

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for
Heterogeneous physical devices in a distributed architecture

 D12.2 External developers workshops
teaching material

Integrated Project
SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 20/12/2007 - version 1.3
Coordinating Partner: C International Ltd.

Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Restricted to Group

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 2 of 57 20/12/2007

Document file: D12.2 External developers workshops teaching material v1.3.doc

Work package: WP12 - Training

Task: T12.2 - Training
Document owner: Atta Badii (University of Reading)

Document history:

Version Author(s) Date Changes made

1.0 Atta, Badii, Renjith Nair,
Daniel Thiemert, Adedayo
Adetoye

31-03-
2007

First Version of the document

1.1 Members of WP4, WP5,
WP6, and WP7

14-12-
2007

Functions and class descriptions

1.2 Atta, Badii, Renjith Nair,
Daniel Thiemert, Adedayo
Adetoye

17-12-
2007

Function definitions, Organising and
Formatting the inputs

1.3 Atta Badii, Daniel
Thiemert, Renjith Nair,
Adedayo Adetoye

20-12-
2007

Incorporating Reviewer comments

 20-12-
2007

Final version submitted to the
European Commission

Internal review history:

Reviewed by Date Comments

Manuel Mattheß (Fraunhofer SIT) 18-12-
2007

Approved with comments

Jesper Thestrup (In-JET) 19-12-
2007

Approved with comments

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 3 of 57 20/12/2007

Index:

1. Introduction .. 4
1.1 Purpose, context and scope of this deliverable .. 4

2. Executive summary ... 5
3. Hydra Overview... 6

3.1 Application Domains of Hydra... 6
4. Hydra Architecture .. 7

4.2 Device Elements... 7
4.2.1 Device Context Manager .. 8
4.2.2 Device Device Manager...11
4.2.3 Device Network Manager...14
4.2.4 Device Policy Manager ..23
4.2.5 Device Resource Manager ...24
4.2.6 Device Security Manager...25
4.2.7 Device Service Manager..27

4.3 Application Elements..29
4.3.1 Application Context Manager ...30
4.3.2 Application Device Manager...31
4.3.3 Application Diagnostics Manager ..35
4.3.4 Application Event Manager ..37
4.3.6 Application Network Manager...39
4.3.7 Application Ontology Manager..41
4.3.8 Application Policy Manager ..46
4.3.9 Application Schedule Manager..47
4.3.10 Application Security Manager ...48
4.3.11 Application Service Manager ..50
4.3.12 Application Session Manager..54

5. Summary... 56
6. Bibliography .. 57

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 4 of 57 20/12/2007

1. Introduction

1.1 Purpose, context and scope of this deliverable

The training dimension of the Hydra project is essential to guarantee the project long-term impact
and hence, several training activities have been planned. Some are directed towards consortium
members and offer inside training in use of technology and software tools, while others are directed
towards external developers developing embedded software systems.

This document is the ‘External Technology Workshops Teaching Material’ which forms the
deliverable D12.2 as part of the WP12. It gives overview of the entire Hydra architecture. This
training document will provide high-level introduction to the Hydra Middleware starting from the
overall project aims and objectives and providing various holistic views to show the potential
applications and plausible usage.

The aim of this document is to give a better idea of what can be done using the Hydra middleware,
and which are the major benefits. Focus will be on the communication process in networked systems
and how the various parts of the Hydra middleware support the specific needs of communication
involving heterogeneous devices.

This document will help the trainees in understanding:

• What is Hydra – in terms of the overall Framework as well as the individual functionalities?

• Which is the role of Hydra middleware in embedded systems communication?

• How to use Hydra in developing programs for communication involving networked
embedded devices?

• How to integrate Hydra with the existing communication scenario of embedded devices?

• Design implications while developing programs using Hydra

• The benefits of adopting Hydra in respect to traditional approach

The Overview document is directed towards the following group of people:

• Individuals interested to have a general overview of Hydra middleware

• Application Developers interested to have a first overview of:

o Impact of Hydra technology in their solutions

o Technical innovation of Hydra with respect to the state-of-the-art

• Device Manufacturers interested to know more about Hydra regarding:

o How Hydra will support their devices?

o How can the devices be made Hydra compliant?

o What kind of security Hydra will provide?

• Research, Technology, and Business Development Managers interested to have an overview
of the whole architecture and assessing the advantages of using the Hydra framework for:

o Testing and developing new solutions

o Promoting and distributing their new solutions for a large audience

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 5 of 57 20/12/2007

2. Executive summary

This document is the ‘External Technology Workshops Teaching Material’ which forms the
deliverable D12.2 as part of the WP12.

Training is an essential part of any project as it gives an overall view of the project and shows how
the project encompasses the stakeholders’ interests. It is essential in professional development of
trainees as it enriches them with the new and advanced methods which Hydra can provide to their
ambient programming environment.

This training document gives an overview of the Hydra architecture and elucidates functions
available for each manager thereby providing the developers and manufacturers a glimpse of what
can be achieved through Hydra. The functionalities are hereby divided into Device and Application
Elements according to the architecture depicted in figure 1.

Figure 1: Hydra Architecture

However, it must be noted that this deliverable is submitted in month 18 and so it is not the
complete Hydra-training document, but a first step towards providing Hydra-training to external
developers.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 6 of 57 20/12/2007

3. Hydra Overview

Hydra is a middleware for building secure, fault-tolerant Networked Embedded Systems where
diverse heterogeneous devices co-operate to achieve a given goal. It aims to hide the complexity of
the underlying infrastructure while providing open interfaces to third parties for application
development.

The Hydra project aims to develop middleware based on a Service-oriented Architecture (SOA), to
which the underlying communication layer is transparent. The middleware will include support for
distributed as well as centralised architectures, security and trust, reflective properties and model-
driven development of applications. One of the main advantages of Hydra middleware is that it will
be deployable on both new and existing networks of distributed wireless and wired devices, which
operate with limited resources in terms of computing power, energy and memory usage. It will allow
for secure, trustworthy, and fault tolerant applications through the use of novel distributed security
and social trust components and advanced Grid technologies. The embedded and mobile Service-
oriented Architecture will provide interoperable access to data, information and knowledge across
heterogeneous platforms, including web services, and support true ambient intelligence for
ubiquitous networked devices.

One of the major outcomes of the Hydra project will be a SDK (Software Development Kit) which will
be used by developers to develop innovative Model-Driven applications with embedded ambient
intelligence using the Hydra middleware. Since producers of devices are increasingly facing the need
for networking in order to provide higher value-added solutions for their customers, the Hydra
project will develop value-oriented business models allowing the producers, in particular Small and
Medium-sized Enterprises (SME), to develop solutions that are both technically and commercially
viable. The Hydra middleware, SDK toolkit and the business models will be validated in real end-user
scenarios in three user domains: Building Automation, Healthcare, and agriculture. Furthermore a
Device Development Kit (DDK) will be provided that enables device manufacturers to produce
Hydra-enabled devices. Additionally, an Integrated Development Environment (IDE) will be provided.
The project also aims to provide an open source reference implementation that will demonstrate the
applicability and quality characteristics of the Hydra middleware.

3.1 Application Domains of Hydra

To validate the Hydra middleware, three user domains were carefully chosen: Building Automation,
Healthcare, and Agriculture.

Building Automation includes Intelligent or Smart Homes and Buildings, and Building Management
Systems. This if course includes sensor equipment for monitoring, applications for control and
reporting, as well as technologies for automated manufacturing.

Healthcare includes eHealth services such as the electronic patient record or drug and day
management as well as smart and intelligent monitoring devices for patient status monitoring.

Agriculture finally entails applications for monitoring of cattle as for automated feeding purposes as
well as for example automated control and management of harvesters. Large sensor networks can
be deployed in this domain for monitoring which have special requirements and constraints.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 7 of 57 20/12/2007

4. Hydra Architecture

The top level architecture view of Hydra is given in Figure 2. It shows the different managers in the
application view (Application Elements) and the device view (Device Elements).

Figure 2: Hydra Architecture

The functions for each manager in both application and device elements are explained in the next
section.

4.2 Device Elements

In the device view, the following managers are primarily involved:

• Service Manager
• Context Manager
• Policy Manager
• Schedule Manager
• Diagnostics Manager
• Ontology Manager
• Event Manager
• Device Manager
• Network Manager
• Session Manager

The communication links between these managers are shown in Figure 3.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 8 of 57 20/12/2007

Figure 3: Device Elements and their communication Links

4.2.1 Device Context Manager

The Device Context Manager is a component of an individual user’s device which is normally carried
around in his/her vicinity. The Device Context Manager is continuously aware of the current location
and context the user is in. According to Dey (2001) "Context is any information that can be used to
characterise the situation of an entity. An entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and applications
themselves.”

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 9 of 57 20/12/2007

Figure 4: Device Context Manager

Purpose: The Device Context Manager is responsible for realisation of context for the device
elements. This may be on the device itself or on a Hydra-enabled proxy representing the device. It is
needed for security and service issues. Additionally it is responsible for event handling.

Main Functions:

• Context Sensing: Gathering data from different sources
• Create and Delete Context
• Linking and De-linking Context
• Manage session based User Profiles
• Check Plausibility of Input
• Event handling: Publishing, subscription

Description: In order to establish a semantic framework as shown in the list below, the Device
Context Manager is needed. It realises the context sensing, the context linking and de-linking and
creation and deletion of context.

• Resolution
• Situational Awareness
• Context Awareness
• Context Sensing

On less capable devices the context sensing simply involves status questioning and in some
circumstances also location reporting. Most devices will only provide sensor input to derive context.
Session based user profiles are used to identify or specify the context. This information is further
used by mainly the Device Security and Device Service Manager. Additionally, the Device Context
Manager is also responsible for event handling, i.e. event publishing and subscribing. This

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 10 of 57 20/12/2007

information is needed for example by the Device Resource Manager to allocate the resource in an
appropriate manner.

Dependencies: Device Service Manager, Device Security Manager, Device Resource Manager

Public Functions
1. getContext (java.lang.String getContextRequest)

Returns the current context

Parameters:

getContextRequest specifies properties of the context to
be returned.

Returns:

The Hydra Context

2. initiate (String something)

Starts an action

Parameters:

Something Indicates the action to be performed.
Example values (which are currently valid and
application specific) are serviceRequest ,
errorConfirmation , errorAnalysis , firmwareDownload
and firmwareInstall .

Returns:

String indicating the status of this function-execution

3. notify (String topic, Part[] partList)

Notifies the manager about an incoming event
This method is called by the EventManager after an event of topic ‘topic’ has
been published.

Parameters:

topic: the topic of the event.
partList: the event as a key/value array.

Returns:

True/false depending on whether the function execution
was successful or not

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 11 of 57 20/12/2007

4.2.2 Device Device Manager

Figure 5: Device - Device Manager

Purpose: The Device Device Manager handles several service requests and manages the responses.

Main Functions:

• Maps requests to device services
• Response generation
• Advertising Hydra device description
• Advertises device services

Components:

Advertise: This module is responsible for broadcasting the existence of the device to
the outside world. It will support several discovery protocols, at least UPnP (Universal
Plug and Play).

Request Mapping: This module maps a request from an outside caller to an internal
service in the device.

Response Generator: This module translates the result of an internal service in the
device to a response to the caller.

Service Description: This module can advertise and provide the service description of
the device.

Dependencies: Device Service Manager

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 12 of 57 20/12/2007

Public Functions
1. RegisterError (string property, string errorcode)

Registers an error condition

Parameters:

property: The error property as string.
errorcode: The error code as string.

Returns:

A string containing the registered error

2. SendErrorMessage (string deviceid, string message)

Sends an error message for a specific device

Parameters:

deviceid: The device id as string.
message: The error message as string.

Returns:

A string containing the sent error message

3. ForwardCredentials (string credentials)

Forwards credentials for this device

Parameters:

credentials: The credentials as string.

Returns:

A string containing the forwarded credentials

4. Install (string firmware, string code)

Installs firmware for this device

Parameters:

firmware: The firmware as string.
code: Optional code as string.

Returns:

A string indicating the status of the firmware installation

5. Execute (string serviceid, string methodName, string parameters,
string values)

Executes a specific method for a service (using the device service manager)

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 13 of 57 20/12/2007

Parameters:

serviceid: The serviceid as string.
methodName: The methodName as string.
parameters: A comma delimited string with the
parameter names.
parameters: A comma delimited string with the
parameter values (Matched against "parameters").

Returns:

A string indicating the result of the execute

6. GetStateVariable (string deviceBaseUrl, string serviceid, string
variable)

Retrieves a state variable value for a service (using the device service
manager)

Parameters:

deviceBaseUrl: Optional string with the deviceBaseUrl.
serviceid: The service id as string.
variable: A string containing the state variable name.

Returns:

A string with the state variable value

7. GetDeviceStatus ()

Retrieves the device status (using the device service manager)

Parameters:

Returns:

A string with the device status

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 14 of 57 20/12/2007

4.2.3 Device Network Manager

Figure 6: Device Network Manager

Purpose: The Device Network Manager is responsible for network management on the device. It is
needed for routing data from other nodes of the architecture to the devices. This data is sent
independently of the communication technology used. It also maintains the Hydra ID (HID) for the
devices in its range and the information to establish a connection to them (e.g., the IP addresses for
them if they are IP enabled).

It has to be mentioned that in the network architecture proposed in D5.1, we have identified four
different levels of devices (not including large machine installation like PCs, servers, etc.) in a
network context (further description and classification is made in [6]:

Name Description

L0 This device can send data. It could be RFID tags, low power nodes, or
other no IP device. Typically it uses a gateway.

L1 This type of device can send and receive data with IP.
L2 This type of device has the same capabilities as L1 devices. Additionally it

is capable of routing data to other devices.
L3 L3 devices have the same capabilities as L2 device and are capable of

Naming and Location service.

Although, from the network point of view, we decided to use IP communication, L0 devices do not
implement the IP layer, as they need L2 or L3 devices acting as gateways for these small devices.
Thus, the figure above represents the network manager in the device view for the higher class
devices. Lower ones will not implement all of the subcomponents.

The subcomponents in the network manager in the device view are:

Routing Manager is responsible for forwarding the data to the appropriate node in
the network and for detecting when data has to be consumed in the device itself.

Identity Manager is in charge of managing the Hydra ID for the devices it controls
from the network point of view. It assures that all HIDs are unique under their scope

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 15 of 57 20/12/2007

(this will happen, for example when a L3 device controls a number of L0 devices). The
HID must be unique because it is used to identify devices, applications, users, etc.

Session Manager maintains the communication sessions.

Time Manager is an internal Manager for time synchronisation.

Backbone Manager is an internal Manager which deals mainly with the device to
device communication (no external access).

Figure 1: Sub Managers of network manager

Main Functions:

• Route data
• Send data to the network
• Receive data from the network
• Get an IP address from the network
• Get a Hydra ID
• Maintain shared memory space

Dependencies: Device Device Manager, Application Network Manager

Public Functions of Routing Manager

The Routing Manager will be in charge of sending and receiving the messages to and from the
network. At the Network Manager level, it is the single point of communication with the other
devices. Its public functions are given below:

1. sendData(long sessionID, long senderHID, long receiverHID, String
data)
Operation to send some data to another network manager. It calls the sendData method
of the RouteManager.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 16 of 57 20/12/2007

Parameters:

sessionID: The ID of the session related to this communication
senderHID: The HID of the sender
receiverHID: The HID of the receiver
data: The data to send in a String format

Returns:

An indicator indicating the success of the transmission: 0 =
Success, -1 = Echec

2. receiveData(long sessionID, long senderHID, long receiverHID, String
data)
Operation to receive some data from another network manager. It calls the receiveData
method of the RouteManager.

Parameters:

sessionID: The ID of the session related to this communication
senderHID: The HID of the sender
receiverHID: The HID of the receiver
data: The data to send in a String format

Returns:

An indicator indicating the success of the transmission: 0 =
Success, -1 = Echec

Public Functions of Session Manager

8. openSession(long senderHID, long receiverHID)

Operation to open a session between two HIDs. It calls the createSession method of the
SessionManager.

Parameters:

senderHID: The HID of the source node (client)
receiverHID: The HID of the destination node (server)

Returns:

The SessionID generated for this session

9. closeSession(long sessionID)

Operation to close a session. It calls the closeSession method of the SessionManager.

Parameters:

sessionID: The sessionID of the session to be closed

Returns:

-

10. getSessionParameter(long sessionID, String key)

Operation to request the value of a given session data. It calls the getSessionParameter
method of the SessionManager.

Parameters:

sessionID: The sessionID of the session to be asked
key: The requested parameter

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 17 of 57 20/12/2007

Returns:

The value of the requested parameter

11. setSessionParameter(long sessionID, String key, String value)

Operation to set the value of a given session data. It calls the setSessionParameter
method of the SessionManager.

Parameters:

sessionID: The sessionID of the session to be asked
key: The requested parameter
value: The new value of the requested parameter

Returns:

-

12. synchronizeSessionsList(long senderHID)

Operation to synchronize the clientSessionsList with the serverSessionsList of this host. It
calls the synchronizeSessionsList method of the SessionManager.

Parameters:

senderHID: The HID of the client that need to synchronize its
clientSessionsList with the serverSessionsList of this host

Returns:

A vector that contains the sessionID to be deleted

Public Functions of Identity Manager

The objective of the Identity Manager is to provide a unique identifier for each entity of the Hydra
network. Externally accessible functions of Identity Manager are given below:

1. createHID()

Generates a context free HID

Parameters:

-

Returns:

A new context free HID

2. createHID(contextID, level)

Generates an HID in a given context

Parameters:

contextID: ID of the context that will be linked to this HID
level: Number of nested contexts

Returns:

A new HID with the following structure:
context(n)ID.context(n-1)ID....context(0)ID.deviceID
where
deviceID is a random ID
and

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 18 of 57 20/12/2007

context(n)ID is a random ID if n < level, where 0 <= n <= 3.
If n = level then context(n)ID is equal to the contextID input
parameter.

3. renewHID ()

Renews a context free HID

Parameters:

-

Returns:

A new context free HID

4. createHID(contextID, level)

Renews an HID in a given context

Parameters:

contextID: ID of the context that will be linked to this HID
level: Number of nested contexts

Returns:

A new HID with the following structure:
context(n)ID.context(n-1)ID....context(0)ID.deviceID
where
deviceID is a random ID
and
context(n)ID is a random ID if n < level, where 0 <= n <= 3.
If n = level then context(n)ID is equal to the contextID input
parameter.

5. deleteHID(hid)

Deletes an HID from the Identity Manager IdTable

Parameters:

hid: The HID to be deleted

Returns:

-

6. deleteAllHIDs(hid)

Delete every HID from the Identity Manager’s IdTable

Parameters:

-

Returns:

-

Public functions of Storage Manager

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 19 of 57 20/12/2007

The Storage Manager is responsible for storage management on the device level. It is used to
provide a single, consistent interface to the storage on the devices. Depending on the device
capabilities and application requirements, the Storage Manager may handle the actual storage locally
or take care of handling it through remote devices. Typical storage requirements include file and
memory storage. Limited data sets to be used frequently and possibly by several cooperating
devices, can be stored in a virtual shared memory structure to allow efficient and easy application
programming, whereas big or less frequently used data sets are more suitable for file storage. In
both cases it is the responsibility of the Storage Manager to provide a familiar interface to the
storage and take care of the actual underlying file and memory operations. Apart from easing
application IO operations, the general IO access through a local Storage Manager will also allow
increased IO performance for all applications, by adding transparent caching. Public functions for the
storage manager are given below:

1. setFileLocation(String securityContext, String location)

Sets up storage location by mapping the provided security context to the corresponding
HID. This is used to decide the outcome of openFile operations called with the same
security context.

Parameters:

securityContext: The securityContext to be linked to this file
location: The pathfile for this file

Returns:

-

2. getFileLocation(String securityContext)

Looks up the HID of the storage location for the given security context

Parameters:

securityContext: The securityContext linked to this file

Returns:

The pathfile for this file

3. openFile(String securityContext, String filename, String mode)

Opens a file access session given a security context, a filename and an access mode.
Returns a file descriptor used for all further operations in the file access session.

Parameters:

securityContext: The securityContext linked to this file
filename: The name of the file to be opened
mode: The opening mode to be used

Returns:

The FileDescriptor object associated to this file

4. seekFile(FileDescriptor fileHandle, long position)

Moves the file-pointer offset, measured from the beginning of the file, i.e., moves the point
from which the next read or write occurs.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 20 of 57 20/12/2007

Parameters:

fileHandle: The FileDescriptor object associated to this file
position: The new position for the file-pointer offset

Returns:

-

5. tellFile(FileDescriptor fileHandle)

Provides the current file-pointer offset from the beginning of the file.

Parameters:

fileHandle: The FileDescriptor object associated to this file

Returns:

The current position of the file-pointer offset

6. readFile(FileDescriptor fileHandle, byte[] buffer)

Reads a specified number of bytes from the file, starting from the current file-pointer.

Parameters:

fileHandle: The FileDescriptor object associated to this file
buffer: The array where the bytes read will be stored

Returns:

The number of bytes read

7. readLineFile(FileDescriptor fileHandle)

Similar read method that reads until the next newline marker.

Parameters:

fileHandle: The FileDescriptor object associated to this file

Returns:

A String containing the line read

8. readStringFile(FileDescriptor fileHandle)

Similar read method that reads and formats to a string instead of pure bytes.

Parameters:

fileHandle: The FileDescriptor object associated to this file

Returns:

A String containing the formatted file content

9. writeFile(FileDescriptor fileHandle, byte[] buffer)

Writes provided bytes to the file, starting from the current file-pointer.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 21 of 57 20/12/2007

Parameters:

fileHandle: The FileDescriptor object associated to this file
buffer: The bytes to be written to this file

Returns:

-

10. writeLineFile(FileDescriptor fileHandle, String line)

Similar write method to write a line to the file.

Parameters:

fileHandle: The FileDescriptor object associated to this file
line: The line to be written to this file

Returns:

-

11. writeStringFile(FileDescriptor fileHandle, String line)

Similar write method to write a string rather than raw bytes to a file.

Parameters:

fileHandle: The FileDescriptor object associated to this file
line: The String to be written to this file

Returns:

-

12. getLengthFile(FileDescriptor fileHandle)

Provides the current length of the file, i.e., the size in bytes.

Parameters:

fileHandle: The FileDescriptor object associated to this file

Returns:

The length of the file

13. setLengthFile(FileDescriptor fileHandle, long length)

Sets the current length of the file, i.e., the size in bytes. This works as truncate if the file
was previously longer than the length specified.

Parameters:

fileHandle: The FileDescriptor object associated to this file
length: The length to be set for this file

Returns:

-

14. lockFile(FileDescriptor fileHandle, long position, long length)

Locks a specified part of a file for shared reading or exclusive writing. The part is specified

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 22 of 57 20/12/2007

with the provided offset and length variables.

Parameters:

fileHandle: The FileDescriptor object associated to this file
position: The offset position indicating where locking will start
length: The number of bytes to be locked

Returns:

-

15. releaseFile(FileDescriptor fileHandle, long position, long length)

Releases the lock on a specified part of a file.

Parameters:

fileHandle: The FileDescriptor object associated to this file
position: The offset position indicating where releasing will start
length: The number of bytes to be released

Returns:

-

16. closeFile (FileDescriptor fileHandle)

Closes the file access session. This includes writing any cached data and revoking all
further access to the file using the provided file descriptor.

Parameters:

fileHandle: The FileDescriptor object associated to this file

Returns:

-

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 23 of 57 20/12/2007

4.2.4 Device Policy Manager

Figure 7: Device Policy Manager

Purpose: The Device Policy Manager is responsible for the execution of the policies. These policies
are predefined by the manufacturer.

Main Functions:

• Execution of Policies

Description: The Device Policy Manager is responsible for execution of predefined policies. These
policies are predefined by the manufacturer or developer and can only be updated through a
firmware update. The policies can be divided into security and behaviour policies. Latter ones have
no direct security implications. The Device Policy Manager invokes the responsible component to
execute the policies. After execution, the Device Policy Manager receives a notification about the
execution. The Device Policy Manager itself can be invoked by several components, e.g. Device
Security Manager, Device Resource Manager or Device Context Manager.

Dependencies: Depends on the executed policies.

Public functions

1. getProtectionProfile (String contextInformation)

Function to retrieve the protection profile

Parameters:

contextInformation: current context information

Returns:

Protection Information requested (of data type Protection
Information)

Other functions for the policy manager in the device view will be decided and implemented only
after the second Iteration.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 24 of 57 20/12/2007

4.2.5 Device Resource Manager

Figure 8: Device Resource Manager

Purpose: The Device Resource Manager is responsible for representing and notifying on device and
operating system resources.

We distinguish between different levels of resources:

• Base resources that are directly provided by a system. This includes memory, disk space,
network bandwidth etc.

• Composite resources that are composed of and use base resources. These include services,
clusters, total memory of a device etc.

The resource manager is responsible for tracking base and composite resources on a device.

The OS Interface enables manipulation and query of OS resources. In Java, e.g., it would be
subsumed by the Java SDK. On smaller embedded devices, it would have to be created specifically
for each OS.

Main Functions:

• Publishing resource data from local device
• Provide an external interface for resource management
• Interfacing to operating system to provide information on local resources.

Dependencies: Device Service Manager, Device Security Manager

Public Functions
Public functions for the Resource manager will be defined and implemented only after the second
iteration.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 25 of 57 20/12/2007

4.2.6 Device Security Manager

Figure 9: Device Security Manager

Purpose: The Device Security Manager realises the security in the device.

Main Functions:

• Security Resolution based on the security context given by the manufacturer
• Key Management
• Encryption and decryption

Description: The Security Manager is responsible for the security on the devices and the network
layer. This includes the encryption and decryption of data sent and received. In order to do that, a
key management is provided by the Device Security Manager. Here, keys can be added and
removed to ensure that broken keys can be revoked. Also, the Device Security Manager invokes the
Device Policy Manager to execute the corresponding security policies, but since the policies are
predefined by the manufacturer, the Device Security Manager is not allowed to modify them. Hence,
the security resolution is based on the security context defined or decided by the manufacturer or
developer.

Dependencies: Device Network Manager, Device Policy Manager

Public functions
1. createKey (java.lang.String identityID, String keyParameters)

Function to create a secure key for an identity.

Parameters:

identityID: Identity ID in string format
keyParameters: Key parameters for the key, in string format,
separated by comma.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 26 of 57 20/12/2007

Returns:

Unique identifier of the created key or null in case of failure.

2. revokeKey (String keyID)

Function to revoke an already existing key.

Parameters:

keyID: The ID of the key to be revoked

Returns:

String indicating the status of the execution of function

3. deleteKey (String keyID)

Function to delete a key.

Parameters:

keyID: The ID of the key to be deleted

Returns:

String indicating the status of the execution of function

4. send(String data, Context currentContext, String destinationHID)

Encrypts and/or signs outgoing data according to the current protection profile and
forwards protected data to the NetworkManager.

Parameters:

data: Plaintext data to be protected.
currentContext: The current context

Returns:

Status code: -1 means an error occurred during
encryption/signing, 0 means success.

5. validate (String something, String credentialID, Context context)

Function to check if a credential is valid for a certain request.

Parameters:

something: request to be validated
credentialed: Credential ID, in string format
context Context: in which the data is to be validated

Returns:

True if the validation is successful, else false

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 27 of 57 20/12/2007

4.2.7 Device Service Manager

Figure 10: Device Service Manager

Purpose: The Device Service Manager implements a service interface for physical devices.

Main Functions:

• Maps services to physical device operations
• Maps (physical) device events to Hydra enabled events

Components:

Service Mapping: This module maps device service requests to internal device
operations. One device can have several service mappings.

Event Mapping: This module receives physical device events and maps them into
Hydra-events.

Dependencies: Device Resource Manager, Device Context Manager

Public Functions
1. RegisterError (string property, string errorcode)

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 28 of 57 20/12/2007

Registers an error condition

Parameters:

property: The error property as string.
errorcode: The error code as string.

Returns:

A string containing the error to be registered

2. SendErrorMessage (string message)

Sends an error message for a specific device

Parameters:

deviceid: The device ID as string.
message: The error message as string.

Returns:

A string containing the error to be sent

3. ForwardCredentials (string credentials)

Forwards credentials for this device service
Parameters:

credentials: The credentials as string.

Returns:

A string containing the credentials to be forwarded

4. GetServiceDescription (string serviceid)

Retrieves a service description for a service
Parameters:

serviceid: The service ID as string.

Returns:

An XmlDocument with service description

5. Execute (string serviceid, string methodName, string parameters,
string values)

Retrieves a service description for a service
Parameters:

serviceid: The service ID as string.
methodName: The method name as string.
parameters: A comma delimited string with the
parameter names.
values: A comma delimited string with the parameter
values (matched against "parameters").

Returns:

A string indicating the result of the execution

6. GetStateVariable (string deviceBaseUrl, string serviceid, string
variable)
Retrieves a state variable value for a service
Parameters:

deviceBaseUrl Optional string with device’s base URL.
serviceid The service ID as string.
variable A string containing the state variable name.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 29 of 57 20/12/2007

Returns:

A string with the state variable value

4.3 Application Elements

The following diagram explains how the application elements are logically grouped. In the following
chapters each element will be explained in detail.

Figure 11: Overview of Application Elements

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 30 of 57 20/12/2007

4.3.1 Application Context Manager

Figure 12: Application Context Manager

Purpose: The Application Context Manager is responsible for realisation of context for the
application elements.

Main Functions:

• Context Sensing through data gathering from different sources
• Context Creation and Deleting
• Context Linking and Delinking
• Plausibility check
• Management of User Profiles

Description: In order to establish a semantic framework as shown in the figure below, the
Application Context Manager is needed. It realises the context sensing, the context linking and de-
linking, and creation and deletion of context.

• Resolution
• Situational Awareness
• Context Awareness
• Context Sensing

User Profiles are stored only on user devices such as PDA's, but application based profiles can be
stored for short time to enable applications to execute user specified tasks. The established context
can be used in several ways. This includes the security, which is thus based on the whole
information available and not only on parts. Additionally, the context can be used by the Application
Service and Application Device Manager in order to identify the appropriate services and devices to

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 31 of 57 20/12/2007

execute a task. Since there is a plausibility check of the input data the Application Context Manager
also interacts with the Application Diagnostics Manager to ensure that no faulty input is used for
application execution.

Dependencies: Application Schedule Manager, Application Event Manager, Application Security
Manager, but also Application Device Manager, Application Service Manager, Application Diagnostics
Manager

Public functions

Public functions for Application context manager are the same as the ones available in device
context manager. So please refer to Device Context Manager for the function-descriptions.

4.3.2 Application Device Manager

Figure 13: Application Device Manager

Purpose: The Application Device Manager manages all knowledge and information regarding
devices. The Application Device Manager knows about devices from a network perspective but do
not handle the locations or context of the devices.

Main Functions:

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 32 of 57 20/12/2007

• Discover new (existing) devices
• Resolves device communication requests
• Returns service interface
• Returns device communication end-points
• Handles device aggregation
• Handles device virtualisation
• Manages a Device Application Catalogue: Device types and device states

Components: There are three main components of the Device Manager.

Discovery Module: One of the major functions of the Application Device Manager is
to discover new devices in the network. This is taken care of by the Discovery Module.
It will support different discovery protocols, at least UPnP (Universal Plug and Play). It
will also support user-initiated discovery schemes.

Device Application Catalogue: The Device Application Catalogue keeps track of and
manages all devices that are currently active within one application. It can be queried
about existing devices and their status. It can also provide service interfaces for the
different devices upon request. Device Service Generator: The Device Service
Generator is responsible for generating a service interface for a certain device. It will
create a software wrapper around the device which other modules can use to
communicate with and control the device.

Dependencies: Application Ontology Manager, Application Event Manager, Application Network
Manager and Application Security Manager

Public Member Functions

1. ProcessErrorMessage (XmlNode theMessage)

Processes an error message
Parameters:

theMessage: The error message as an XML Node.

Returns:

Description of the error

2. ProcessErrorMessageString (string theMessage)

Processes an error message given in string format.

Parameters:

theMessage: The error message as a string.

Returns:

Description of the error

3. SetDeviceStatus (string deviceid, string statusmessage)

Sets the device status

Parameters:

deviceid: The ID of the device.
statusmessage A message describing the changes to be
made to the device status.

Returns:

The updated device status

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 33 of 57 20/12/2007

4. GetDeviceInfo (string deviceid)

Returns status and other information of the device

Parameters:

deviceid: The ID of the device.

Returns:

The current device status and information

5. GetDeviceStatus (string deviceid)

Returns the device status as an XML Node

Parameters:

deviceid: The ID of the device.

Returns:

The current device status

6. GetDeviceXML (string deviceid)

Returns the XML description of the device

Parameters:

deviceid: The ID of the device.

Returns:

An XML Node containing the description of the device.

7. GetDevices (string type)

Returns a list of the devices currently available in the network

Parameters:

type: A device type.

Returns:

A list of the currently available devices

8. GetDevicesAsXML (string type)

Returns a list of the devices currently available in the network

Parameters:

type: A device type.

Returns:

An XML Document containing a list of the currently
available devices

9. GetDeviceOntologyDescriptionAsXML (string deviceontology_id)

Returns the ontology description of the device as an XML Document

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 34 of 57 20/12/2007

Parameters:

deviceontology_id: The ID of the device.

Returns:

The ontology description of the device as an XML
Document

10. GetDeviceOntologyDescription (string deviceontology_id)

Returns the ontology description of the device as a string

Parameters:

deviceontology_id: The ID of the device.

Returns:

The ontology description of the device as a string

11. GetProperty (string deviceid, string property)

Returns the named property of the device

Parameters:

deviceid: The ID of the device.
property: The name of the property.

Returns:

The value of the property

12. HasProperty (string deviceid, string property)

Indicates if the device has a property with the specified name

Parameters:

deviceid: The ID of the device.
property: The name of the property.

Returns:

True if the property exists, false otherwise.

13. SetProperty (string deviceid, string property, string value)

Sets the named property of the device

Parameters:

deviceid: The ID of the device.
property: The name of the property.
value: The new value of the property.

Returns:

The new value of the property

14. Execute (string deviceid, string serviceid, string methodName, string
parameters, string values)

Generic method to execute any method in a service on a device

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 35 of 57 20/12/2007

Parameters:

deviceid: The ID of the device.
serviceid: The ID of the service.
methodName: The name of the method.
parameters The parameters of the method.
values: The values of the parameters.

Returns:

The result of execution of the method

15. Install (string firmware, string code, string deviceid)

Will install new firmware to a specified device

Parameters:

firmware: The URI to download the firmware.
code: The code to unlock the device.
deviceid: The ID of the device.

Returns:

4.3.3 Application Diagnostics Manager

Figure 14: Application Diagnostics Manager

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 36 of 57 20/12/2007

Purpose: The purpose of the Application Diagnostics Manager is to monitor the system conditions
and state. It will be responsible for error detection and logging of device events. The Diagnostics
Manager will be an important component in providing the self-* properties of Hydra. Completely
reliable failure detection is impossible in a distributed system with the characteristics of Hydra, so
the Diagnostics Manager will need to work with imperfect failure detectors.

Main Functions:

• Systems diagnostics (e.g., a device is dead/ does not respond)
o dead/live lock detection
o software failure
o hardware failures
o network failures

• Device Diagnostics (device responds but...)
o service failure
o device status reports

• Application diagnostics / Monitoring
o global resource consumption
o overall property use (e.g., room is too warm)

• Logging
• Fault detection rule engine

o manages rules/dependencies over devices

Components:

Device Status: The Device Status module is responsible for finding out the status of a
device and if there are any malfunctions detected.

Log Facility: The Log Facility is used to log all events and interactions between
devices. This is used by several other modules to implement their functionality. The log
can also be used to detect different erroneous states.

Fault Detection Rule Engine: This rule engine applies a rule set to discover if there
is any malfunctioning or strange behaviour in the system.

Device Monitor Rule Engine: This rule engine applies a rule set to monitor devices
in order to be preemptive to avoid errors and malfunctions, for instance by monitoring
the resource usage of certain devices. This is done by using the information in the
Device Ontology.

Dependencies: Application Ontology Manager, Application Event Manager, Application
Network Manager

Public Functions
Public functions for the diagnostics manager will be defined and implemented only after the 2nd
Iteration.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 37 of 57 20/12/2007

4.3.4 Application Event Manager

Figure 15: Application Event Manager

Purpose: The Application Event Manager is responsible for providing publish/subscribe functionality
to the Hydra middleware.

In general, publish/subscribe communication as provided by the Event Manager provides an
application-level selected multicast that decouples senders and receivers in time, space, and data
(i.e., sender and receiver do not need to be online at the same time, do not need to know each
other's network addresses and do not need to use the same data schema for events they send).

The Application Event Manager will be used in any place where there is a potential many-to-many
relationship between senders and receivers and where asynchronous communication is desirable.

Main Functions:

• Subscription support allowing clients to subscribe to published events via a topic-based
publish/subscribe scheme (Subscription Manager)

• Publication support allowing client to publish event on topics (Publication Manager)

• Routing events to subscribed clients (Notification Manager)

• Event Core manages persistent subscriptions, publication to subscription matching etc.

• Interfacing to Network Manager (e.g., broadcast-, multicast-, or gossiping-based
dissemination)

Dependencies: Application Security Manager, Application Network Manager

Public Functions
1. subscribe (java.lang.String topic, org.apache.axis.types.URI subscriber)

Subscribe method - Saves a subscription made by subscriber with the given
URI, to the specific topic.

Parameters:

topic: topic to be subscribed
subscriber: address of the subscriber

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 38 of 57 20/12/2007

Returns:

true or false depending on the result of saving the
subscription

2. unsubscribe (java.lang.String topic, org.apache.axis.types.URI
subscriber)

Unsubscribe method - Deletes a subscription made by subscriber with the given
URI, to the specific topic.

Parameters:

topic: topic to be subscribed
subscriber: address of the subscriber

Returns:

true or false depending on the result of erasing the
subscription

3. getSubscriptions ()

getSubscriptions method - returns all the existing subscriptions.

Parameters:

Returns:

an array with all the subscriptions

4. clearSubscriptions (org.apache.axis.types.URI subscriber)

clearSubscriptions method - Erases all the subscriptions made by a subscriber
with the given URI

Parameters:

subscriber : address of the subscriber.

Returns:

true or false depending on the result of the operation

5. publish (java.lang.String topicPattern,
com.eu.hydra.eventmanager.axis.Part[] event)

publish method - publishes an event which will be received by everyone that is
subscribed to the given topic.

Parameters:

topicPattern: topic of the event.
event: event to be published.

Returns:

true or false depending on the result of the publishing

6. notify (java.lang.String topic,
com.eu.hydra.eventmanager.axis.subscriber.Part[] event)

notify method - notifies a subscriber of the arrival of the new event.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 39 of 57 20/12/2007

Parameters:

topic: topic of the event published.
event: event published.

Returns:

true or false depending on the result of the notification.

4.3.6 Application Network Manager

Figure 16: Application Network Manager

Purpose: The Application Network Manager is responsible for network management. It is in charge
of providing a transparent view of the nodes in the application and to route the data to the
appropriate node(s). It handles the HID of the nodes in the application. It also manages the names
of the nodes for localisation purposes, GRID functionalities and a shared space for data storage.
Additionally, it is in charge of synchronising the nodes in the network with referential time.

The subcomponents of this view are:

Naming Manager: responsible for managing information about the nodes and its
position in the hierarchy of them (tree) that composes the node network architecture in
an application. This information is used for location purposes.

Storage Manager: responsible for managing the application shared memory space.

Grid Manager: responsible for interfacing with the GRID This manager handles the
communication with the grid service.

Identity Manager: responsible for managing the Hydra ID at application level.

Time Manager: responsible for synchronising the nodes of the application in the
network with referential time

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 40 of 57 20/12/2007

Backbone Manager: responsible for managing the information about the other
services available in the network at application level.

Main Functions:

• Handle naming server
• Provide shared data space for nodes
• Provide Grid functionalities to locate resources
• Schedule node jobs
• Synchronise network with referential time
• Provide HID to nodes at application level
• Handle a list of the network members
• Control access to the devices
• Handle information about services in the network

Dependencies: Application Device Manager, Device Network Manager, Application Security
Manager

Public Functions
Public functions for the application view are same as the ones available in the device view. For
function-descriptions please refer to the Device Network Manager section of this document.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 41 of 57 20/12/2007

4.3.7 Application Ontology Manager

Figure 17: Application Ontology Manager

Purpose: One of the key components in the Hydra middleware is the Device Ontology, where all
meta-information and knowledge about devices and device types are stored. The purpose of the
Application Ontology Manager is to provide an interface for using the Device Ontology. This manager
could possibly also maintain other models in addition to devices.

Main Functions:

• Device description and annotation
• Parsing and annotation of device description
• Search/Query function
• Update
• Ontology versioning
• Reasoner module

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 42 of 57 20/12/2007

Components:

Reasoner: The reasoner module is responsible for reasoning about devices and their
status and provides inferring mechanisms for instance to conclude what type of device
has entered the network.

Query module: The query module allows for retrieving information regarding devices
and their capabilities.

Update module: The update module allows entering of new information, deletion and
changes to the ontology at both design time and run time.

Versioning: The versioning module is responsible for managing different versions of
the ontology. This includes different versions of devices and services.

Parse and Annotate: The parse and annotate modules is responsible for
automatically update the ontology with new device types. It does so by analysing and
annotating existing device and product descriptions which are fed into the ontology.

Dependencies: External ontologies and product description databases

Public Functions
1. getDeviceDescription (String deviceId)

Retrieves the device description from the ontology

Parameters:

deviceId: The ontology device ID.

Returns:

An XML string containing the device description or the
description of an error that occurred during method
invocation

2. getDeviceDescriptions()

Retrieves descriptions of all devices presented in the ontology

Parameters:

Returns:

An XML string containing the descriptions of all devices
contained in the ontology or the description of error that
occurred during method invocation.

3. createNewDevice (String deviceType, String deviceId)

Creates the new device ontology instance

Parameters:

deviceType: The device type specified as the name of
the ontology concept in the device type hierarchy.
deviceId: The requested ontology device ID.

Returns:

An XML string containing the description of an unique
and requested ontology ID of a newly created device

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 43 of 57 20/12/2007

instance or the description of an error that occurred
during method invocation.

4. setDeviceDescription (String deviceId, String description)

Sets or updates the basic device information in the ontology.

Parameters:

deviceId: The ontology device ID
description: The XML string specifying the new basic
information of the defined device.

Returns:

An XML string containing the update operation success
or the description of an error, that occurred during
method invocation

5. getSupplierInfo (String deviceId)

Retrieves the device's supplier information from the ontology

Parameters:

deviceId: The ontology device ID.

Returns:

An XML string containing the information of device
supplier (manufacturer name and URL) or the
description of an error, that occurred during method
invocation.

6. resolveError (String deviceType, String error)

Retrieves the errors for all devices of specified type

Parameters:

deviceType: The device type specified as the name of
the ontology concept in the device type hierarchy.
error: The human readable error description.

Returns:

An XML string containing the list of all devices, which
contain the specified error or the description of an error
that occurred during method invocation. For each
device, the XML string contains the list of matching
errors and for each error the related cause-remedy
pairs.

7. resolveErrorByCode (String deviceType, String error)

Retrieves the errors for all devices of specified type

Parameters:

deviceType: The device type specified as the name of
the ontology concept in the device type hierarchy.
error: The error specified by ontology error code.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 44 of 57 20/12/2007

Returns:

An XML string containing the list of all devices, which
contain the specified error or the description of error
that occurred during method invocation. For each
device, the XML string contains the list of matching
errors and for each error the related cause-remedy
pairs.

8. getDeviceError (String deviceId, String error)

Retrieves the errors for specified device

Parameters:

deviceId: The ontology device ID.
error: The human readable error description.

Returns:

An XML string containing the list of all device errors
matching the query or the description of error that
occurred during method invocation. For each error, the
XML string contains the list of related cause-remedy
pairs.

9. getDeviceErrorByCode (String deviceId, String error)

Retrieves the errors for specified device

Parameters:

deviceId: The ontology device ID.
error: The error specified by ontology error code.

Returns:

An XML string containing the list of all device errors
matching the query or the description of error that
occurred during method invocation. For each error, the
XML string contains the list of related cause-remedy
pairs.

10. setDeviceErrors (String deviceId, String errors)

Sets or updates the device errors in the ontology.

Parameters:

deviceId: The ontology device ID.
description: The XML string specifying the device errors
and cause-remedy pairs.

Returns:

An XML string containing the update operation success
or the description of an error that occurred during
method invocation.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 45 of 57 20/12/2007

11. removeDeviceErrors (String deviceId)

Removes the device errors from ontology

Parameters:

deviceId: The ontology device ID.

Returns:

An XML string containing the remove operation success
or the description of an error that occurred during
method invocation.

12. answer (String query)

Utility method: retrieves the result of SPARQL (SPARQL Protocol and RDF
Query Language) query.

Parameters:

query: The SPARQL query.

Returns:

An XML string containing the result of executed SPARQL
query or an error code. XML string and error codes are
automatically generated by Jena 1API.

13. getDeviceTypes ()

Utility method: retrieves the names of device type hierarchy concepts.

Parameters:

Returns:

A string containing comma-separated list of names of
device type hierarchy concepts

1 Jena is the Semantic Web Framework for Java: http://jena.sourceforge.net/

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 46 of 57 20/12/2007

4.3.8 Application Policy Manager

Figure 18: Application Policy Manager

Purpose: The Application Policy Manager is responsible for Policy Management and execution of the
policies in the application.

Main Functions:

• Policy setup based on definitions from the Application Security Manager
• Integrity Check to ensure that new policies do not interfere with existing policies
• Policy Execution

Description: The Policy Manager handles the policies which are divided into security and behaviour
policies. The security policies can be updated by the Application Security Manager. Thus, an integrity
check is performed before new rules are added or old ones are removed to ensure that all rules are
conforming and that one rule is not contradicting to another rule. For execution of the rules the
Application Policy Manager invokes the responsible manager. Therefore, several managers are
depending on the Application Policy Manager, such as the Application Service Manager, the
Application Device Manager or the Application Event Manager. After execution the policy manager
receives a notification.

Dependencies: Depends on the executed policies.

Public Functions
Other functions for the policy manager in the application view will be decided and implemented only
after the second Hydra iteration.

1. getProtectionProfile (String contextInformation)

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 47 of 57 20/12/2007

Function to retrieve the protection profile, depending on the current content.

Parameters:

contextInformation Current context information

Returns:

Protection Information requested (of data type
Protection Information)

4.3.9 Application Schedule Manager

Figure 19: Application Schedule Manager

Purpose: The Application Schedule Manager implements service automation schemes (SAS) and
performs event scheduling (including trigger functionality).

Main Functions:

• Event triggering (e.g., get cam image at noon weekdays)
• Calendar function
• Triggering
• Device coordination
• Schedule execution (based on service automation schemes)

Dependencies: Application Event Manager, Application Security Manager

Public Functions

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 48 of 57 20/12/2007

Public functions for schedule manager will be defined and implemented only after the 2nd Iteration.

4.3.10 Application Security Manager

Figure 20: Application Security Manager

Purpose: The Application Security Manager realises the security aspects.

Main Functions:

• Malfunction Handling based on the reasoning/plausibility check of the Application Context
Manager

• Security Resolution based on the application, device and service requirements
• Identity Management
• Key Management
• Rule definition for the Application Policy Manager
• Encryption and decryption on the application level

Description:

The Application Security Manager is responsible for the security on powerful devices and in the
application view. It has a malfunction handling based on the plausibility check of the Application
Context Manager and the results of the Application Diagnostics Manager. Identity management is
provided in order to enable a solid key management and rules definition. Of course, the Application
Security Manager is also responsible for encryption and decryption of application and user specific
data, regardless the further encryption on the device view. Out of the semantic security resolution
based on the decision of the end-user, application device and service requirements the Security
Manager defines rules which are passed to the Application Policy Manager to update its policy set.
The input of the resolution originates from various managers such as the Application Device
Manager, the Application Service Manager or the Application Context Manager.

Dependencies: Application Policy Manager, Application Network Manager

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 49 of 57 20/12/2007

Public Functions
All Functions in Device view of security manager are available in the application view too. In Addition
to that there are four more functions available in the application view, as given below. Not all of
these methods are already fully implemented. In the second Hydra iteration, they might further be
subject to some modifications, depending on the revision of the architecture.

1. createIdentity (String identity)

Function to create the Identity based on a value

Parameters:

identity: ID value in string format (necessary for
creating the identity)

Returns:

A unique identifier for the created identity or null in case
of failure.

2. deleteIdentity (java.lang.String identityID)

Function to delete the Identity

Parameters:

identityID: Unique identifier of the identity

Returns:

String indicating the status of the execution of function

3. retrieveCredentials (String storageID)

Function to retrieve the credentials based on the storage ID

Parameters:

storageID: Storage ID in string format

Returns:

Credential value

4. storeCredentials (CredentialType credentials)

Function to store generated credentials

Parameters:

credentials: generated Credentials

Returns:

A unique storage ID of the stored credential as a string

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 50 of 57 20/12/2007

4.3.11 Application Service Manager

Figure 21: Application Service Manager

Purpose: The purpose of the Application Service Manager is to discover, create and execute
semantic (web) services on top of devices. It adds a semantic layer above the Application Device
Manager. Services might map to several device functionalities.

Main Functions:

• Service discovery
• Semantic service creation (service orchestration/clustering and mapping to device

service)

Components:

Service Discovery Module: One of the major functions of the Service Manager is to
discover new services in the network. This is taken care of by the Service Discovery
Module. It will use the Device Manager to find out about services offered by different
devices.

Semantic Service Catalogue: The Semantic Service Catalogue keeps track of and
manages all service offered within one application. It can be queried about existing
services. It can also provide semantic service interfaces for the different services upon
request.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 51 of 57 20/12/2007

Semantic Service Generator: The Semantic Service Generator is responsible for
generating a semantic service interface for services offered by devices. It will create a
software wrapper around the device services which other modules can use. The
generated software will support a semantic-based service interface. It will support
several semantic web standards, at least OWL-S and WSMO.

Dependencies: Application Service Manager, Application Ontology Manager and Application
Security Manager

Public Functions
1. ProcessErrorMessage (XmlNode theMessage)

Processes an error message

Parameters:

theMessage: The error message as an XML Node.

Returns:

A description of the error

2. ProcessErrorMessageString (string theMessage)

Processes an error message

Parameters:

theMessage: The error message as a string.

Returns:

A description of the error

3. HasService (string service)

Checks if a service is available

Parameters:

service: The service name.

Returns:

True if service is available otherwise false

4. GetServiceDescription (string devicetype, string serviceid)

Retrieves a device description

Parameters:

devicetype: The device type as a string.
serviceid: The service ID as a string.

Returns:

A string containing a service description in XML format

5. GetServiceDescriptionAsXML (string devicetype, string serviceid)

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 52 of 57 20/12/2007

Retrieves a device description

Parameters:

devicetype: The device type as a string.
serviceid: The service ID as a string.

Returns:

An XML Node containing a service description

6. GetDevices (string type)

Retrieves a list of available devices

Parameters:

type: The device type as a string.

Returns:

A string containing the list of available devices in XML
format

7. GetDevicesAsXML (string type)

Retrieves a list of available devices

Parameters:

type: The device type as a string.

Returns:

An XML Node containing the list of available devices

8. SendServiceRequest (string serviceRequest)

Function to send a service request to be passed to the Context Manager.

Parameters:

serviceRequest: The service request as a string.

Returns:

A string containing the service request

9. SendErrorConfirmationAndCredentials (string errorConfirmation, string
credentials)

Function to send an error confirmation with credentials. It passes the request
to the Context Manager.

Parameters:

errorConfirmation: The error confirmation as a string.
credentials: The credentials as a string.

Returns:

A string containing the error confirmation request

10. SendServiceOrderAndCredentials (string serviceOrder, string
credentials, string deviceid)

Function to send a service order with credentials for a device. It passes this

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 53 of 57 20/12/2007

request to the Context Manager.

Parameters:

serviceOrder: The service order as a string.
credentials: The credentials as a string.
deviceid: The device id as a string.

Returns:

A string containing the service order

11. InitiateErrorAnalysis (string errorAnalysis, string deviceid)

Function to initiate error analysis for a device. Passes the request to the
Context Manager.

Parameters:

errorAnalysis: The error as a string.
deviceid: The device ID as a string

Returns:

A string containing the error analysis request

12. SendErrorReport (string errorReport, string provider, string deviceid)

Function to send an error report for a device. It passes this request to the
Context Manager

Parameters:

errorReport: The error report as a string.
provider: The provider as a string.
deviceid: The device id as a string.

Returns:

A string containing the error report request

13. SendBill (string bill, string serviceagent)

Function to send a bill for a service agent. It passes this request to the Context
Manager

Parameters:

bill: The bill as a string.
serviceagent: The service agent ID as a string.

Returns:

A string containing the send bill request

14. SendGetStatus (string deviceid)

Sends a get status request for a device. Passes the request to the Context
Manager

Parameters:

Deviceid: The device ID as a string.

Returns:

A string containing the current status of the device

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 54 of 57 20/12/2007

15. ReceiveFirmWare (string deviceID, byte[] firmware)

Receives new firmware for a device

Parameters:

deviceID: The device ID as a string.
firmware: The new firmware as a byte array.

Returns:

A boolean indicating if the new firmware was properly
received

16. ResolveErrorWithDeviceID (string deviceID, string errorCode, string
errorStr)

Resolves an error for a device

Parameters:

deviceID: The device ID as a string.
errorCode: The error code as a string.
errorStr: The error as string

Returns:

A string containing the resolved error information

17. ResolveErrorWithDeviceIDAsXml (string deviceID, string errorCode,
string errorStr)

Resolves an error for a device

Parameters:

deviceID: The device ID as a string.
errorCode: The error code as a string.
errorStr: The error as string

Returns:

An XML Document containing the resolved error
information

4.3.12 Application Session Manager

Figure 22: Application Session Manager

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 55 of 57 20/12/2007

Purpose: The Application Session Manager is responsible for maintaining sessions and session-
specific state.

Sessions are used to identify client-specific "applications" on a device in terms of, e.g., the data that
is needed for a particular interaction. Moreover, the session manager is responsible for creating,
changing, and deleting sessions and while doing so notifying interested listeners (through the
Application Event Manager).

Main Functions:

• Session setup and lifecycle management
• Notifications on session state change

Dependencies: Application Event Manager

Public Functions
Session management is now a function of the network manager. So please refer to the Device
network Manager for function descriptions in this document.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 56 of 57 20/12/2007

5. Summary

This primary goal of this training document is to provide an overview of the Hydra architecture to
the external developers. It elucidates the architecture and functions available for each manager,
thereby providing the developers and manufacturers, a glimpse of what can be achieved through
Hydra. However, it must be noted that this deliverable has been submitted in month 18 and so it is
not the complete Hydra-training document, but a first step in providing hydra-training to external
developers.

Hydra is an ongoing project and innovative ideas are introduced at every stage of this project based
on the feedback from developers. We are planning to release the SDK as an eclipse plugin so as to
provide an ‘easy-to-use’ framework to the developers. By choosing a widely used IDE, we are trying
to avoid the huge learning curve needed for the developers to get used to a new IDE. In the next
version of training document, the function descriptions will be grouped together to form the API-
Help document and the main training document will focus on providing solutions using these
functions, elucidating sample implementations.

Hydra D12.2 External developers workshops teaching material

Version 1.3 Page 57 of 57 20/12/2007

6. Bibliography

[1] Hydra Website, www.hydra.eu.com

[2] Hydra Deliverable, D2.1 Scenarios for usage of Hydra in 3 different Domains, 2006

[3] Hydra Deliverable, D3.3 Draft of architectural specification, 2007

[4] Hydra Deliverable, D12.1 Internal technology workshops teaching material, 2006

[5] Hydra Deliverable, D5.3 Draft of Wireless Network Implementation Description, , 2007

[6] Hydra Deliverable, D5.4 Draft of Wireless Device Integration Description, 2007

