purposes, which is an integral
part of Hydra. To achieve this, a set of self-management
ontologies called SeMaPS (Self-Management for Pervasive
Services) are developed, where the dynamism of device state
changes and service invocation are taken into account. To
show the effectiveness of these ontologies, in this paper,
we focus on our Component ontology that extends OSGi’s
Declarative Service specification to add capabilities for ex-
pressing architectural (especially global) and functional con-
straints (e.g. contextual constraints), and show how to use
it to verify component configurations by using a pervasive
service compiler at runtime.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation—Formal methods,Validation; D.2.11 [Software En-
gineering]: Software Architectures—Domain-specific archi-
tectures; I.2.4 [Artificial Intelligence]: Knowledge Repre-
sentation Formalisms and Methods—Representations (pro-
cedural and rule-based)

General Terms
Languages, Design, Verification.

Keywords
OWL/SWRL ontology, context awareness, ambient intelli-
gence, Configurations, OSGi declarative service

1. INTRODUCTION
Ambient Intelligence (AmI) aims to make pervasive com-

puting[10] more usable through natural interaction, person-
alized and efficient services, and context awareness. Having

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

context awareness is very important in knowing when and
where a service can happen, what triggers a service provi-
sion, how to provide a service to whom and so on. Thus
context awareness is essential to achieving AmI and deci-
sions and services should be based on current or histori-
cal contexts. To enable AmI in the Hydra project (IST-
2005-034891), we are building self-management capabilities
into the Hydra middleware, supported by context ontolo-
gies based on semantic web technologies (OWL1 and SWRL
(Semantic Web Rule Language2)).

Semantic web-based context modeling is arguably a pow-
erful approach for context modeling [11], since it can pro-
vide reasoning potentials for contexts, a capability not easily
achievable by other context modeling approaches. In order
to support self-management, the context models should have
dynamic and runtime information of the system available in
order to take appropriate actions based on these dynamic
contexts. Hence, the dynamic information should be re-
flected in the context models and used for self-management
in order to make decisions on what actions should be taken
to react to the changes that are needed for self awareness.

Existing pervasive computing context ontologies, such as
SOUPA[1] and Amigo[4], are not targeting self-management
and almost no dynamic and runtime models of the under-
lying pervasive systems are considered. This makes these
existing ontologies unsuitable for the self-management pur-
poses, which depend on the timely reporting of the status of
devices, network, and even on running processes.

To realize our vision of semantic context awareness-based
self-management in Hydra [14, 16], we designed SeMaPS
(Self-Management for Pervasive Services), a set of self-man-
agement ontologies in Hydra. The context ontologies in
SeMaPS are considering runtime contexts which are neces-
sary for self-management. These dynamic contexts include
device runtime status, service call/response relationships,
and service execution time. SWRL rules are developed to
handle self-management features such as malfunction diag-
nosis, device and system status monitoring, and service se-
lection based on QoS parameters. When there are state
changes or service calls, the dynamic running information
is fed into the related self-management context ontologies,
which then trigger execution of self-management rules for
adaption, monitoring, diagnosis, and other aspects of self-
management.

For this paper, we will demonstrate the utility of SeMaPS

1OWL homepage. http://www.w3.org/2004/OWL/
2SWRL specification homepage. http://www.w3.org/
Submission/SWRL/

by focusing on one of its ontologies, Component ontology
that extends OSGi’s Declarative Service specification through
OWL-DS to add capabilities for expressing architectural and
functional constraints over component configurations, and
show how to use it to verify the component configurations
at runtime by using a pervasive service compiler (Limbo [3])
as an example.

The rest of the paper is structured as follows: The de-
sign of SeMaPS context ontologies and their structure are
presented in Section 2. Next, we discuss how we extended
OSGi DS (Section 4) followed by a more detailed case study
of applying OWL-DS to the Limbo compiler (Section 5).
We present the implementation of runtime validation in Sec-
tion 6. Then we discuss related work in Section 7. The paper
is concluded in Section 8.

2. SEMAPS ONTOLOGIES
In Hydra, to make full use of context awareness, a seman-

tic web based self-management approach is being adopted
[14, 16], with the support of the SeMaPS context ontolo-
gies. The high level structure SeMaPS ontologies is shown
in Figure 1. The dynamic contexts are modeled with run-
time concepts and properties in the related ontologies.

Device

StateMachineHardwarePlatformService Malfunction

Service Malfunction SocketMessageCapabilityClassification

<<import>> <<import>> <<import>> <<import>>

ontology

Legend

import

concept
contains

FlamencoProbe

<<import>>

QoS

<<import>>

DeviceRule

<<import>>

Component

<<import>>

Figure 1: Structure of the SeMaPS ontologies

The Device ontology presents HydraDevice (as a concept)
type classification (e.g. Mobile Phone, PDA, Thermome-
ter). This is based mainly on the device classification in
Amigo project ontologies [4]. To facilitate self-diagnosis,
there is a concept called HydraSystem to model a system
composed of devices that provide services. A corresponding
object property hasDevice is added, which has the domain of
HydraSystem and range as HydraDevice. The HydraDevice
concept has a data-type property currentMalfunction which
is used to store the inferred device malfunction diagnosis
information at runtime.

The HardwarePlatform ontology defines concepts such as
CPU, Memory, and relationships to devices (in the Device
ontology), for example hasCPU. This ontology is based on
the hardware description part from W3C’s deliveryContext
ontology3. Power consumption concepts and properties for
different wireless network are added to the HardwarePlat-
form ontology to facilitate power-awareness, including a bat-
terLevel property for monitoring battery consumption at
runtime.

3Delivery Context Overview for Device Independence.
http://www.w3.org/TR/di-dco/

The device Malfunction ontology is used to model knowl-
edge of malfunction and recovery resolutions. It provides the
classification of device malfunctions (for example, Battery-
Error). The malfunctions are defined into two categories:
Error (including device totally down) and Warning (includ-
ing function scale-down, and plain warning) according to
severeness. There are also two other concepts, Cause and
Remedy, which are used to describe the origin of a malfunc-
tion and its resolution.

The QoS ontology defines some important QoS parame-
ters, such as availability, reliability, latency, error rate, etc.
Furthermore, properties for these parameters are defined,
such as their nature (dynamic, static) and impact factor.
There is also a Relationship concept in order to model the
relationships between these parameters. The QoS ontology
is developed based on Amigo QoS ontology [4].

To model device state changes, a state machine ontology
is developed based on [2] with many improvements to facili-
tate self-management work: the State concept has data-type
property isCurrent to indicate whether a state is current or
not for the purpose of device monitoring, a doActivity ob-
ject property is added to the State in order to specify the
corresponding activity in a state, and also a data-type prop-
erty hasResult is added to the Action (including activity)
concept in order to check the execution result at runtime,
together with three data-type properties that are added to
model historical action results in order to conduct history
based self-management work.

To model the invocation of services, a FlamencoProbe on-
tology is developed to monitor the liveness of computing
node, and facilitating the monitoring of QoS, such as the
request/response time of a corresponding service call. The
SocketProcess concept is used to model a process running in
a client or service, and SocketMessage to model a message
sent to/from between client and service. There is also a con-
cept called IPAddress, which is related to HydraDevice with
a property hasIPAddress in the Device ontology. The object
properties invoke, messageSourceIP, and messageTargetIP
are used to build the invoking relationships, and data type
property initiatingTime is used to model the time stamp for
a message.

The Component ontology is based on the OSGi’s Declara-
tive Service specification [5] as we are adopting OSGi as the
underlying component model in Hydra. It specifies the Com-
ponent (as a concept) dynamic status, for example whether
it is enabled, and also static characteristics such as its ref-
erence to other service, its implementation interface, and
services provided. Figure 2 shows partially the details of
the Component ontology.

In the following sections, we will demonstrate the capa-
bilities of these ontologies from a different angle by applying
the Component ontology and SWRL rules to verify configu-
rations of Limbo. We will first introduce OSGi’s Declarative
Services (OSGi DS) on which we build the Component on-
tology, and then we discuss OSGi DS’ shortcomings, exem-
plified with requirements for Limbo configurations. Then we
propose an approach called OWL-DS based on the Compo-
nent ontology and SWRL rules, to verify the configurations
for Limbo at runtime. Please note that the OWL-DS ap-
proach is not limited to Limbo, but can be applied to all
situations where configuration need to be verified using the
OSGi component model.

Figure 2: Component ontology (simplified)

<?xml version="1.0" encoding="UTF-8"?>
<component name="com.eu.hydra.limbo">
<implementation class="com.eu.hydra.limbo.Limbo"/>
<service>
<provide interface="com.eu.hydra.limbo.generator.Generator"/>

</service>
<reference name="BACKEND"

interface="com.eu.hydra.limbo.backend.Backend"
cardinality="1..n"
policy="dynamic"
bind="addBackend"
unbind="removeBackend"/>

<reference name="FRONTEND"
interface="com.eu.hydra.limbo.frontend.Frontend"
cardinality="1..n"
.../>

<reference name="REPOSITORY"
interface="com.eu.hydra.limbo.repository"
.../>

</component>

Figure 3: OSGi DS Example

3. OSGI DECLARATIVE SERVICES
OSGi provides a set of services per default [5], one of

which is Declarative Services management. OSGi’s Declar-
ative Services Specification [5] enables developers on the
OSGi platform to declaratively manage service composition
at runtime. Concretely, OSGi DS allows OSGi bundle de-
velopers to provide a XML-based description of components
that may be instantiated at runtime to provide and require
services. Figure 3 shows an example of such a description
which specifies the main component of the Limbo compiler.

Figure 4 shows a logical view of (a part of) Limbo’s soft-
ware architecture. Limbo provides a Generator service that
Frontends and Backends may use. Frontends process source
artifacts (such as Web Service Description Language (WSDL4

files) whereas Backends produce output artefacts (such as
web service stubs and skeletons). Both Backends and Fron-
tends may use a single Repository. At runtime Limbo selects
and uses a set of Backends (and Frontends) based on Limbo’s

4http://http://www.w3.org/TR/wsdl

Limbo

Frontend Repository Backend

Generator

1requires

provides

requires requires1..* 1..*

Figure 4: Limbo Logical Architecture

configuration.
This description essentially makes sure that the runtime

architecture of Limbo is as shown in Figure 4: The Limbo
component (inside an OSGi bundle) will be instantiated by
the OSGi DS runtime and that, in this case, will need to
implement the Generator interface since this is a service
provided by the component. Furthermore, the Limbo com-
ponent requires the presence of at least one Frontend and at
least one Backend and one Repository. When these services
are available, the references are said to be satisfied and the
component may be activated.

Essentially, OSGi DS provides a way for components to
specify provided and required services (in the form of Java
interfaces) declaratively so that the OSGi framework can
resolve service dependencies dynamically. Even though this
is a convenient and powerful composition mechanism, we
argue that it should be extended. The Limbo compiler case
exemplifies a number of limitations of OSGi DS:

• Global constraints are not supported. This means that
one cannot express architectural constraints that are
non-local. An example of this could be that there must
be exactly one instance of the Repository service for
consistency reasons.

• Contextual constraints are not supported. The OSGi
DS constraints are closed in the sense that they are
specified at packaging time in the OSGi bundles. An
example of where this is insufficient in the Limbo case
is that it could not express that JME and OSGi server
is not a legal combination.

4. EXTENDING OSGI DS THROUGH OWL-
DS

We use an approach as in SAWSDL5 to extend OSGi DS.
In doing so, OSGi components reference the Component on-
tology and configuration rules. The Component ontology is
built based on OSGi DS XML Schema as shown in Figure
2. This approach to extending OSGi DS is called OWL-DS.

To conveniently model component types, we add a concept
ComponentType into the OWL model. This is important for
specifying the constraints based on the component types. In
fact, the services provided by a component (specified by in-
terfaces) can be used to identify a component type, but this
may be counter-intuitive for a user to reference the compo-
nent type in this way. We are also using SWRL rules to
link the ComponentType with the component interfaces. In
order to model the configuration based on the semantic com-
ponents, we use a SystemConfiguration concept to model the
set of configurations that components can have.

5http://www.w3.org/TR/sawsdl/

There is a way to specify some local constraints using
OWL capabilities (using cardinality restriction). OWL car-
dinality restrictions are referred to as local restrictions as
they are stated on properties with respect to a particular
class. That is, the restrictions constrain the cardinality of
that property on instances of that class6. This is a simple
and feasible way to implement constraints for component
configurations. However, this approach is not sufficient to
specify component configurations for our purposes for the
following reasons:

Low usability : The model developer has to specify all the
components as concepts (for every component) and
properties explicitly, and then use the concepts and
properties to specify constraints. This is not a prac-
tical way as it is hard to enumerate components in
practice.

Not flexible : All constraints are explicitly stated with
every component, if a new component is added, the
model has to be changed accordingly. There should be
a scalable way to specify constraints.

Not powerful : OWL in itself is criticized for its limited
expressiveness, e.g., not being able to use math ex-
pressions or string operators that may be involved in
constraints.

We are intending to use SWRL to specify the constraints
for the configuration of components. This is feasible with
SWRL (e.g. using the SWRL APIs from Protege7) because
of the extensibility of SWRL.

If we know the current set of components that are avail-
able to OSGi DS, we can apply SWRL to a semantic descrip-
tion of this set. Here we can use SWRL built-ins, such as
the mathematical built-ins, string built-ins, and Abox and
Tbox built-ins. The basic idea is to retrieve these current
components, and then use SWRL to specify what is a valid
configuration, and what is an invalid combination following
by reporting of violations of configurations.

5. LIMBO RUNTIME VALIDATION
In this section, we will use SWRL to specify the validation

of component configuration. A SWRL rule is composed of
an antecedent part (body), and a consequent part (head).
Both the body and head consist of positive conjunctions
of atoms. A SWRL rule means that if all the atoms in
the antecedent (body) are true, then the consequent (head)
must also be true. SWRL is built on OWL DL and shares
its formal semantics. In our practice, all variables in SWRL
rules bind only to known individuals in an ontology in order
to develop DL-Safe rules to make them decidable. In our
example SWRL rules, the symbol ∧ means conjunction, and
?x stands for a variable, → means implication, and if there
is no ? in the variable, then it is an instance.

Our approach is general and not limited to Limbo, the
component model and configuration model are generic and
can be applied to any cases of component semantic descrip-
tions and component semantic configurations.

Taking Limbo as a case, the following steps are involved
in the semantic validation. In practice, all the steps can be
executed in a whole instead of step by step.

6http://www.w3.org/TR/owl-features/
7http://protege.stanford.edu/

Check the services required by a component. The rule
retrieves all components in the current configuration.
If a component has a reference which has cardinality at
least one, then there must be component provide the
required service. Or else, there is something wrong
with the configuration. This step is not necessary if
OSGi DS is used, but it is necessary if the OSGi com-
ponent model applied to other situations. The rule is
shown in Figure 5.

Figure 5: rule for checking component reference

Check component platform. All components should sup-
port the required targetted platform for Limbo compi-
lation. A component should have this supported plat-
form specified in its property and will be retrieved by
the rule and compare with the specified targeting plat-
form, if it is not supported, then it is not valid for this
configuration. The rule is shown in Figure 6.

Figure 6: rule for checking component supporting
platform and the targeted platform

Check generation combination. Some of the generation
combinations are not meaningful. For example, if JME
is a targeting platform, then an OSGi server is not an
option because OSGi is not supported on JME cur-
rently in our environment. This rule is shown in Figure
7.

Check number of component type limitations. Sometimes
it is important to limit the number of component with
a specific type, in a running configuration. We will first
retrieve the component and assert its type according
to its provided interfaces, and then count the number
of this kind of components, and programatically check
with its limit. This rule is shown in Figure 8.

In order to specify the limitation of different type of com-
ponents a configuration has in the rule body, the SWRL
builtins should be extended, and will be out of scope of

Figure 7: rule for checking OSGi server on JME
platform is invalid

Figure 8: rule for counting Limbo repository and
assert a component as a repository component

open world assumption of OWL/SWRL. Therefore progra-
matically controlling this limit is a good option for flexibility
and soundness. This later approach is the one we are using.

The component reference rule (Figure 5) is a generic rule
that can be applied to all other situations where the declar-
ative service model is used. The second rule for platform
checking (Figure 6) is also generic, in situations where a
component’s supported platform needs to be checked. The
checking of components’ type limits (Figure 8), can be gener-
alized through parameterization of SWRL that will be com-
ing later when this feature is available from SWRL APIs.
The only rule that is very Limbo specific is the rule for check-
ing the generation combination. All in all, this semantic
validation algorithm can be applied to multiple situations.

6. DESIGN AND IMPLEMENTATION
We have implemented the usage of the Component on-

tology and Limbo runtime validation using Protege-OWL
APIs, based on the ideas presented in the former sections.
Specifically, we have (1) Designed and realized the Com-
ponent ontology based on Declarative Services using the
Protege ontology editor, (2) Extended Eclipse Equinox’s8

Declarative Services implementation to discover and main-
tain a model of the component instance topology, and (3)
Run time monitoring and validating of Limbo components
combination using Protege-OWL/SWRL APIs.

A static Component & Connector view of the implemen-
tation is shown in Figure 9

The Equinox DS bundle has been extended with a Bind-
ing Listener that knows when service are bound to (and un-
bound from) components. Whenever such an event happens,
the Binding Listener uses the standard OSGi Event Ad-
min that provides a topic-based publish/subscribe service.
This enables the OWL-DS Monitor to maintain a model of
component instances, their services, and their relationships.

8http://www.eclipse.org/equinox/

Equinox DS
Binding
Listener

Event Admin

OWL-DS Monitor

EventAdmin

EventHandler

Figure 9: Static Component & Connector View of
Current OWL-DS Implementation

Based on this information, the OWL-DS Monitor validates
component configurations as they are made by the Equinox
DS implementation, notifying whether they are valid or in-
valid according to semantic constraints.

7. RELATED WORK
None of the existing ontologies for pervasive computing,

such as SOUPA and Amigo[4], are considering self-management
concepts and requirements, however. The SeMaPS presented
self-management ontologies in this paper are the key to en-
able various self-management tasks. At the same time, we
can model complex contexts using SWRL with the Hydra
ontologies [16]. Work in [7] applied SWRL-based context
modeling, and illustrated three cases of applying SWRL. We
go beyond it by the dynamic state-based monitoring and di-
agnosis using context ontologies.

Using semantic techniques (such as OWL) to extend exist-
ing component models has partially been attempted before.
Sillitti and Succi[9] use XML schema to specify facets of
components but they do not provide details on how to con-
figure components. Furthermore, the implementation of the
approach uses ontologies, but it is not detailed how.

In the area of product lines and feature configuration,
Wang et al. [13] present a feature modelling approach in
which legal feature combinations in which configuration rules
are expressed with OWL. We explored this approach in the
first versions of Limbo, but the approach cannot adequately
specify global constraints due to the limited expressiveness
of OWL. The approach of Wang et al. is furthermore mainly
a design time method and is not able to cope with new
contexts at runtime. The SWRL based configuration con-
straints that we propose could provide a more flexible solu-
tion.

An architecture description language can be used to de-
scribe configurations and styles, and then map a formally
rigorous ontological specification of styles to that ADL such
that its semantics are well defined. Pahl et al.[6] describe an
ontology-based modeling framework for architectural styles,
and show how it can be used in connection with the ACME
ADL. However this work is theoretical and supports rather
than overlaps with our own, in that it makes precise the
benefits to an ontology based model compared to one based
purely on an ADL.

Redondo et al. [8] present work to enhance the semantics
of OSGi services (rather than components) to support en-

hanced service matching, based on OWL-S 9. Redondo et al.
do not use the OSGi DS specification that makes the con-
figuration of component easier. A possible future step for
us would be to incorporate OWL-S in our model to enhance
service matching.

Finally, the work in [12] extends OSGi component descrip-
tions with a special-purpose description language which is
used in the CACI context awareness infrastructure. CACI
proposed a context aware component model which defines
that a component has application ports as well as context
ports. We basically have similar mechanisms for context in-
formation such as Quality-of-Service. Additionally, we are
applying semantic web technologies that have more reason-
ing capabilities than what is provided by [12].

8. CONCLUSIONS AND FUTURE WORK
The SeMaPS ontologies consider runtime context infor-

mation of pervasive systems by incorporating pervasive ser-
vice computing characteristics. These ontologies are impor-
tant in supporting the envisioned semantic-web based self-
management approach adopted in Hydra [14][16]. The se-
mantic web-based self-management is suitable for the open-
ness of pervasive computing as explored in [15]. As semantic
web-based context modeling is extensively used in pervasive
computing, it is beneficial to uniformly make use of these
assets for self-management purposes.

Dynamic service applications require extensive develop-
ment and runtime support. This paper presented OWL-DS
that extends OSGi’s Declarative Services with support for
global (architectural) constraints on composition and sup-
port for dynamic, contextual constraints. The approach has
been validated through the Limbo web service compiler case
study which shows that the Limbo architecture benefits from
the ability to specify advanced component constraints.

Besides self-diagnosis as presented in previous papers, we
are working on extending the application of SeMaPS ontolo-
gies for quality of service-based service selection and adap-
tion, and other self-management work which also depends
on contexts. Furthermore, the investigation of applying the
OWL-DS idea and the Component ontology to the .NET
platform is also under investigation. This idea can be po-
tentially used for Hydra to validate whether a configuration
of an application, or the middleware is legally configured at
runtime, to make sure various constraints are met dynami-
cally.

Acknowledgments
The research reported in this paper has been supported by
the Hydra EU project (IST-2005-034891).

9. REFERENCES
[1] H. CHEN, T. FININ, and A. JOSHI. An ontology for

context-aware pervasive computing environments. The
Knowledge Engineering Review, 18(03):197–207, 2004.

[2] P. Dolog. Model-driven navigation design for semantic
web applications with the uml-guide. Engineering
Advanced Web Applications, Dec. 2004.

[3] K. M. Hansen, W. Zhang, and G. Soares.
Ontology-enabled generation of embeddedweb
services. In The 20th International Conference on

9http://www.w3.org/Submission/OWL-S/

Software Engineering and Knowledge Engineering,
pages 345–350, Redwood City, San Francisco Bay,
USA, Jul. 2008.

[4] IST Amigo Project. Amigo middleware core:
Prototype implementation and documentation,
deliverable 3.2. Technical report, IST-2004-004182,
2006.

[5] OSGi Alliance. OSGi Service Platform – Service
Compendium. Technical Report Release 4, Version
4.1, OSGi, April 2007.

[6] C. Pahl, S. Giesecke, and W. Hasselbring. An
ontology-based approach for modelling architectural
styles. In F. Oquendo and F. Oquendo, editors, ECSA,
volume 4758 of Lecture Notes in Computer Science,
pages 60–75. Springer, 2007.

[7] D.-J. Plas, M. Verheijen, H. Zwaal, and
M. Hutschemaekers. Manipulating context information
with swrl. I/RS/2005/117, Freeband/A-MUSE/D3.12,
2006.

[8] R. Redondo, A. Vilas, M. Cabrer, J. Arias, J. Duque,
and A. Solla. Enhancing Residential Gateways: A
Semantic OSGi Platform. Intelligent Systems,
23(1):32–40, 2008.

[9] A. Sillitti and G. Succi. Reuse: From components to
services. In H. Mei, editor, 10th International
Conference on Software Reuse (ICSR2008), volume
5030 of LNCS, pages 266–269, Beijing, China, 2008.
Springer Verlag.

[10] R. Sterritt and M. Hinchey. Radical Concepts for
Self-managing Ubiquitous and Pervasive Computing
Environments. LNCS, 3825:370, 2006.

[11] T. Strang and C. Linnhoff-Popien. A Context
Modeling Survey. Workshop on Advanced Context
Modelling, Reasoning and Management, UbiComp,
pages 34–41, 2004.

[12] A. v. H. Tom Broens and M. van Sinderen.
Infrastructural support for dynamic context bindings.
In 1st Workshop on Semantic Web Enabled Software
Engineering (SWESE’05), Galway, Ireland, Nov 2005.
LNCS, Springer-Verlag.

[13] H. Wang, Y. F. Li, J. Sun, H. Zhang, and J. Pan. A
Semantic Web Approach to Feature Modeling and
Verification. In 1st Workshop on Semantic Web
Enabled Software Engineering (SWESE’05), Galway,
Ireland, Nov 2005. LNCS, Springer-Verlag.

[14] W. Zhang and K. M. Hansen. An owl/swrl based
diagnosis approach in a web service-based middleware
for embedded and networked systems. In The 20th
International Conference on Software Engineering and
Knowledge Engineering, pages 893–898, Redwood
City, San Francisco Bay, USA, Jul. 2008.

[15] W. Zhang and K. M. Hansen. Semantic web based
self-management for a pervasive service middleware.
In Second IEEE International Conference on
Self-Adaptive and Self-Organizing Systems, Oct. 2008.
To appear.

[16] W. Zhang and K. M. Hansen. Towards self-managened
pervasive middleware using OWL/SWRL ontologies.
In HCP-2008 Proceedings, Part II, MRC 2008 – Fifth
International Workshop on Modelling and Reasoning
in Context, pages 1–12, June 2008.

