
Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 1 of 91 04-01-2010

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for
Heterogeneous physical devices in a distributed architecture

 D2.7 Updated Systems Requirements Report

Integrated Project
SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium December, 31st 2009 - version 3.0
Coordinating Partner: Fraunhofer FIT

Project co-funded by the European Commission
within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Confidential

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 2 of 91 04-01-2010

Document file: D2.7 Updated Systems Requirements Report v3.0.doc

Work package: WP2 Iterative user requirements engineering

Task: T2.3 Evolutionary requirements refinement

Document owner: FIT

Document history:

Version Author(s) Date Changes made

3.0 Andreas Zimmermann (FIT)
Marco Jahn (FIT) 15-12-2009 Initial version based on D2.7 v2.0

3.1 Andreas Zimmermann (FIT)
Marco Jahn (FIT) 31.12.2009 Changes based on internal reviews

Internal review history:

Reviewed by Date Comments

Jesper Thestrup 26-12-2009 Minor corrections and format changes
Pablo Antolin Rafael 22-12-2009 Minor changes

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 3 of 91 04-01-2010

1. Introduction ... 5
1.1 Structure of this document .. 5

2. Executive Summary .. 6
3. Updated requirements for Hydra ... 7

3.1 Requirements of WP3 - Architecture Design Specification ... 8
3.1.1 Architecture .. 8
3.1.2 Devices ... 10

3.2 Requirements of WP4 - Embedded AmI Architecture .. 11
3.2.1 Architecture ... 11
3.2.2 Communication .. 11
3.2.3 Configurability .. 11
3.2.4 Networking .. 12
3.2.5 IDE ... 12
3.2.6 Interface ... 12

3.3 Requirements of WP5 - Wireless Networks and Devices .. 13
3.3.1 Architecture ... 13
3.3.2 Communication .. 13
3.3.3 Networking .. 13

3.4 Requirements of WP6 - SOA and MDA Middleware ... 14
3.4.1 Architecture ... 14
3.4.2 Configurability .. 14
3.4.3 Device Discovery / Devices .. 14
3.4.4 IDE ... 15
3.4.5 Middleware Layer ... 16
3.4.6 Security ... 16
3.4.7 Service Discovery ... 17

3.5 Requirements of WP7 – Trust, Privacy and Security .. 17
3.5.1 Architecture ... 17
3.5.2 Communication .. 19
3.5.3 IDE ... 20
3.5.4 Security ... 20

4. Impact on the Work Packages ... 21
4.1 Impact on WP3 ... 21

4.1.1 Architecture ... 21
4.1.2 Devices ... 21

4.2 Impact on WP4 ... 21
4.2.1 Architecture ... 21
4.2.2 Communication .. 21
4.2.3 Configurability .. 22
4.2.4 Networking .. 22
4.2.5 IDE ... 22
4.2.6 Interface ... 22

4.3 Impact on WP5 ... 22
4.3.1 Architecture ... 22
4.3.2 Communication .. 22
4.3.3 Networking .. 22

4.4 Impact on WP6 ... 22
4.4.1 Architecture ... 22
4.4.2 Device Discovery .. 22
4.4.3 IDE ... 23
4.4.4 Middleware Layer ... 23
4.4.5 Security ... 23
4.4.6 Service Discovery ... 23

4.5 Impact on WP7 ... 23

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 4 of 91 04-01-2010

4.5.1 Architecture ... 23
4.5.2 Communication .. 23
4.5.3 IDE ... 23
4.5.4 Security ... 23

5. Conclusion .. 24
6. Open requirements ... 25

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 5 of 91 04-01-2010

1. Introduction

This document presents the third update of Hydra’s system requirements, and thus, represents the
third version of the D2.7 Updated Requirements Report.

The deliverable gives an overview of the refined set of requirements that will be used within the
remaining iterative steps to assure a user-centred approach and methodology in all phases of the
project. It takes into account all requirements that have been created or updated since January 2009
and provides an analysis of the impact that these updates have on each work package. Thereby, it
gives an outlook on the activities that have to be performed in the next iteration coming in 2010.

1.1 Structure of this document

The report is structured as follows: Chapter 2 gives an overview of the work described in this
document and summarizes the effects on the architecture and work packages. Chapter 3 presents
all new and updated requirements since January 2009. In chapter 4, the impact on each work
package is described in detail. Finally, chapter 5 gives a brief summary, and chapter 6 provides the
complete list of open requirements.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 6 of 91 04-01-2010

2. Executive Summary

During the last two iterations, requirements have been created and constantly updated. The main
activity for verifying and refining requirements has been the reporting of the lessons learned
resulting from cycle 3 (see D2.11 Change request and re-engineering report from cycle 3). According
to the elicitation process of the requirements (see D2.5 Initial requirements report), the creation of a
new or refinement of an existing requirement is tracked in Jira. Thus, the Jira system has been the
main source of input for collecting new, updated and rejected requirements and for reviewing, which
requirements have been implemented during the last iteration.

Many requirements defined from the lessons learned of iteration 3 have been implemented. Also
older requirements have been implemented. The amount of new requirements is decreasing and
updated and new requirements focus on refinement and redesign.

Work package 3 implemented 10 and created one new requirement. The requirements analysis
shows that the overall system architecture meets the initial requirements. Work package 4
implemented two and created one new requirement. Besides, the descriptions of two requirements
have been updated and one more has passed the quality check. In Work package 5 two
requirements have passed quality checks and one has been rejected. 11 requirements have been
implemented in WP6, one has been created and two have been approved to be part of specification.
Five requirements need to be revised as they have been marked as not making sense. WP7 has also
implemented 11 requirements and one has been added to the specification.

For the next iteration all work packages will focus on the final integration of all Hydra managers and
components. Also IDE integration of Hydra and especially the DDK and SDK will be a great part of
the last development cycle.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 7 of 91 04-01-2010

3. Updated requirements for Hydra

This section contains the condensed list of functional and non-functional developer-user
requirements that have been updated, deleted, or created since January 2009.

Each requirement listed in the following tables has a unique ID that allows referencing. The
description of a requirement is a synthetic but clear description of the requirement. The rationale
gives a reason why this requirement is relevant for the HYDRA system and thus has been included
into the table. The column “source” gives an indication of where this requirement has been created,
i.e. scenario, interview, focus groups, or lessons learned. According to the Volere scheme the
requirements are divided into non-functional and functional requirements.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 8 of 91 04-01-2010

3.1 Requirements of WP3 - Architecture Design Specification

3.1.1 Architecture

ID Type Priority Description Rationale Fit Criteria Component/s Status
535 Non-Functional Major Reduce

number of rule
engines

Several managers employ different rules
engines. Identify all rule engines and the
managers that use them. Investigate whether
the existing rule engines can be conjoined into
one single and common rule engine.

Survey of used rule
engines and an
assessment if they can be
conjoined.

Architecture Open

528 Functional Major Specification
of the
information
flow among
Hydra
Managers.

During software integration of the first year
prototype some problems were attributed to
the event management, which has been overly
used. The application of JAX-WS and Axis for
event-driven application worked fine, although
some latency has been identified due to
multiple concurrent function calls. In addition,
the use of web applications as Event Manager
in the role of both publisher and consumer
works fine. However, the development of web
applications for small devices such as PDAs
limits the usage of HTML, JavaScript and
CSS.

Complete specification
that clearly defines how
the information shall flow
among Hydra Managers.

Architecture Implemented

527 Functional Major Extend
Context
Manager for
Semantic Data,
in addition to
raw data
storage.

The context manager was proposed to store
raw context data, but from our point of view,
additionally some semantic data will have to
be stored about these data.

Besides raw context data,
the Context Manager
must provide a
mechanism to store
semantic data.

Architecture
Context

Implemented

526 Functional Major Delineation
between
middleware
and application
in terms of
context
provision.

The Context Manager is mainly connected to
the application itself not to the middleware (as
agreed in discussion with the partners); it was
withdrawn from the scope of the ontology
manager.

In terms of context
provision middleware and
application itself must be
delineated.

Architecture
Context

Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 9 of 91 04-01-2010

525 Functional Major Delimitation
between
Application
and Device
Elements.

In the first two cycles we found that we need
clarification on the delimitation between
application and device elements. The
delimitation between Application and Device
Elements seems to blur.

No interdependencies
between Application and
Device Elements.

Architecture Implemented

524 Functional Major Determination
and
Description of
the
dependencies
among Hydra
Managers.

Some core managers exhibit a type of
predefined collaboration between them; others
offer their functionality to all components of
the entire Hydra software architecture.
Managers of the first group actually demand
direct inter-manager calls or a refactoring of
the software architecture focussing on the
fusion of functionality. Managers of this
second group provide functionality to all
managers of the other group. Therefore, the
managers of the second group offer
functionality that runs orthogonally with
respect to the basis functionality. In addition,
this orthogonal functionality cannot be
separated from the existing components.

The dependencies of all
Hydra Managers must be
determined clearly and
described in detail.

Architecture Implemented

522 Functional Major All HYDRA
entities must
have a
semantic
model
description

If interoperability and security is to be
possible, an entity must have a semantic model
description. Otherwise other devices are not
able to discover if they can communicate with
the device or if the device security can be
resolved according to the security policy.
Devices or applications that are unable to
present a semantic model description cannot
be expected to be able to pass a security
resolution according to security policies.

A hydra-enabled entity
must have a semantic
model description

Architecture Implemented

329 Non-Functional - maintainability Major Middleware
provides
domain-
independent
services

A lot of the services needed in the apartment
scenario are also needed in other scenarios
(persistence, logging, visualization, etc.).
These should be abstracted and built and
provided as part of HYDRA

Large parts of the
building-automation
scenario can be built by
reusing configurable
services from across other
application domains.

Architecture Implemented

327 Non-Functional - performance Critical The HYDRA
middleware
should be
flexible as to

Not all parts of HYDRA will make sense in all
situations (it will not always be beneficial to
use higher layers of communication such as a
service composition protocol or maybe a

HYDRA is able to
support the exact subset
of services required by a
client (user or service) in

Architecture Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 10 of 91 04-01-2010

allow for opt-
in and opt-out
on parts

device may be too resource-constrained to use
parts). One should be able to take the parts of
the HYDRA middleware that makes sense for
a certain application.

For example, it should be possible to for
embedded devices with few resources (see
other requirements) to take part in a HYDRA
application without having to install or run all
HYDRA components. Another example may
be that one may want to use just point-to-point
communication of HYDRA without having to
use the context-awareness part.

(Werner Vogels, CTO/Amazon at JAOO 2006:
"Middleware is evil!", referring to that if one
chooses a certain middleware such as CORBA
one makes too many decisions (not only on
communication in the CORBA case but also,
e.g., on transactions) that may not be
appropriate for the case at hand)

70 % of all cases. In 20 %
of all cases the
middleware is able to
provide a service package
that includes the required
service. In 10% of all
cases HYDRA is not able
to provide service similar
to the desired service.

18 Non-Functional - usability Major Support for
different
software
architectural
patterns

The HYDRA architecture should not prescribe
one way to structure applications. Thus several
architectural patterns, for example MVC and
PACshould be supported.

HYDRA allows at least
two different architectural
patterns for applications.

Architecture Implemented

3.1.2 Devices

ID Type Priority Description Rationale Fit Criteria Component/s Status
33 Functional Critical Enable

manufacturers
to develop
devices and
applications
that can be
connected to
HYDRA

The hydra SDK should provide the manufacturers with an API to
develop devices that can be connected to the hydra network.

APIs are available to develop
devices that can be connected
to the hydra network

Devices
IDE
SDK

Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 11 of 91 04-01-2010

3.2 Requirements of WP4 - Embedded AmI Architecture

3.2.1 Architecture

ID Type Priority Description Rationale Fit Criteria Component/s Status
317 Functional Major Support

runtime
reconfiguration

To supporting monitoring leading to adaptation, the
architecture should be dynamic in the sense that
components/services should be connectable in new ways at
runtime

To ensure a conceptual integrity of the system and ease
developer understanding, the tools for initial configuration and
re-configuration should rely on the same
concepts/mechanisms.

Services and devices can be
connected in new ways
during runtime in HYDRA-
based applications

Architecture Reopened

3.2.2 Communication

ID Type Priority Description Rationale Fit Criteria Component/s Status
479 Functional Major The

EventManager
should support
event
prioritisation

The EventManager should handle events according to their
priorities. Some events are critical to the health of the system
and should be prioritized over others when there are a high
number of events being routed through the system

Stress test of the event
notification system. If the
volume of events exceeds the
capacity, events with high
priority should be delivered
first, and only be discarded as
a last resort

Communication Quality
Check
passed

368 Functional Minor Support of
UDP and TCP
protocols

Depending on the situation, the device developer can choose
whether the WS communication runs on top of TCP or of UDP.
Tools will be provided

60% of Hydra proxies are
implemented selecting TCP
or UDP as transport
mechanism

Communication Implemented

3.2.3 Configurability

ID Type Priority Description Rationale Fit Criteria Component/s Status
334 Functional Major There should

be support for
developing
auto-

A number of use scenarios calls for the ability to bring a
device home, turn it on, and have it function reasonably

The middleware supports
defining auto-
configuration properties
and using these at runtime.

Configurability Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 12 of 91 04-01-2010

configuration
of certain
devices

This is not in conflict with
security

3.2.4 Networking

ID Type Priority Description Rationale Fit Criteria Component/s Status
533 Functional Major Protocols

should be
changeable at
runtime

Different protocols have different functional and non-
functional properties. A self-optimizing system needs to be
able to realize an optimal configuration of protocols, as
guided by e.g. QoS properties such as for energy awareness
or security.

It should be possible to
realize a scenario
involving protocol change.

Networking Open

3.2.5 IDE

ID Type Priority Description Rationale Fit Criteria Component/s Status
532 Functional Major Support

autogeneration
of eclipse
project files

We support using a range of protocols: UDP, TCP, and
Bluetooth. Each can be used on JSE standard, JSE on
OSGi, JME; For web-services they can use REST or
SOAP; This gives a total number of combinations: 3x3x2
resulting in 18 projects if we maintain one for each
combination. Thus the range of potential combinations
quickly becomes too large to support manually.

Manual labour required to
use specific combinations
of platforms, protocols etc
should remain constant
rather than proportional to
the number of
combinations of these

IDE Reopened

3.2.6 Interface

ID Type Priority Description Rationale Fit Criteria Component/s Status
530 Functional Trivial Domain-based

Properties
available for
Querying

For invoking the reasoning in Hydra ontology in order to
retrieve QoS property data values.

For QoS Manager it is
necessary to be able
retrieve current QoS
property data values from
Ontology Manager in
order to process semantic
service selection.

Interface Open

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 13 of 91 04-01-2010

3.3 Requirements of WP5 - Wireless Networks and Devices

3.3.1 Architecture

ID Type Priority Description Rationale Fit Criteria Component/s Status
503 Functional Major It should be

possible to
combine
different
storage for
mirroring or
striping.

To get better storage we need to implement some
RAID-Technologies inside Hydra to mirror data
over different Storage Manager or to stripe data.

Replicated and Striped devices can be built
up on each other.

Architecture Part of
specification

3.3.2 Communication

ID Type Priority Description Rationale Fit Criteria Component/s Status
505 Functional Minor It should be

possible to
access data
in Storage
Manager
using a well
defined
protocol, e.g.
WebDav

Using external Applications it should also be possible to access data
without to much pain. Exporting storage using WebDav gives the
User the ability to access it as network devices on most operating
systems.

50% of the storage can be
accessed by non hydra
applications.

Communication Part of
specification

3.3.3 Networking

ID Type Priority Description Rationale Fit Criteria Component/s Status
523 Functional Critical Addressing

without linking
JXTA is based on addressing using a persistent identifier. This
mean JXTA represent a problem in the network layer. Instead
JX can be used in the virtual middleware layer using a HID-
specific identifier or as an application layer addressing
mechanism. HYDRA needs to reconsider addressing
mechanisms across locations - probably including addressing
mechanisms in the ontology support to make addressing
schemes interoperable. A solution likely involve mechanisms

No use of persistent device
identifiers in the network layer
or virtual layer.

Networking Rejected

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 14 of 91 04-01-2010

to move e.g. IPv6 addressing to the application layer.

3.4 Requirements of WP6 - SOA and MDA Middleware

3.4.1 Architecture

ID Type Priority Description Rationale Fit Criteria Component/
s

Status

534 Non-
Functional -
performance

Major There should be
one set of
semantic APIs for
all of Hydra

wp4:ll5, third cycle, as reported in D2.11 There should only be one in-
memory copy of semantic
information per device, and all
managers relying on
ontologies should use that.

Architecture Open

112 Functional Major Dynamic Web
Service
Generation

Configuration tool that is able to generate the necessary
interfaces to wrap the device functionality as a web service.

7 of 10 device functionalities
are automatically represented
as web services

Architecture
IDE

Implemented

3.4.2 Configurability

ID Type Priority Description Rationale Fit Criteria Component/s Status
470 Functional Major Device Ontology Knowing a priori if a device could support a data format could

help the application developer to better exploit the resources of
the device

The device information could
host a field where is pointed
out the proper data format

Configurabilit
y

Requirement
does not
make sense

393 Functional Major Deployment
scenario
configurable by
developer user

A developer user should be able to specify how an application
should be deployed over a set of devices, e.g, choosing a host
device for a Device Application Catalogue.

Developer can specify
deployment for specific
devices by means of a tool or
configuration file.

Configurabilit
y
SDK

Requirement
does not
make sense

3.4.3 Device Discovery / Devices

ID Type Priority Description Rationale Fit Criteria Component/s Status
501 Functional Critical A Hydra enabled

device must
support UPnP
discovery

UPnP has been proven as a well-functioning network discovery
mechanism i HYDRA.

All HYDRA enables devices
support UPnP

Device
Discovery
Middleware
Layer

Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 15 of 91 04-01-2010

Networking

500 Functional Major Semantic
annotations of
devices using
SAWSDL

Device developers should via the DDK be able to produce
(SAWSDL) annotations for devices, in order to facilitate
device discovery and ontology update.

For a given UPnP discoverable
device, it is possible to create
an SAWSDL annotation which
can be accessed from the UPnP
discovery information.

Device
Discovery
Devices

Implemented

392 Functional Major Rules for
selection of
alternative
devices

The developer user should be able to specify how devices can
replace or complement each other. This is relevant in situations
when a device fails and another device exists which can
provide a replacement service, or, when different levels of
quality of service are available.

In the SDK, constructs are
available that allow the
developer to specify rules for
when and how devices and
services can be interchanged
and combined.

Device
Discovery
SDK

Part of
specification

110 Functional Major Device
Categorisation in
runtime

Middleware should after discovery of device be able to
categorise a device based on device ontology information.

7 of 10 devices are correctly
categorised and described.

Device
Discovery
Middleware
Layer

Implemented

91 Functional Major Any HYDRA
device should
have an
associated
description

For management, search and discovery purposes, all HYDRA
enabled devices should be described (classified) according to
the HYDRA device ontology.

Any device associated to a
HYDRA application is also
included in the HYDRA
device ontology, and its
description can be retrieved.

Device
Discovery
Devices

Implemented

492 Non-
Functional -
performance

Minor Semantic
grouping for Non
Hydra Enabled
devices

Hydra could manage not only the single device services at once
but a group of them if they are in the same semantic context in
order to reach higher performances and low energy
consumption (even if the hydra middleware doesn't address this
topic) limiting the communication time per single device.

90% of non-hydra enabled
devices with the same
functionality in the same
context has to implement
similar functions (e.g. user
detection in a room will turn
on all lights)

Devices Reopened

3.4.4 IDE

ID Type Priority Description Rationale Fit Criteria Component/s Status
212 Non-

Functional
Major Support for a

declarative
application
development
paradigm

A declarative approach can hide complexity of underlying
structure and can increase productivity of embedded software
development.

More than 50% of the module
functionality should be
programmable using a
declarative approach.

IDE Requirement
does not
make sense

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 16 of 91 04-01-2010

121 Functional Major Optimised device
ontology

It should be possible to optimise the device ontology for
instance by deploying a subpart of it to be used in device
discovery process.

Possible to select and extract
subparts of the device ontology

IDE Requirement
does not
make sense

113 Functional Major Composition (of
services and
devices)

In order to enhance or replace application level functions it will
be useful to be able to compose services and devices from
different providers and/or manufacturers into high level
services/devices

Service composition during
design-time is possible.

IDE
Middleware
Layer
Service
Discovery

Implemented

102 Functional Major Device Ontology
with user
interface

Tool that allows browsing, searching, navigating device classes
and their capabilities.

Tool for browsing device
ontology exists

IDE Part of
specification

3.4.5 Middleware Layer

ID Type Priority Description Rationale Fit Criteria Component/s Status
376 Functional Major Security

requirements
must be part of
the Hydra MDA

Security must be defined to be resolved semantically Security model can be defined
semantically

Middleware
Layer

Implemented

120 Functional Major Multiple Device
Virtualisations

It should be possible to have several different
views/virtualisations of a device depending on context and
applications.

At least 2 different virtualisations
are provided

Middleware
Layer

Implemented

115 Non-
Functional -
operational

Major Decomposable
middleware

Middleware must consist of decomposable components to
allow different deployments depending on available
performance restrictions.

It is possible to deploy
middleware on at least 3 different
platforms.

Middleware
Layer

Implemented

114 Functional Major Semantic
enabling of
device web
services

Middleware should be able to attach semantic descriptions to
device web services based on device ontology.

7 of 10 devices are semantically
enabled.

Middleware
Layer

Implemented

3.4.6 Security

ID Type Priority Description Rationale Fit Criteria Component/s Status
477 Functional Major Device proxies

should make use
If non-Hydra-enabled devices are communicate to the Hydra
network by a proxy, security features of the protocol supported

Device proxies must support
WEP and WPA for Wi-Fi-

Security Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 17 of 91 04-01-2010

of available
security features
for "last mile"
communication

by the device should be used. connections as well as
Bluetooth authentication and
encryption

3.4.7 Service Discovery

ID Type Priority Description Rationale Fit Criteria Component/s Status
499 Non-

Functional -
usability

Minor Services common
naming
convention

Using a common naming convention, for the same services, to
give uniformity in interaction procedures. This convention
should be extended to input/output services data format. This
should provide a more efficient group creation, a simple
internationalisation and localisation processes.

When at least the 95% of
services with the same
purpose, realised by means of
different solutions (sensor for a
ZigBee node, a Web Service
connection for the weather
monitoring), respect the same
naming convention.

Service
Discovery

Reopened

3.5 Requirements of WP7 – Trust, Privacy and Security

3.5.1 Architecture

ID Type Priority Description Rationale Fit Criteria Component/s Status
510 Functional Major Enforcement of

obligation
policies

Security obligation policies dictate certain actions that have to
taken upon occurrence of an event trigger. Components that are
part of a policy domain must negotiate on the action they can
enforce and must provide the respective enforcement mechanism

Hydra components negotiate
their capability to enforce
different actions with the
policy decision point and
provide an enforcement
mechanism for at least one
action type.

Architecture
Security

Implemented

509 Functional Major Enforcement of
Access-control
policies

Access control decisions must be enforced. Policy enforcement points can
be attached to Hydra web
services so that access control
decisions can be enforced.

Architecture
Security

Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 18 of 91 04-01-2010

508 Functional Major Storage for
security policies

Access-control policies and obligation policies need to be kept in
a repository that is available to Policy Decision Points and
administrative tools. Access to the repository should be regulated
so that no authorised changes to the policies are possible.

A repository for storing access-
control and obligation policies
exist and access to that
repository can be controlled.

Architecture
Security

Implemented

498 Functional Major Mechanisms
used for
communication
security should
be replaceable by
configuration

Cryptographic algorithms, protocols and authentication
mechanism might become insecure after a Hydra-based
application has been deployed. In that case, it should be possible
to exchange security modules without having to
recompile/deploy the middleware

For at least two of the
communication protection
mechanisms (Core / Inside /
Outside Hydra) it should be
possible to replace security
modules without recompiling
the middleware.

Architecture
Communicatio
n
Security

Implemented

496 Functional Major Conflict
resolution
between policy
domains

Devices may be subject to different policy domains. If
communication between these domains is to be established,
conflicts between the different policy domains may occur. Hydra
needs to provide mechanisms and protocols to resolve these
conflicts.

Conflicts between policy
domains are recognized and
can be handled.

Architecture
Security

Part of
specification

493 Functional Major Obligation
Policies for
Security

Obligation policies trigger certain actions upon certain events.
Hydra needs to provide such obligation policies for security
reasons, e.g. to force devices to update their security modules at
runtime or to change configurations. These policies would be
triggered by user interactions, context changes or any other
event.

A mechanism for obligation
policies exists that allows to
specify security-related actions
depending on situations and
events.

Architecture
Configurability
Security

Implemented

50 Functional Major An identity
management
must be provided

HYDRA middleware has to provide highly sophisticated
mechanisms for identity management in order to ensure that in
systems featuring HYDRA only authorised access to data,
applications and devices is possible.

Identity management
mechanisms are provided at all
levels and to all stakeholders.
Furthermore, the identification
process of the managers must
be uniform and standardised.

Architecture
Security

Reopened

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 19 of 91 04-01-2010

3.5.2 Communication

ID Type Priority Description Rationale Fit Criteria Component/s Status
364 Functional Major Hydra's Access-

Control policies
support
credential based
authentication

Instead of identifying the user or device, a session may be
authenticated through credentials recognised by the application
such as blinded certificates, direct anonymous attestation,
previously agreed tickets, reuse of previous accepted keys (e.g.,
PGP keys). That means the network can operate with
authentication schemes using credentials without having to
identify the device and/or user. The point is that identification of
people or devices MUST NOT be MANDATORY. Alternative
mechanisms such as credential based authentication MUST be
ALLOWED.

Example: In Smart Home when a Service Agent of a Service
Provider needs access to the home - instead of a door identifying
the person or the device from the service agent, the Home
Owner/Home System provide the Service Provider with a one-
time-only token that the Service Provider is accountable for. The
Service Provider can then forward this to the Service Agent who
presents the token to the Home Access Control System. The
Home Access Control System can accept the token as is or in
real time contact the Home Owner and/or Service Provider
System when the Service Agent is at the door.
The System doesn’t need to create the risk of identity theft by
identifying the Service Agent person or device. He can use a
device that create a random handle and communicate without
further security requirements even though the system only has a
credential proving traceability to the Service Provider.

Access-control can be based on
credentials

Communicatio
n
Security

Implemented

49 Functional Major Mechanisms for
verifying the
authenticity of a
communication
partner

For critical communication the authenticity of the
communication partners has to be ensured.

Mechanisms enabling mutual
authentication have to be
provided. Especially HYDRA
enabled devices have to
support authentication
mechanisms.

Communicatio
n
Security

Implemented

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 20 of 91 04-01-2010

3.5.3 IDE

ID Type Priority Description Rationale Fit Criteria Component/s Status
494 Functional Major Static analysis of

semantic policies
In order to support developers in designing security policies, the
Hydra IDE needs to provide analysis techniques revealing the
possible impact of the policy.

An analysis mechanism exists
that tests "semantic" policies
for correctness, for possible
impacts and conflicts

IDE
Modelling
Security

Implemented

3.5.4 Security

ID Type Priority Description Rationale Fit Criteria Component/
s

Status

512 Non-
Functional -
security

Major Policy decision
and enforcement
on embedded /
mobile devices

In many cases, security policies (access-control as well as
obligation) have to be enforced on resource-restricted platforms.
Further, as those platforms might represent a "policy domain" by
themselves, policy decisions also have to be made on that
platform.
It has to be evaluated whether it is possible to port existing
decision mechanisms to mobile devices. If not, a dedicated
solution for resource-restricted platforms has to be found.

Security policies can be
decided and enforced on
resource-restricted platforms,
e.g. a smartphone.

Security Reopened

471 Functional Major End-to-end
message
protection at
application level
must be
supported

Confidentiality and non-repudiation can only be guaranteed if
messages are end-to-end protected and can't be altered during
communication

The middleware provides
mechanism that can be used by
application developers to
implement end-to-end message
protection of application-
specific data.

Security Implemented

79 Functional Major Secure
cryptographic
key management

As a large variety of keys will be used, for authentication,
encryption, access control etc., a secure key management is
needed.

A secure cryptographic key
management is provided.

Security Implemented

45 Functional Major Stored data must
be protectable

Any stored data must be protectable from unauthorised access.
This can be done by access-control, encryption, context isolation
or a combination.

HYDRA provides developers
at least one mechanism to
protect any stored data from
unauthorised access.

Security Implemented

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-297�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 21 of 91 04-01-2010

4. Impact on the Work Packages

This section summarizes the impact of newly created and changed requirements on future work
conducted in the technical work packages.

4.1 Impact on WP3

4.1.1 Architecture

During the third project iteration, 10 requirements regarding the Hydra architecture have been
implemented.

Four of them deal with conceptual decisions regarding dependencies and workflow among
managers, and specifications of certain managers. Dependencies turned out to be too strong and
needed a restructuring. Also the delineation between application and device elements had to be
reconsidered. These issues have been solved in the last iteration and are covered in D3.9 Updated
System Architecture Report (528, 527, 526, 525, 524).

Further progress has been made with regard to the DDK. Requirement 522 states that every entity
has to provide a semantic model description, in order to facilitate interoperability and security. The
DDK now supports semantic model descriptions.

Three requirements dealing with architectural concepts have been validated in D10.2 Validation
Report for DDK Demonstrator, which covers issues like loose coupling and domain independent
services. (329, 327, 18). The positive validation of these requirements shows that Hydra is still
following a modular, service-oriented approach.

What still remains to be done is reducing the number of rule engines (535). Currently, several
managers employ different rule engines, which will be confusing for Hydra developers. During the
last iteration, WP3 will assess these rule engines and investigate whether they can be conjoined into
on single and common rule engine.

4.1.2 Devices

The DDK provides an API that allows developers to develop Hydra devices (33).

4.2 Impact on WP4

4.2.1 Architecture

The service-oriented architecture should allow services, components and devices to connect at
runtime. The updated version of this issue states that also the tools for initial configuration and re-
configuration should rely on these concepts. This aims towards conceptual integrity and an easy to
use application (317).

4.2.2 Communication

Depending on the concrete application, Hydra supports TCP as well as UDP for Web Service
Communication. In order to equip the device developer with the right flexibility, it would be much
more convenient to leave this decision to him. This requirement has been implemented during the
third iteration; the validation has been successful through tests that have been performed on
different protocols for Web Services (368).

It has become clear, that the Event Manager has to handle events according to their priority. Since
some events are critical to the functioning of the system they have to be prioritized when the load is
high. Stress tests are recommended for testing this mechanism (479).

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 22 of 91 04-01-2010

4.2.3 Configurability

Auto-configuration of devices is now supported (334).

4.2.4 Networking

In the networking area, WP4 will develop methods to make protocols changeable at runtime. For
self-optimizing systems, it is necessary to realize an optimal configuration of protocols as guided by
e.g. quality of service properties (533).

4.2.5 IDE

Hydra supports a range of communication protocols (TCP, UDP, Bluetooth; SOAP, REST), which can
be used in different combinations (532). WP4 will develop concepts and tool-based support, to find a
meaningful solution to the increasing amount of possible combinations of protocols.

4.2.6 Interface

WP4 will also take care of extending the Ontology Manager so that it provides domain-based
properties for querying, which is needed e.g. by the QoS Manager (530).

4.3 Impact on WP5

4.3.1 Architecture

For the next iteration, the aim of having at least 10% of the data mirrored or striped using some
kind of RAID technology still remains open (503).

4.3.2 Communication

Requirement 505, dealing with data access mechanism in the Storage Manager has been revised in
the last iteration and has now passed quality checks. Stored data has to be accessible by non-Hydra
applications.

4.3.3 Networking

The requirement 523 has been rejected for two reasons: First, it is not a requirement by itself but a
rather a criticism to the JXTA solution, thus it does not follow the requirement structure that is
required. Second, this requirement if reformulated as one, contradicts other network and security
requirements where the required persistent identifiers (CryptoHID) are pointed out.

4.4 Impact on WP6

4.4.1 Architecture

From the lessons learned it became clear that there should only be one in-memory copy of semantic
information per device, and all managers relying on ontologies should use that (534).

4.4.2 Device Discovery

Four requirements have been implemented. The middleware now supports sophisticated UPnP-based
device discovery mechanisms (501, 500, 110, 91).

For the next iteration WP6 will develop tools for allowing developers to specify rules of functional
quality of service (e.g. replacing failed devices or services) (392). This also relates to requirement
492, which states the need for semantic grouping of devices in order to reach high performance and
low energy consumption.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 23 of 91 04-01-2010

4.4.3 IDE

Hydra now supports service composition during design-time (113).

4.4.4 Middleware Layer

In the middleware component, four requirements have been implemented. Security can be defined
semantically (376). Depending on context and application, Hydra provides different views on a
device (120). Furthermore, the middleware components can be deployed in a distributed way on
different platforms (115) and semantic descriptions can be attached to device web services (114).

4.4.5 Security

The security protocols of Hydra device proxies can be used when integrating devices via proxies
(477).

4.4.6 Service Discovery

A common naming convention for services needs to be proposed (499). This requirement has been
reopened after being marked as not making sense.

4.5 Impact on WP7

4.5.1 Architecture

Regarding security issues on the architectural level, five requirements mainly dealing with security
policies have been created from the revision phase after the second review (510, 509, 508, 498,
493). These requirements have been implemented during the third iteration.

Requirement 496, also belonging to this set, will be implemented in the next development cycle.

In the last version of this report, requirement 50 has been marked as being imprecise. It has been
updated during the lessons learned process of cycle three and will be considered in the next
iteration.

4.5.2 Communication

Two requirements have been implemented during the last iteration. Hydra access control policies
now support credential-based authentication (364). Requirement 49 (authentication) has been
partially implemented by the Trust Manager in the last iteration. What was still missing was a
protocol for exchanging and verifying the keys. This issue has been solved.

4.5.3 IDE

The IDE now provides techniques for analysing the possible impact of semantic policies for
correctness, possible impacts, and conflicts (494).

4.5.4 Security

Requirement 471 dealing with mechanisms that can be used by application developers to implement
end-to-end message protection has been implemented.

Discussions about two security-related requirements have been finalised and led to the
implementation of secure cryptographic key management (79) and protection mechanisms for stored
data (45).

Requirement 512 states that regarding policy decision and enforcement on embedded and mobile
devices, it has to be evaluated whether it is possible to port existing decision mechanisms to mobile
devices. This requirement has been marked as duplicate.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 24 of 91 04-01-2010

5. Conclusion

In comparison to the last Requirements Report (D2.7 v2), more requirements have been
implemented and less new requirements have been created. This progress is in line with the Hydra
development and requirements engineering process and plans. The lessons learned from iteration 3
should be the last possibility to create new requirements. From a requirements engineering point of
view, the middleware has evolved very well, because less new requirements have been created and
the amount of implemented requirements is much higher.

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 25 of 91 04-01-2010

6. Open requirements

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-535 Non-Functional Architecture Reduce number of
rule engines

Major Several managers employ different rules engines.
Identify all rule engines and the managers that use
them. Investigate whether the existing rule engines
can be conjoined into one single and common rule
engine.

Survey of used rule engines
and an assesment if they can be
conjoined.

Open

HYDRA-534 Non-Functional
- performance

Architecture There should be
one set of semantic
APIs for all of
Hydra

Major wp4:ll5, third cycle, as reported in D2.11 There should only be one in-
memory copy of semantic
information per device, and all
managers relying on ontologies
should use that.

Open

HYDRA-533 Functional Networking Protocols should
be changeable at
runtime

Major Different protocols have different functional and
non-functional properties. A self-optimizing system
needs to be able to realize an optimal configuration
of protocols, as guided by e.g. QoS properties such
as for energy awareness or security.

It should be possible to realize
a scenario involving protocol
change.

Open

http://localhost:8010/jira/browse/HYDRA-535�
http://localhost:8010/jira/browse/HYDRA-534�
http://localhost:8010/jira/browse/HYDRA-533�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 26 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-532 Functional IDE Support
autogeneration of
eclipse project files

Major We support using a range of protocols: UDP, TCP,
and Bluetooth. Each can be used on JSE standard,
JSE on OSGi, JME; For web-services they can use
REST or SOAP; This gives a total number of
combinations: 3x3x2 resulting in 18 projects if we
maintain one for each combination. Thus the range
of potential combinations quickly becomes too large
to support manually.

Manual labour required to use
specific combinations of
platforms, protocols etc should
remain constant rather than
proportional to the number of
combinations of these

Reopened

HYDRA-530 Functional Interface Domain-based
Properties
available for
Querying

Trivial For invoking the reasoning in Hydra ontology in
order to retrieve QoS property data values.

For QoS Manager it is
necessary to be able retrieve
current QoS property data
values from Ontology Manager
in order to process semantic
service selection.

Open

HYDRA-521 Functional Security Linking Securlty
Policy Language
and Policy
Manager to the
Security Ontology

Major If Semantic Interoperability of security shall be
made possible it is critical that policies can be linked
and resolved to the meta-layer security objectives
and assertions mapping the capability to the security
objectives. This means that security policies can be
made independent of specific security
implementations.

It must be possible to expresse
and resolve security policies
linked to assertion providers
evaluation of security
capabilities linked to the meta-
model security objectives as
defined in the security
ontology.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-532�
http://localhost:8010/jira/browse/HYDRA-530�
http://localhost:8010/jira/browse/HYDRA-521�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 27 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-520 Functional Security Semantic
Interoperability of
Security only using
external elements

Major To enable true Inclusive interoperability of security
you need to be able to introduce new security
solutions without changing a device or an
application. This require the full support of
ontologies, external assertion providers and possible
load modules to add new cryptographic capabilities.

It should be possible the phase-
out broken security component
or phase-in a new security
component without changing a
device or application. Phase-
out can happen merely by
changing the assertion of the
broken which is referenced in
security policy. Phase-in by
mapping the new capabilities
or credentials with the required
Assertiona evaluation linked to
the Security Objectives

Part of
specification

HYDRA-519 Non-Functional Architecture It should be
possible to
implement
managers in either
programming
model.

Major The architecture should be fairly independent of any
specific programming model.
It should be possible to implement managers in
either programming model.

It is possible to implement
managers in either
programming model or not.

Open

HYDRA-518 Functional Networking No external
standards should
dictate the virtual
layer.

Major Hydras manage internal standards in the virtual
layer.These cannot be dictated by external standards.

External standards do not
create limitations for HYDRA
internal. All access to the
virtual layer is done through
HYDRA middleware

Open

HYDRA-516 Project Issue -
open issue

Modelling Context
management need
to be layer-specific

Major Context management need to be layer-
specific.Collection of real-world sensor and other
application data should be classified as an
application. Otherwise context management will
conflict with security requirements.

Context management is layer-
specific or not.

Open

http://localhost:8010/jira/browse/HYDRA-520�
http://localhost:8010/jira/browse/HYDRA-519�
http://localhost:8010/jira/browse/HYDRA-518�
http://localhost:8010/jira/browse/HYDRA-516�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 28 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-515 Functional Configurabilit
y

Support of
domain-specific
ontologies

Major To establish knowledge or application domain
interoperability, HYDRA should be able to support
domain-specific ontologies on a structural level.
Interoeprability can only be established to the degree
external ontology support exists.

HYDRA is able to support
domain-specific ontologies or
not.

Open

HYDRA-514 Functional Security Authorisation
based on blinded
certificates in the
Virtual layer

Major Authorisation for devices and users based on blinded
certificates must be supported in the virtual layer in
order to support logical groups without linking
virtual devices or violating the principle of only
revokable information in the virutal layer.

A protocol based on blinded
certificates exists that can be
used to authorise devices or
users towards a software
component.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-515�
http://localhost:8010/jira/browse/HYDRA-514�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 29 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-513 Non-Functional
-
maintainability

_unassigned Requirements must
be validatable

Critical The requirements stated in this list must be
formulated in a way that makes it possible to
validate them. They have to define a goal that can be
reached at some point in the project. The following
types of requirements are NOT validatable:

- Open formulations: "Hydra should support..." / "It
should be possible with Hydra ..." / "Hydra should
not limit ..."
Instead of describing what should not be subject to
Hydra, describe what Hydra WILL provide.

- Fuzzy statements: "Semantic interoperability and
semantic-cooperative standards need to be
established ..."
Instead make clear what the goal is: "Ontologies and
reasoning mechanisms have to be used for
negotiating X between Y and Z"

- Statements that can't be quantified:
"Communication should be secure"
Instead describe what that means: "Communication
has to be encrypted and signed, anti-replay
mechanisms have to be included and trustworthy
non-repudiatable timestamps must exist"

For every requirement, it can
be clearly evaluated whether it
is fulfilled or not.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-513�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 30 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-512 Non-Functional
- security

Security Policy decision
and enforcement
on embedded /
mobile devices

Major In many cases, security policies (access-control as
well as obligation) have to be enforced on resource-
restricted platforms. Further, as those platforms
might represent a "policy domain" by themselves,
policy decisions also have to be made on that
platform.
It has to be evaluated whether it is possible to port
existing decision mechanisms to mobile devices. If
not, a dedicated solution for resource-restricted
platforms has to be found.

Security policies can be
decided and enforced on
resource-restricted platforms,
e.g. a smartphone.

Reopened

HYDRA-511 Functional Modelling
Security

Semantics for
obligation policies

Major When specifying obligation policies, developers
should be able to use impllicit knowledge
represented in ontologies. For example. semantic
information could be used to describe the conditions
that trigger the policy and the actions that have to be
executed.
The decision mechanism for obligation policies must
apply reasoning techniques to make use of this
implicit knowledge.

Obligation policies can be
based on ontologies and
reasoning can be used for
deciding those policies.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-512�
http://localhost:8010/jira/browse/HYDRA-511�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 31 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-507 Functional IDE
Security

Policy Editor for
Access-Control
Policies

Major The IDE must provide a tool to create Access-
Control policies. Features like syntax-highlighting,
on-the-fly-error creation etc. are optional.

An editor for the creation of
Access-Control-policies exists
in the Hydra IDE.

Part of
specification

HYDRA-506 Functional Communicati
on

It should be
possible to lock
files.

Major For many reasons it can be important to know that
an application updates some data, so that other
applications should wait using it until update is
done. There should be a read/write locking.

All write access is aborted if a
file is locked.

Part of
specification

HYDRA-505 Functional Communicati
on

It should be
possible to access
data in Storage
Manager using a
well defined
protocoll, e.g.
WebDav

Minor Using external Applications it should also be
possible to access data without to much pain.
Exporting storage using WebDav gives the User the
ability to access it as network devices on most
operating systems.

50% of the storage can be
accessed by non hydra
applications.

Part of
specification

HYDRA-504 Functional Configurabilit
y

It should be
possible to add and
remove physical
storage from a
Mirror/Striping-
Set.

Major If there is some striped storage and it is no more big
enough it should be possible to increase its size by
adding new physical storage.

All striped devices can be
enlarged by adding new
physical storage.

Part of
specification

HYDRA-503 Functional Architecture It should be
possible to
combine different
storage for
mirroring or
striping.

Major To get better storage we need to implement some
RAID-Technologies inside Hydra to mirror data
over different Storage Manager or to stripe data.

Replicated and Striped devices
can be build up on each other.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-507�
http://localhost:8010/jira/browse/HYDRA-506�
http://localhost:8010/jira/browse/HYDRA-505�
http://localhost:8010/jira/browse/HYDRA-504�
http://localhost:8010/jira/browse/HYDRA-503�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 32 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-502 Functional Interface It should be
possible to store
simple key/value
pairs.

Major Not every Application storing some data like sensor
data want to use the full overhead of a filesystem
and files. The idea behind this issue is to store
somethink like cookies in a browser.

Storing and recieving cookies
to a given Manager does not
need more then 3 requests.

Part of
specification

HYDRA-499 Non-Functional
- usability

Service
Discovery

Services common
naming convention

Minor Using a common naming convention, for the same
services, to give uniformity in interaction
procedures. This convention should be extended to
input/output services data format. This should
provide a more efficient group creation, a simple
internationalisation and localisation processes.

When at least the 95% of
services with the same purpose,
realised by means of different
solutions (sensor for a ZigBee
node, a Web Service
connection for the weather
monitoring), respect the same
naming convention.

Reopened

HYDRA-497 Functional IDE
Security

Analysis of
conflicts between
policy domains
(dynamic analysis)

Major Conflicts may occur between different policy
domains. Hydra should provide the developer with
tools that reveal potential conflicts and their impacts

A tool exists that reveals
potential cross-domain
conflicts. A protocol and
further mechanisms exist that
resolve these conflicts if they
occur.

Part of
specification

HYDRA-496 Functional Architecture
Security

Conflict resolution
between policy
domains

Major Devices may be subject to different policy domains.
If communication beween these domains is to be
established, conflicts between the different policy
domains may occur. Hydra needs to provide
mechanisms and protocols to resolve these conflicts.

Conflicts between policy
domains are recognized and
can be handled.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-502�
http://localhost:8010/jira/browse/HYDRA-499�
http://localhost:8010/jira/browse/HYDRA-497�
http://localhost:8010/jira/browse/HYDRA-496�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 33 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-492 Non-Functional
- performance

Devices Semantic grouping
for Non Hydra
Enabled devices

Minor Hydra could manage not only the single device
services at once but a group of them if they are in
the same semantic context in order to reach higher
performances and low energy consumption (even if
the hydra middleware doesn't address this topic)
limiting the communication time per single device.

90% of non-hydra enabled
devices with the same
functionality in the same
context has to implement
similar functions (e.g. user
detection in a room will turn on
all lights)

Reopened

HYDRA-491 Functional Security Authorisation
based on semantic
information

Major Policies regulating access control and authorisation
should make use of semantic information about
devices and users.

Semantic information and
inferred knowledge is used for
policy decisions.

Part of
specification

HYDRA-488 Functional Devices Modular and
standard device
integration

Major In order to simplify and speed up the integration of
new wireless devices in Hydra, the discovery and
proxy creation process has to be standarized and be
as modular as possible, so common parts can be
reused by proxies for different wireless devices

30% of a proxy modules rely
on common kernels.

Part of
specification

HYDRA-487 Non-Functional
- security

Security Improve
handshake protocol
between Network
Managers for
exchanging
certificates

Major current protocol is quite low level, just sending
certificates to other partner, we should use s.th. like
SSL protocol mechanisms, we have also to consider
the other trust models like, Web of Trust and user
interaction

in 95% of cases simple
protocol would work

Part of
specification

http://localhost:8010/jira/browse/HYDRA-492�
http://localhost:8010/jira/browse/HYDRA-491�
http://localhost:8010/jira/browse/HYDRA-488�
http://localhost:8010/jira/browse/HYDRA-487�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 34 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-486 Functional Networking Hydra propietary
supernodes are
needed to support
D2D
communication
between networks

Minor At the moment, public supernodes are used to act as
relays in D2D communication. If these supernodes
are down, communication between networks is
impossible. Thus, we need to manage our own
supernodes in partners servers

80% of the time, own
supernodes are up and running

Part of
specification

HYDRA-482 Functional SDK Support fuzzy or
probability
concepts in self*
reasoning'

Major The swrl/owl based flamenco tool should be
complemented with ability to handle fuzzy concepts/
probabilistic reasoning.

fuzzy concepts should be
supported through e.g.
probabilistic models.

Open

HYDRA-481 Project Issue -
task

Configurabilit
y

support self-*
experimentation

Major We should develop tools that makes it easy to do
experimentation with self-managing techniques

'- Open

HYDRA-480 Functional Architecture Only a Jira test
issue

Trivial The only rationale is to test Jira. always fits Quality
Check passed

HYDRA-479 Functional Communicati
on

The EventManager
should support
event prioritisation

Major The EventManager should handle events according
to their priorities. Some events are critical to the
health of the system and should be prioritized over
others when there are a high number of events being
routed through the system

Stress test of the event
notification system. If the
volume of events exceeds the
capacity, events with high
priority should be delivered
first, and only be discarded as a
last resort

Quality
Check passed

http://localhost:8010/jira/browse/HYDRA-486�
http://localhost:8010/jira/browse/HYDRA-482�
http://localhost:8010/jira/browse/HYDRA-481�
http://localhost:8010/jira/browse/HYDRA-480�
http://localhost:8010/jira/browse/HYDRA-479�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 35 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-474 Non-Functional
- performance

Security Core Hydra
security
mechanisms
should run on
embedded devices

Major Core Hydra security is essential for protecting
communication between managers of a virtual
device. Thus, it should be scalable down to resource-
restricted platforms

Core Hydra security handlers
perform sufficiently fast on
resource-restricted platforms

Part of
specification

HYDRA-470 Functional Configurabilit
y

Device Ontology Major Knowing a priori if a device could support a data
format could help the application developer to better
exploit the resources of the device

The device information could
host a field where is pointed
out the proper data format

Requirement
does not
make sense

http://localhost:8010/jira/browse/HYDRA-474�
http://localhost:8010/jira/browse/HYDRA-470�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 36 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-468 Functional Communicati
on
Networking
Security

Different levels of
security must be
supported

Major In the healthcare scenario there are 2 communication
types:

- the inter-BAN communication
- the internet communication

Each of them could implement a different security
criteria.

The middleware could support different security
levels during communications with wireless devices.
For example, a simple accounting procedure for
devices near to the user (a BAN in the healthcare
scenario) and an harder codification for long
distance communications where identity data are
transmitted are supported.

It must always be possible to
implement at least two
different security levels for an
application.

Ambiguous
Requirement

HYDRA-467 Functional Configurabilit
y

Device reliability
and fault tolerance
awareness

Major A device could always communicate information but
how to assure that this information is correct?

The middleware should provide
procedures to identify the
device reliability and the state
of the device (Self-Diagnosis)

Part of
specification

http://localhost:8010/jira/browse/HYDRA-468�
http://localhost:8010/jira/browse/HYDRA-467�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 37 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-466 Functional Communicati
on

QoS selection Major In the healthcare scenario there will be the
eventuality to send information with a particular
QoS due to the data nature (e.g. some high quality
images or emergency data)

The middleware should provide
a QoS selection criteria for
devices which have to work
with critical information

Part of
specification

HYDRA-464 Functional Communicati
on

Connection
availability
monitoring

Major It could be useful inform the user or application
about network status, giving also to him information
about the status of network operations

The middleware should provide
methods to monitor connection
availability, providing also the
connection type and the status
of the pending network
operations

Part of
specification

HYDRA-461 Functional Modelling Device
development kit
will be used
mainly for creation
of semantic device
descriptions

Major devices are developed independently, so it is usually
described without knowing exactly the environment
in which device will be used.

In 90% of all cases the device
description could be done
within device development kit

Part of
specification

HYDRA-460 Non-Functional
-
maintainability

SDK use production
system instead of,
or together with
fixed workflow

Major to let system workflow be easily modifiable via
production rules, instead of modifying workflow
every time the system is modified (devices added,
removed, ...)

Modification via production
rules is possible in more than
33% of all cases

Ambiguous
Requirement

HYDRA-459 Functional Networking Load balancing Major A sort of load balancing could be provided if
information like number of devices involved in the
communication are available, e.g. only 8 Bluetooth
devices could realize a piconet, so the user couldn't
add more than 8 devices

New devices have to be easily
added to the system

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-466�
http://localhost:8010/jira/browse/HYDRA-464�
http://localhost:8010/jira/browse/HYDRA-461�
http://localhost:8010/jira/browse/HYDRA-460�
http://localhost:8010/jira/browse/HYDRA-459�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 38 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-458 Non-Functional
- performance

Communicati
on

Bandwidth and
central frequency

Major knowing the busy channel bandwidth and central
frequency, may help to rule out a set of frequencies
by the available frequencies for a certain technology

This information could
improve the HYDRA system
performances in terms of
communication delay

Ambiguous
Requirement

HYDRA-457 Non-Functional
- performance

Communicati
on

Wireless devices
busy channels

Major Knowing all busy communication channels may
help to minimize RF collisions

This information could
improve the HYDRA system
performances in terms of
communication delay

Ambiguous
Requirement

HYDRA-453 Functional Configurabilit
y
Context
Devices

Data Acquisition
must be adjustable
to national laws
and regulations.

Major In different countries exist different regulations and
laws regarding processing of data, especially in case
of health related data. The Data Acquisition needs to
be flexible so that it can be adjusted to these
regulations.

Data aquisition must be
adaptable to EU-country laws.

Part of
specification

HYDRA-448 Functional Context
Security

The data
acquisition must be
in user control, i.e.
the end user needs
to be informed
about leakage of
information.

Major To ensure privacy it is essential that the end user
stays in control of what data is passed on by/to any
acquisition component. This can either happen by
notifcation (e.g. via logs) or by dedicated user
interfaces (provided by the developer user or the
middleware itself) where the user can adjust the
settings.

Data acquisition components of
the middleware should not hide
data and provide access to all
data.

Part of
specification

HYDRA-447 Constraint Context To enable data
acquisition, the
required devices
need to be in the
network

Trivial If the required components are not available in the
network, data acquisisiton, and in parts context
awareness, cannot take place

In 100% of all cases where data
acquisition will take place the
components must be available
in the network

Part of
specification

http://localhost:8010/jira/browse/HYDRA-458�
http://localhost:8010/jira/browse/HYDRA-457�
http://localhost:8010/jira/browse/HYDRA-453�
http://localhost:8010/jira/browse/HYDRA-448�
http://localhost:8010/jira/browse/HYDRA-447�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 39 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-446 Functional Communicati
on
Security

Security
parameters
negotiation

Major Since different applications/ devices request
different security parameters, it is not advisable to
use fixed parameters for communication but flexible
ones.

In 90% of all cases the
parameters should be flexible

Part of
specification

HYDRA-444 Functional Communicati
on
Security

Pseudonymous
communication
should be
supported

Major If the user/device is not required to identify himself
to participate in a communication, it should be
possible to use anonymous communication or to use
pseudonyms as in e.g. eBay.

In 100% of cases where
pseudonyity/anonymity is
required the communication
does not rely on idenitifcation.

Ambiguous
Requirement

HYDRA-443 Non-Functional
- performance

Devices Storage Manager -
Gateways must
allow efficient
access to store data
from associated
devices

Major Users and authorized external systems can access the
data (received from associated devices) stored on the
gateways in an efficient way

90% of data access requests are
answered within seconds

Reopened

HYDRA-442 Functional Devices Proxy - Gateways
can filter and react
to data received
from associated
non-hydra devices

Minor Part of the proxy functionality may include support
for filtering of the received data and possibly a
reaction to high or low values. Non-hydra devices
can not be expected to analyze the data themselves,
so the gateways could take care of this

50 % of Gateways supports
filtering and reaction to
received data

Part of
specification

HYDRA-433 Functional Communicati
on
Networking

Session
Management -
Persistent sessions

Major It must be possible to make sessions persistent. 90% of the sessions inside
Hydra can be persistent.

Requirement
does not
make sense

http://localhost:8010/jira/browse/HYDRA-446�
http://localhost:8010/jira/browse/HYDRA-444�
http://localhost:8010/jira/browse/HYDRA-443�
http://localhost:8010/jira/browse/HYDRA-442�
http://localhost:8010/jira/browse/HYDRA-433�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 40 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-427 Functional Networking D2D
communication -
Group
management

Major The D2D communication system has to allow the
Hydra enabled device to create, join and leave
groups of Hydra enabled devices, so the components
of this groups share the same credentials and can
communicate isolated from non-group-members.

90% of the devices involved in
the the D2D communication
system can create, join and
leave groups

Part of
specification

HYDRA-409 Functional Devices Storage Manager -
Device information
metadata

Critical Devices' data must be stored with essential metadata,
like time and device localization

90% of device information is
stored with metadata

Reopened

HYDRA-407 Non-Functional
- usability

Devices Storage Manager -
Gateways
information stored
synchronization

Major The information stored in the Gateway must be
synchronized with the information inside the
devices. The dumping of devices information could
be either initiated by the device or controlled by the
Gateway.

90% of the information stored
in the Gateway is synchronized
with the information stored
inside the devices

Requirement
does not
make sense

HYDRA-406 Non-Functional
- operational

Devices Storage Manager -
Gateways
information
gathered storage

Major The Hydra middleware will need mechanisms that
allow the storage on the Gateways of information
gathered by devices with accessibility limitations

90% of Gateways support the
information gathered storage

Requirement
does not
make sense

HYDRA-396 Non-Functional
- usability

Devices Hydra-enabled
devices - May be
mobile or fixed
equipment

Major A subset of the Hydra middleware (mainly Network
Manager) can be deployed in mobile (PDA,
Smartphone) and in resource constraint devices
(Home Gateway)

30% of state of the art PDAs,
Smartphones and Home
Gateways can host part of the
Hydra middleware

Part of
specification

http://localhost:8010/jira/browse/HYDRA-427�
http://localhost:8010/jira/browse/HYDRA-409�
http://localhost:8010/jira/browse/HYDRA-407�
http://localhost:8010/jira/browse/HYDRA-406�
http://localhost:8010/jira/browse/HYDRA-396�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 41 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-394 Functional Middleware
Layer
Modelling

Stateful service
orchestration

Minor In order to specify service workflows we need to be
able to keep state between the execution of the
stateless services.

Service orchestration can be
done by creating service
workflow definition.

Part of
specification

HYDRA-393 Functional Configurabilit
y
SDK

Deployment
scenario
configurable by
developer user

Major A developer user should be able to specify how an
application should be deployed over a set of devices,
e.g, choosing a host device for a Device Application
Catalogue.

Developer can specify
deployment for specific devices
by means of a tool or
configuration file.

Requirement
does not
make sense

HYDRA-392 Functional Device
Discovery
SDK

Rules for selection
of alternative
devices

Major The developer user should be able to specify how
devices can replace or complement each other. This
is relevant in situations when a device fail and
another device exists which can provide a
replacement service, or, when different levels of
quality of service are available.

In the SDK, contructs are
available that allow the
developer to specify rules for
when and how devices and
sevices can be interchanged
and combined.

Part of
specification

HYDRA-391 Functional Devices
SDK
Service
Discovery

Device and service
exception handling

Major The development and run-time environment should
support exception handling constructs that the
developer user can employ to manage service and
device availability and malfunctioning, isolated from
the main application logic.

SDK provides exception
handling constructs that the
developer can use to specify
exception responses with a
succes rate of 9/10.

Quality
Check passed

http://localhost:8010/jira/browse/HYDRA-394�
http://localhost:8010/jira/browse/HYDRA-393�
http://localhost:8010/jira/browse/HYDRA-392�
http://localhost:8010/jira/browse/HYDRA-391�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 42 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-390 Functional IDE
Modelling

Different views on
the device
ontology

Major It should be possible to present a developer user with
different perspectives on the device ontology,
depending on that users functional needs (e.g., a
services perspective, device category perspective.
etc.)

At least two different views are
available in the ontology
browser

Part of
specification

HYDRA-379 Functional Context Intelligent data
fusion on real-time
data

Major In order to derive information from sensor data a
semantic interpretation on incoming data needs to be
performed in a semantic way on real-time data.

Data fusion on real-time data is
performed in 90% of the time
without dropping real-time data

Part of
specification

HYDRA-378 Non-Functional
- security

Modelling
Security

Application model
must provide the
security
requirements

Blocker Application must provide the security requirements
on a semantic level in order to resolve if devices are
allowed to interact with the application or to allow
the middleware to resolve the security in the process.
If the application model contains security
requirements all requests will be resolved correctly

For applications that allow
devices to interact with them,
the application model should
contain at least one security
requirement on a sematic level

Part of
specification

HYDRA-375 Functional Configurabilit
y
Context
Modelling

Dynamic Semantic
discovery of
application
objectives

Major Ask Jesper! Ask Jesper! Requirement
does not
make sense

http://localhost:8010/jira/browse/HYDRA-390�
http://localhost:8010/jira/browse/HYDRA-379�
http://localhost:8010/jira/browse/HYDRA-378�
http://localhost:8010/jira/browse/HYDRA-375�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 43 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-373 Functional Modelling
Service
Discovery

Semantically
locate devices and
information
providers

Major Because devices and service providers enter and
leave the network dynamically the developer need to
be able to specify what kind of device/information
provider is needed and the middleware will search
for a match and make it available.

lookup of devices/information
providers can be semantically
specified and matching
devices/information providers
will be reported by the
middleware in less than 10
seconds after entering the
network

Open

HYDRA-372 Functional Middleware
Layer

Interfacing wiht
external systems

Major Searching and using external services in decision
support and application intelligence must be
supported

Access to external systems
using web service protocols
(WS-I Basic Profile) is
supported

Part of
specification

HYDRA-370 Functional Middleware
Layer

Support for
interfacing with
external workflow
systems

Minor Applications must include workflow management
possibilities

Supports at least one workflow
system, for instance
OpenWorkFlow

Quality
Check passed

HYDRA-369 Functional Modelling Devices must have
semantic
description of its
user interface

Major Devices must be remotely accessible through a
multitude of heterogenous networks using multiple,
multimodal user interfaces.

Supports at least two different
types of user interfaces for a
device. If the device has a user
inteface a developer should be
able to control 80% of the user
interface using semantic
expressions.

Reopened

http://localhost:8010/jira/browse/HYDRA-373�
http://localhost:8010/jira/browse/HYDRA-372�
http://localhost:8010/jira/browse/HYDRA-370�
http://localhost:8010/jira/browse/HYDRA-369�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 44 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-366 Non-Functional
- performance

Devices Services should
run on embedded
devices

Major Service-orientation is a good match for many
embedded devices. Web services will provide a
gateway to many applications and it would be
beneficial to be able to structure all of the
communication in a system using the same
primitives. Depending on the resources (energy,
processing capacity) available such a service may
run on the device or on a proxy

HYDRA supports services on
embedded devices (Initial
target should be Develco's
DevCom 02 ZigBee module)

Part of
specification

HYDRA-365 Functional Middleware
Layer

Ability to self-
adaptation

Major A knowledge model enables the middleware to
contain a representation of itself and manipulate its
state during its execution. This feature should serve
as the basis for self-adaptation of the middleware
(e.g. reconfiguration of resource usage, triggering
the component-based services).

Middleware is able to adapt its
configuratiton in 60% of
identified cases requiring
reconfiguration.

Part of
specification

HYDRA-361 Functional Architecture Protection of
System Integrity

Major In order to prevent an inexperienced user to cause
malfunctions by changing system configurations, the
middleware should monitor, analyse and, if
necessary, prevent or give notifications about faulty
changes.

HYDRA middleware provides
mechanisms to monitor system
integrity and to react in the
case of failures.

Quality
Check passed

HYDRA-359 Functional Device
Discovery

Handling of
different device
versions in device

Major The device ontology should be able to handle
different versions of a device.

The device ontology can
maintain at minimum 2
versions of any single device

Part of
specification

http://localhost:8010/jira/browse/HYDRA-366�
http://localhost:8010/jira/browse/HYDRA-365�
http://localhost:8010/jira/browse/HYDRA-361�
http://localhost:8010/jira/browse/HYDRA-359�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 45 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

ontology

HYDRA-358 Functional Architecture
Modelling
Security

Developer must be
able to
semantically define
security
requirements

Major If developers are to make devices that can co-operate
through other protocols and security mechanisms,
they have to be able to describe the inherent security
requirements in a semantic interoperable language. It
is not enough just to use a specific protocol's
security as this does NOT tell WHY he uses it and
WHAT he really needs for the application to
proceed.

On the one hand HYDRA
supports the semantic
description of security
requirements and provides
mechanisms to translate those
requirements into device
specific protocols
automatically. On the other
hand HYDRA provides means
in order to analyse
(prospectively) existing device
specific proprietary security
protocols. HYDRA can detect
incompatibilities of different
protocols' security mechanisms.

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-358�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 46 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-357 Constraint -
requirement
constraint

Devices
Modelling
Security

HYDRA must
support device
authentication
based on context
and semantics

Critical In strong security implementation, virtualisation and
context isolation depend on isolation. As such
HYDRA has to be able to support devices that
authenticate indirectly through recognition of pre-
shared keys or using credentials (such as Direct
Anonymous Attestation plus additional credentials)
instead of through assumed identification of the
physical device (such as MAC).
The Security & Communication meta-model must
not assume mandatory identification.

Device authentication is
supported without device
identification.

Ambiguous
Requirement

HYDRA-356 Functional Architecture support for both a
pull and push
model

Major By default, HYDRA components should exchange
messages according to the push-model. However, in
some cases, a pull model should also be available.

In 90% of all cases, the system
can handle push and pull
commands.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-357�
http://localhost:8010/jira/browse/HYDRA-356�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 47 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-354 Functional Architecture Support for virtual
devices

Major In order to make each user have his own view on a
device, there has to be some kind of support for
virtual devices. This means, that a single device may
show up as multiple devices, which respectively
provide a fraction of the original physical device's
functionallity, depending on actual user needs.

95% of all access to the
HYDRAmiddleware should be
able to set up virtual devices.

Part of
specification

HYDRA-351 Non-Functional
- security

Architecture
SDK

device should
support
virtualization of
devices

Critical if two users has access to the same physical device,
the access to the device, by id, could be virtualized
so each user only uses his id and the other user uses
his own. We want the id to be large (min. 256 bit
long.)

The sdk must provide a unique
id in 99,99999%

Part of
specification

HYDRA-350 Functional Architecture Data type
transparency

Critical Different devices in sensor networks use different bit
sizes. HYDRA must provide tranparency between
data types.
HYDRA must provide some sort of datatype
wrappers for the different arch and cpu types.

100% of all basic datatypes,
90% of less common datatypes
can be transferred between
devices with different bit sizes.

Part of
specification

HYDRA-348 Functional Devices Detect errors in
devices

Major there should be specification language which allows
the middleware to detect errors in a device

In nine out of ten cases the
Middleware is able to detect
errors in devices.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-354�
http://localhost:8010/jira/browse/HYDRA-351�
http://localhost:8010/jira/browse/HYDRA-350�
http://localhost:8010/jira/browse/HYDRA-348�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 48 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-346 Non-Functional
- operational

Architecture It should be
possible to have
closed subsystems

Minor HYDRA should not prescribe that a system should
be completely open (and service-based) in order to
be part of a HYDRA application (e.g., Siemens may
want Siemens heating systems to not be usable (in
parts) by Phillips home control systems)

A manufacturer or an
application developer should be
able to design HYDRA
components with propietary
interfaces in 100% of all cases.

Part of
specification

HYDRA-345 Functional Middleware
Layer

Support conflict
resolution

Critical Configurations/rules of devices may be in conflict
(e.g., one rule wanting to open a window, another
wanting to close it). There should be components
available that help in conflict resolution by 1)
proposing basic conflict resolution, 2) allowing for
automatic reaction to proposed conflict resolution,
and 3) allow for overriding basic/general resolution
policies with application-specific ones

Check whether the SDK
contains a component that
supports such conflict
resolution

Reopened

http://localhost:8010/jira/browse/HYDRA-346�
http://localhost:8010/jira/browse/HYDRA-345�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 49 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-343 Non-Functional
- usability

Configurabilit
y

Users should be
able to understand
and modify
automatically
created user
profiles

Major If the system learns automatically based on the
behavior of its devices and users, profiles for users
may get created. These may (will) be wrong and it
should be possible to understand these (e.g., by
visualization) and change them according to
personal preference

Create scenarios and have users
do a usability test [may be too
application-oriented]

Quality
Check passed

HYDRA-342 Functional Configurabilit
y

Learning support
in middleware

Minor There should be support for developing components
that support learning, e.g., from previous use
patterns of tenants and react upon this. This may
imply machine learning techniques

Are there components available
for machine learning?

Quality
Check passed

HYDRA-339 Non-Functional
- usability

Configurabilit
y

User orders should
generally take
precedence over
device orders

Major When an authorized user issues a command to a
HYDRA-based system, this order should take
precedence over preprogrammed rules in general. It
should be possible to determine when such order are
dangerous/unsafe however

Conflict resolution system
should have mechanism for the
user to take precedence

Reopened

http://localhost:8010/jira/browse/HYDRA-343�
http://localhost:8010/jira/browse/HYDRA-342�
http://localhost:8010/jira/browse/HYDRA-339�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 50 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-337 Non-Functional
- operational

Architecture There should be a
procedure/strategy
for interfacing with
non-HYDRA
devices

Critical Not all devices will be HYDRA-enabled neither in
the near nor the far future. The architecture should
support communication with and use of such devices
to enable developers of HYDRA-based applications
to create rich applications

75% of non-Hydra devices can
be integrated into HYDRA
Middleware

Part of
specification

HYDRA-335 Functional Context Location
awareness/position
ing support

Critical HYDRA should enable developers to write
applications that depend on context, especially
spatial context.

A component for acquiring
spatial context exist. At any
tme, min. 75% of all devices
attached to a HYDRA system
can be spatially located. Also,
there is a programming model
for using spatial context.

Part of
specification

HYDRA-331 Functional Communicati
on

THere should be a
binary, efficient
protocol for
communication as
default

Major XML-based communication is good for
interoperability but bad for performance. There
should be provisions for using both types of
protocols to communicate with services and since
we are building middleware for embedded systems
that are resource-constrained, an efficient protocol
should be default

Is a binary protocol default? Is
it efficient in terms of
bandwidth used and processing
time? (Should be evaluated
against a reasonable definition
of minimum hardware
requirements for HYDRA-
devices)

Quality
Check passed

http://localhost:8010/jira/browse/HYDRA-337�
http://localhost:8010/jira/browse/HYDRA-335�
http://localhost:8010/jira/browse/HYDRA-331�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 51 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-325 Functional Devices Support
aggregation and
separation of
devices and
services

Minor Devices and services may exist in a separate
application where they should not be influenced by
nearby (wireless) devices such as in the case of an
apartment. Thus it should be possible to view a set
of services/devices as an aggregate that is separated
and isolated from other sets of services/devices

Check support for aggregation
and separation of
devices/services

Part of
specification

HYDRA-324 Non-Functional
- performance

Architecture Systems built
using HYDRA
should be scalable
in terms of devices
communicating

Major In large installations (such as in the apartment
complex example) there will be many devices per
apartment and a huge amount of embedded devices
in total. HYDRA should support the development of
such big systems.

The HYDRA middleware
supports applications in which
more than 100,000 devices
exist.

Part of
specification

HYDRA-323 Constraint -
scope of the
product

Architecture Distributed
Intelligence should
not lead to
resource-heavy
systems

Major We have a need for "intelligence" (Semantics,
reflection etc.). We have a need for supporting
embedded systems. This should not conflict

Minimum hardware
requirements (which must be
supported by all target
hardware) are defined and all
hardware that meets the
specifications is guaranteed to
work with hydra.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-325�
http://localhost:8010/jira/browse/HYDRA-324�
http://localhost:8010/jira/browse/HYDRA-323�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 52 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-322 Functional Configurabilit
y

UUAR: Support
lightweight service
composition

Major A number of tasks in the domains will require
collaboration from multiple services. This
coordination and collaboration among services
should be expressed via a service composition
mechanism (could be ala BPEL for web services, but
it should be useful for embedded systems)

Existence of service
composition mechanism
(specification and
implementation of support) that
is able to compose a potentially
unbounded number of services.
Evaluate that it is able to
compose services from and run
on our selected lowest range of
embedded devices

Reopened

HYDRA-320 Non-Functional
-
maintainability

Architecture Separate domain-
oriented services
and user interface
services
architecturally

Minor This is a standard architectural design tactic to
enhance modifiability

90% of the modules of the
architecture properly separate
layers for domain services and
interfaces.

Part of
specification

HYDRA-318 Functional Device
Discovery

Devices should be
able to be added to
the system at
runtime

Critical It should not be necessary, e.g., to shut a building
complex down to add a new device to a room :-)

Devices can be installed,
discovered, and used while the
HYDRA runtime is running

Part of
specification

HYDRA-317 Functional Architecture Support runtime
reconfiguration

Major To supporting monitoring leading to adaptation, the
architecture should be dynamic in the sense that
components/services should be connectable in new
ways at runtime

To ensure a conceptual integrity of the system and
ease developer understanding, the tools for initial
configuration and re-configuration should rely on
the same concepts/mechanisms.

Services and devices can be
connected in new ways during
runtime in HYDRA-based
applications

Reopened

http://localhost:8010/jira/browse/HYDRA-322�
http://localhost:8010/jira/browse/HYDRA-320�
http://localhost:8010/jira/browse/HYDRA-318�
http://localhost:8010/jira/browse/HYDRA-317�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 53 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-314 Functional Communicati
on

Faults should be
intercepted by
middleware,
notified to
interested services

Major To create reliable and available systems it is
essential to catch faults/partial failures before they
become failures/complete failures. There needs to be
uniformity in how this is done; thus it should be
supported by the middleware

The middleware has support
(through components/services)
for sending and receiving
notifications for partial failures

Part of
specification

HYDRA-312 Non-Functional
- operational

Devices Support profiling
of devices'
performance

Major The middleware should contain services that allow
monitoring and reaction on what devices are doing.
This includes monitoring response time, device load
(e.g., CPU), and message interchanges per second

Said services available in
HYDRA

Part of
specification

HYDRA-311 Functional Devices Special watchdog
devices for
monitoring
availability

Trivial The middleware should provide easy
implementation of special watchdog devices (or
services) for availability monitoring

Existing services that
implement watchdog
functionality available

Part of
specification

HYDRA-310 Non-Functional
- operational

Middleware
Layer

Interoperability
with external
systems

Major HYDRA should facilitate ease of interoperability
with existing, non-HYDRA systems

Compare support in HYDRA
to state-of-the-art (such as
semantic web services).
HYDRA should support
interoperation on at least that
level

Reopened

http://localhost:8010/jira/browse/HYDRA-314�
http://localhost:8010/jira/browse/HYDRA-312�
http://localhost:8010/jira/browse/HYDRA-311�
http://localhost:8010/jira/browse/HYDRA-310�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 54 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-309 Functional Devices Map device (e.g.,
name of it) to
presentation of,
e.g., a room

Minor There should be support for mapping the presence of
devices and services to their location (e.g., where in
a room inside a building) and description when
building user interfaces on top of Hydra

The SDK supports this Part of
specification

HYDRA-308 Functional Networking
Security

The Security Level
of an existing
network should be
determinable

Minor For a device entering an existing network it can be
useful to determine the security level of that
network. Depending on the provided security level
the device can decide to enter the network or not.

HYDRA middleware provides
at least one mechanism
enabling devices to determin
the security level of an existing
network.

Part of
specification

HYDRA-300 Non-Functional
- usability

_unassigned This is a
requirement for
testing purposes

Blocker Testing is grreat blah Requirement
does not
make sense

HYDRA-296 Functional Security Adaptability of
Security Model
with regard to
existing security
system(s)

Major In the case of already existing security systems,
HYDRA Security Model should be able to
interoperate with them.

The HYDRA Security Model
can operate with already
existing security systems in 9
of 10 cases.

Ambiguous
Requirement

HYDRA-294 Functional Middleware
Layer

Central service
registry

Major Services announce their availability and announce a
description of their functionality in a central service
registry in a unified format. Clients (users or other
services) query that registry to find an appropriate
service for their needs.

A central service registry
exists. Services announce their
availability and describe their
functionality in a unified from.
Clients can query the registry
to find an appropriate service.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-309�
http://localhost:8010/jira/browse/HYDRA-308�
http://localhost:8010/jira/browse/HYDRA-300�
http://localhost:8010/jira/browse/HYDRA-296�
http://localhost:8010/jira/browse/HYDRA-294�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 55 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-293 Non-Functional
-
maintainability

Middleware
Layer

Documentation of
API and basic
services

Major To enhance the developers' productivity, the API
and the basic services provided by the middleware
must be documented.

Documentation is available for
API and basic services.

Part of
specification

HYDRA-292 Functional Middleware
Layer

Self-diagnosis of
devices

Major To enhance the robustness of a HYDRA system,
devices should be able to check its own diagnostic
state and report errors to an appropriate component

HYDRA Devices can conduct
self-diagnosis and detect /
report failures in operation in
98% of all cases.

Part of
specification

HYDRA-291 Non-Functional
- usability

Communicati
on
Configurabilit
y
Middleware
Layer
Modelling
Service
Discovery

Quality of Service
as search criteria
for service
selection

Major The selection of appropriate services for a given task
requires the reflection of QoS-related search criteria
such as cost, performance, etc.

QoS-criteria can be used in the
selection of services in 95% of
all cases

Part of
specification

HYDRA-290 Functional Configurabilit
y

Share service
orchestration
between users

Minor Service orchestration definition should be shared
between developer users, in order to allow a
distribution of useful service orchestration to other
developers

Service orchestration
definitions can be shared
between users

Part of
specification

HYDRA-288 Functional Architecture
Communicati
on
Device
Discovery
Devices
Modelling

Query devices for
their functionality

Critical Enable developers to get information about the
offered functions of a certain device in an ad-hoc
manner

All HYDRA enabled devices
can be queried for their
supported functionality

Part of
specification

http://localhost:8010/jira/browse/HYDRA-293�
http://localhost:8010/jira/browse/HYDRA-292�
http://localhost:8010/jira/browse/HYDRA-291�
http://localhost:8010/jira/browse/HYDRA-290�
http://localhost:8010/jira/browse/HYDRA-288�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 56 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-258 Functional Middleware
Layer

Automatic
software updates

Major HYDRA middleware should prevent the need to
manually update software

Support for automatic software
updates

Part of
specification

HYDRA-253 Functional Architecture
Configurabilit
y
Security

Hydra provides
mechanisms to
users for managing
identities

Major In order to build trust & security, HYDRA
middleware has to be open to many identity
mangement principles, of which user empowerment
is core to overcome basic trust challanges. Identity
management must be provided by the Hydra
middleware and must be available to users (not only
service providers or other central parties)

A mechanism exists that allows
end users and devices to have
at least two non-linkable
identities.

Part of
specification

HYDRA-248 Functional Configurabilit
y

Defintion of
Virtual Devices

Critical In order to ensure flexibility, protecting weak
devices and manage differentiated access to device
and information, the developer or advanced users
should be able to define virtual devices that
replace/represent physical devices.

Separation of physical and
logcial device definition. A
virtual device can fully replace
a physical device

Reopened

HYDRA-247 Functional Configurabilit
y
Devices

Integrate non-
HYDRA devices
with an existing
HYDRA
environment

Critical For HYDRA to be inclusive and able to provide
value beyond what developers has inentionally
enabled, third parties have to be able to integrate
their devices.

90% of Non-HYDRA devices
can be integrated in a Hydra
environment

Part of
specification

http://localhost:8010/jira/browse/HYDRA-258�
http://localhost:8010/jira/browse/HYDRA-253�
http://localhost:8010/jira/browse/HYDRA-248�
http://localhost:8010/jira/browse/HYDRA-247�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 57 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-244 Constraint -
scope of the
product

Security Security
Metamodel has to
be self-contained

Major The Security metamodel has to be able to describe a
full security model without the use of external
knowled/databases. Making a consistent trust model
across not pre-known devices require the ability to
resolve the security properties in context.

Can a Business Model define a
set of security requirements
which can be resolved at
runtime against actual
configuration

Ambiguous
Requirement

HYDRA-241 Constraint -
requirement
constraint

Architecture MIddleware should
be open source.

Blocker We have stated in the DoW that we will produce
open source software.

The core components of the
Software are open source.

Part of
specification

HYDRA-239 Functional Context
Security

Automatic service
diagnostic for
security relevant
services

Major Security relevant services should provide a self-
diagnostic services that provides an overview of all
security-relevant features

Self-diagnostics in all security
relevant services implemented

Ambiguous
Requirement

HYDRA-237 Non-Functional
-
maintainability

Architecture The guaranteed
future should be
ensured

Major The HYDRA middleware should be kept adaptable
and future proven.

After 10 years in the market,
the middleware can still be
used.

Part of
specification

HYDRA-236 Functional Architecture Middleware is
extendable with
additional
functionality by
plug-ins

Critical The middleware provides basic services that could
be enhanced and adapted by additional integration of
specific plug-ins.

The middleware provides well-
defined interfaces for
additional plugins

Part of
specification

http://localhost:8010/jira/browse/HYDRA-244�
http://localhost:8010/jira/browse/HYDRA-241�
http://localhost:8010/jira/browse/HYDRA-239�
http://localhost:8010/jira/browse/HYDRA-237�
http://localhost:8010/jira/browse/HYDRA-236�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 58 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-235 Functional Modelling Modelling
components should
be available as
plug-ins

Critical The middleware should provide basic services.
Advanced features like modelling components
should be available as additional plug-ins. Approved
components could be integrated in a later stage

At least 2 Modelling plug-ins
available.

Part of
specification

HYDRA-234 Non-Functional
- usability

Configurabilit
y

The middleware
should be
selfdescriptive

Major The developer should be enabled to understand all
components and their interplay of the system in
order to take full advantage of the HYDRA
Middleware

Nine out of ten developer have
a clear understanding of the
HYDRA middleware after one
week of experience

Part of
specification

HYDRA-233 Functional Middleware
Layer

Self-healing
function of
middleware

Major To ensure robustness and reliability, the middleware
should dispose of self-healing and self-
reconfiguration abilities.

A breakdown of service
components should be
automatically intercepted in
65% of the cases

Part of
specification

HYDRA-229 Functional Security Services are
responsible for
authentication

Critical The single service should be responsible for
authentication request in order to ensure a robust and
secure system

All security critical services
trigger authentication requests

Part of
specification

HYDRA-226 Functional Configurabilit
y
Devices

Device ontology
should be available

Major In order to be able to integrate devices in an ad-hoc
manner a device ontology must exist allowing to
exchange basic information of services

In 90% of all cases, devices can
be integrated in an ad-hoc
manner.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-235�
http://localhost:8010/jira/browse/HYDRA-234�
http://localhost:8010/jira/browse/HYDRA-233�
http://localhost:8010/jira/browse/HYDRA-229�
http://localhost:8010/jira/browse/HYDRA-226�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 59 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-225 Non-Functional
-
maintainability

SDK Interactions and
consequences of
changes to services
on other services
should be
highlighted

Minor The developer should have a tool that helps him
understand the complex interactions of services and
the possible consequences of changes on one
middleware service to other middleware services

A service monitor that is able
to show interactions with other
services is implemented

Part of
specification

HYDRA-222 Functional Security Role-management
should be handled
by the middleware

Major Conflict resolution referring to access rights should
be based on a role management

Role management is
implemented

Part of
specification

HYDRA-221 Functional Middleware
Layer

Policy should
handle the possible
actions

Major Automatic system actions should be based on well
defined policies to avoid conflicts.

All automatic actions are
policy based.

Part of
specification

HYDRA-219 Non-Functional
- performance

Architecture Redundant core
components

Major To ensure high robustness, core components should
be redundant.

No core component should be
unique.

Part of
specification

HYDRA-218 Functional Device
Discovery
Devices
Interface

Support interaction
devices

Major Interaction devices provide users with different
forms of output (display) capabilities. This could
include simple displays, tablets or more advanced
units.

Interaction devices (displays)
are included in the HYDRA
device ontology and can be
mapped to the end-user
inteface of an application.

Part of
specification

HYDRA-217 Non-Functional
- performance

Architecture The middleware
should ensure high
robustness of
services

Major In order to ensure the service support of important
components in the system, the middleware should
provide a highly robust service structure.

Breakdown of crucial services
of the middleware in less than
1 case per 100 hours of
operation.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-225�
http://localhost:8010/jira/browse/HYDRA-222�
http://localhost:8010/jira/browse/HYDRA-221�
http://localhost:8010/jira/browse/HYDRA-219�
http://localhost:8010/jira/browse/HYDRA-218�
http://localhost:8010/jira/browse/HYDRA-217�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 60 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-216 Functional Configurabilit
y
Middleware
Layer

The middleware
should have a
graceful
degradation service

Major Services should be organised in a cascade of
services in order to allow an orchestration of
services providing best possible services down to
basic services automatically, according to their
availability

Service orchestration is
possible n a hierarchical way.
An automatic selection of the
best service is possible within
max. 500 msec.

Part of
specification

HYDRA-215 Functional Middleware
Layer

Middleware only
handles
communication.

Critical The middleware should implement only the most
basic service, i.e. the communication. All high level
functionalities will be realized by additional
services.

The middleware only handles
communication. All other
functionality is realised by
external components.

Part of
specification

HYDRA-214 Functional Modelling A decision
component/service
should exist

Major There should be a decision component that is able to
take actions according to specified rules or reasoning
components.

At least one decision
component in the middleware

Part of
specification

HYDRA-212 Non-Functional IDE Support for a
declarative
application
development
paradigm

Major A declarative approach can hide complexity of
underlying structure and can increase productivity of
embedded software development.

More than 50% of the module
functionality should be
programmable using a
declarative approach.

Requirement
does not
make sense

HYDRA-211 Functional Architecture There are
components/servic
es in the
middleware that
integrate
subsystems

Major The integration of basic systems to subsystems
should ease the configuration of higher level
services. Higher level services could then consist of
a combination of basic systems

It should be possible to
combine basic services to
higher level services. At least
one higher level service relying
on a combination of basic
services exists.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-216�
http://localhost:8010/jira/browse/HYDRA-215�
http://localhost:8010/jira/browse/HYDRA-214�
http://localhost:8010/jira/browse/HYDRA-212�
http://localhost:8010/jira/browse/HYDRA-211�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 61 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-209 Functional Service
Discovery

Middleware has a
service for
providing
information about
the technical
environment/infras
tructure

Major In order for the services to query the available
infrastructure the middleware should provide such a
service

A services at the middleware
provides information about
more than 95% of the technical
environment/infrastructure

Part of
specification

HYDRA-207 Functional Middleware
Layer

Service selection
by context

Critical In order to select an appropriate service for a
specific task, contextual information, like the spatial
position, must be taken into account. Hydra must
provide a method to specify a desired service by
contextual parameters. For example, if a certain
room in a building is specified in a search request
for a service, only services are returned that are
relevant in the current user´s location and context.

In search requests for a specific
service, contextual information
like a spatial position is
allowed.

Part of
specification

HYDRA-206 Non-Functional
- operational

Service
Discovery

Middleware
supports service
discovery

Blocker The developer needs to query the available services
during runtime

Services discovery during
runtime in the Middleware
results in at least 95% available
services

Reopened

HYDRA-204 Non-Functional
- performance

Devices Devices have
automatic error
diagnostics

Major The devices should perform their own diagnostic test
to provide their status upon request of the
middleware in order to save performance and
increase robustness and scalbility

In nine out of ten cases a
request of the middleware
should result in a valid status

Part of
specification

http://localhost:8010/jira/browse/HYDRA-209�
http://localhost:8010/jira/browse/HYDRA-207�
http://localhost:8010/jira/browse/HYDRA-206�
http://localhost:8010/jira/browse/HYDRA-204�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 62 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-203 Non-Functional
- usability

SDK Easily usable
interface for
developers/manufa
cturers

Major SKD tools, APIs and documentations should be
intuitive, well aranged and easy usable for
developers.

Developers don't have to
contact technical support nor to
use help in 90% of problem
cases.

Part of
specification

HYDRA-202 Functional Architecture Functionality
handled in Grid

Major Grid technologies should be used for device
networks e.g. to share resource usage, data storage
over network, to access the data mining services, to
use grid-enabled services provisioning, ontology
services, etc.

Grid technology (share
resource usage or data storage
and data access over network)
is used in 50% of cases where
other than Grid technology
does not fullfill needs.

Part of
specification

HYDRA-201 Functional Configurabilit
y

Self configurable
devices

Major Devices should be able to join (an leave) the
network without any need for manual management
or configuration handled by user. This feature
requires the ability of devices to configure its
connection and communication properties
automatically.

Devices are able to join (and
leave) the network without any
manual user action in 80% of
all cases.

Part of
specification

HYDRA-199 Functional Architecture Modules should be
extendable

Critical HYDRA modules should be extendable in their
functionality by 3rd-party solutions

80% of all HYDRA modules
are extendable in their
functionality by integrating
3rd-party code via a standard
interface or replaceble by 3rd-
party modules with equivalent
functionality.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-203�
http://localhost:8010/jira/browse/HYDRA-202�
http://localhost:8010/jira/browse/HYDRA-201�
http://localhost:8010/jira/browse/HYDRA-199�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 63 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-198 Functional Service
Discovery

A service broker is
responsible to
provide services
according to
specific keywords

Critical Service discovery should be enhanced by a service
broker module/service as basic service of the
middleware that enables the search for services
according to specific keywords

Requests according to specific
keywords will be provided a
corresponding service in 8 out
of 10 cases.

Part of
specification

HYDRA-197 Functional Communicati
on
Modelling
Service
Discovery

Services define
their
communication
needs in terms of
needed QoS
parameters

Major The services define their communication needs in
terms of needed QoS parameters (needed bandwidth,
needed quality...) without specifying the technical
details. The middleware is free to choose the
appropriate networking matching the specified needs

Every service specifies its QoS
parameters

Part of
specification

HYDRA-196 Functional Service
Discovery

Basic Service
Registry

Critical Services should register at a basic service/module of
the middleware in order to provide a base for service
orchestartion

All services should be itemised
at the Basic service registry

Part of
specification

http://localhost:8010/jira/browse/HYDRA-198�
http://localhost:8010/jira/browse/HYDRA-197�
http://localhost:8010/jira/browse/HYDRA-196�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 64 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-195 Functional Middleware
Layer

Dynamic
prioritisation

Major Ability of active application components (e.g.
devices, services) to dynamically assign the
priorities to active components available for
cooperation. Using the assigned priorities, active
components should be able to dynamically select
e.g. whom to communicate, what to communicate,
when to communicate. Dynamic prioritization
process is essential for system to be able to atapt its
behaviour to current context (e.g. user's location, his
interests, enviroment's characteristics, etc.).

Ability to change priorities
based on current context
provided.

Part of
specification

HYDRA-194 Functional Middleware
Layer

Conflict resolution
mechanism

Critical Information obtained from different sources can be
conflicting or contradictory. In this situation a
conflict resolution mechanism should determine on
relevance, reliability, and risk related to these
sources.

The HYDRA middleware is
able to proceed in its operation
in 98% of all cases, where
contradicting information or
conflicting commands are
received.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-195�
http://localhost:8010/jira/browse/HYDRA-194�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 65 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-192 Functional Context
Modelling

Context modelling Major Use knowledge models in order to specify the
interrelations among context entities, to ensure
common, unambiguous representation of these
entities, to provide an explicit semantic
representation of context, and to represent current
context supports reasoning about context.

Current context represented as
an instance of a knowledge
model.

Part of
specification

HYDRA-191 Functional Context Intelligent location
determination

Major Incorporating a wide range of location sensing
techniques to obtain location information from
different providers enables a reasoning engine to
determine location with a certain probability.

Always select location
determination mechanism with
the highest accuracy.

Part of
specification

HYDRA-190 Functional Context Learning
situational context

Major Knowing situational context (based on e.g. learnt
knowledge on people's actions, behaviour patterns,
movement patterns, intonation, registering specific
events, etc.) is essential for classification of possible
situations and related actions. Necessary for
guessing intent of the user.

Recognition of 50 % of all
situations.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-192�
http://localhost:8010/jira/browse/HYDRA-191�
http://localhost:8010/jira/browse/HYDRA-190�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 66 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-189 Functional Devices
Middleware
Layer

Plug and play
support for adding
devices

Critical Devices should be accessible as soon as they are
discoverable and with the need for the developer to
implement this functionality. This should be
something like Plug´n´Play in operating systems.

Plug and play mechnism for
inclusion of newly detected
devices is done by the
middleware

Part of
specification

HYDRA-188 Non-Functional
- operational

Middleware
Layer

Conflict prevention
service

Major Certain combinations of multiple services'
functionality can lead to contradicting instructions.
A conflict prevention component should exist, that
checks for agreeable combination of services.

Service combinations, that lead
to contradicting instructions,
are prohibited by a conflict
prevention service.

Part of
specification

HYDRA-187 Non-Functional
-
maintainability

SDK standardized API
for device classes

Major All devices of a device class should have a set of
methods that will be supported by each device. This
makes it easier to implement functionality. To get a
complete list of supported methods of a device the
device should support querying it and responding
back. This query for a complete list of methods is an
example of one standardized method.

A set of methods is
standardized for each device
class.

Part of
specification

HYDRA-186 Non-Functional
- operational

SDK GUI for
configuring
middleware
parameters

Minor To make the configuration of the parameters of the
middleware easier for the developer

A GUI exists for configuring
the middleware

Part of
specification

http://localhost:8010/jira/browse/HYDRA-189�
http://localhost:8010/jira/browse/HYDRA-188�
http://localhost:8010/jira/browse/HYDRA-187�
http://localhost:8010/jira/browse/HYDRA-186�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 67 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-185 Non-Functional
- operational

Middleware
Layer

Middleware
provides basic
services

Critical In order to program AmI applications, the
middleware must provide basic services. This makes
life easier for application developers .Baisc services
provide e.g. methods to query available devices and
services or to pass messages between components

Middleware provides a set of
basic services that at least
contain basic functionality, that
is needed by all services, like
communication and a service /
device registry.

Part of
specification

HYDRA-184 Non-Functional
- operational

Configurabilit
y

Configuration with
text files

Major In order to configure the middleware, a
configuration file in text format, e.g. XML, should
be used. This makes the developers' lifes easier,
since such a configuration allows for fast changes of
the behaviour of the middleware.

80% of all middleware
components are configurable
with a text file.

Part of
specification

HYDRA-182 Non-Functional
- operational

Communicati
on

Middleware
realises
communication

Major The developer doesn´t need to care about how to
communicate between devices. The communication
between the devices is handled by the middleware

Middleware handles all
communication without the
need of the developer to
implement communication
code

Part of
specification

HYDRA-180 Non-Functional
- performance

Middleware
Layer

Service mediating
network
connections
according to
different qualities

Major There should be a service which lists different
network connections depending on specified
properties (connection speed, encryption).
Devices can then negotiate such connections with
remote devices, without the need to take care about
the networking details

In 9 out of 10 cases devices
should be able to automatically
negotiate their networking
condition.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-185�
http://localhost:8010/jira/browse/HYDRA-184�
http://localhost:8010/jira/browse/HYDRA-182�
http://localhost:8010/jira/browse/HYDRA-180�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 68 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-179 Non-Functional
- performance

Service
Discovery

Dynamic resource
handling

Major Resources (computational as well as devices) should
be able to join or leave the environment whenever
they choose. Could e-g. be enabled by short-lived
transient services

Resources are able to join/leave
the runtime middleware within
less than 8 sec.

Part of
specification

HYDRA-178 Functional Security Single-sign-on, run
anywhere

Major Single-sign-on, run-anywhere authentication service,
with support for delegation of credentials to sub-
computations, and mapping from global to local user
identities can be beneficial in distributed
environments.

One authorisation is sufficient
to use resources in a distributed
environment.

Ambiguous
Requirement

HYDRA-177 Functional Configurabilit
y

Dynamic
scheduling of
resource usage

Major Dynamic scheduling of resource utilisation enables
for applications to tailor their behaviour dynamically
so as to extract the maximum performance from the
available resources and services, increases fault
tolerance and cope with unexpected situations.

Application is able to re-
schedule resource utilisation in
80% of single resource failure
cases, if there exists the
suitable resource(s) for
substitution.

Part of
specification

HYDRA-176 Functional Architecture Aggregation of
resources

Minor Aggregation of resources (e.g. computational)
enables to outperform the limitations of a single
system and to leverage available resource distributed
across devices. This aggregation should be based on
automatic coordination of multiple resources.

Device can distribute
computation efforts among
several other devices

Part of
specification

http://localhost:8010/jira/browse/HYDRA-179�
http://localhost:8010/jira/browse/HYDRA-178�
http://localhost:8010/jira/browse/HYDRA-177�
http://localhost:8010/jira/browse/HYDRA-176�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 69 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-175 Constraint Middleware
Layer

Support for
resource sharing
standards

Major Middleware should support actual standards to
describe what should be shared, who is allowed to
share, the conditions under which sharing occurs,
and protocols to negotiate access to individual
resources.

Sharing resources is possible
using main producers standards
in 80% of cases.

Ambiguous
Requirement

HYDRA-174 Functional Architecture Coordinated
resource sharing

Major Resource sharing enables the exploitation of
distributed collections of available resources both
computational as well as other services.
Scheduling computation and access to resources is
essential for running several applications on the
middleware concurrently.

Resources can be shared by at
least two entities.

Part of
specification

HYDRA-172 Functional Architecture Learning resource
usage

Minor Learning usage patterns of utilizing devices and
computational resources, and collaboration among
application components is essential for self-
configuration in order to optimise usage of available
resources and overall application performance.

Model of a resource usage can
be learnt.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-175�
http://localhost:8010/jira/browse/HYDRA-174�
http://localhost:8010/jira/browse/HYDRA-172�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 70 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-171 Functional Architecture Learning user
behaviour patterns

Major Learning of basic user behaviour patterns on device
level (device configuration, sensor activation) in
relation to specific users and specific security and
situation contexts. Adaptation of devices enables
applications to offer added value (e.g. detection of
unusual situations, customized default
configuration).

Device knowledge model of
user behaviour can be
expanded with new
information.

Part of
specification

HYDRA-170 Functional Architecture Statefull and
stateless
communication

Minor Application developers should have the possibility
to use statefull as well as stateless communication
between components.

HYDRA provides an API that
allows the implementation of
stateful and stateless
communication protocols.

Part of
specification

HYDRA-167 Functional Architecture Distributed
response
composition

Major Service orchestration should also enable the
distribution of responsibility of response
composition (e.g. Multi agent collaboration).

Response composition is
distributed among two entities
at least.

Part of
specification

HYDRA-164 Constraint Interface Support for
Service standards

Major Middleware should support widely used standards
for service description, discovery, orchestration and
execution.

Standards defined by W3C and
OASIS implemented.

Part of
specification

HYDRA-163 Functional Middleware
Layer

Policy and Context
are not part of the
middleware

Major Context awareness as well as making decisions
based on policy strategies can be resource intensive
computing processes. Modules providing these
functionality must not be part of the middleware.

The middleware does not
implement context awareness
and policy strategies.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-171�
http://localhost:8010/jira/browse/HYDRA-170�
http://localhost:8010/jira/browse/HYDRA-167�
http://localhost:8010/jira/browse/HYDRA-164�
http://localhost:8010/jira/browse/HYDRA-163�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 71 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-162 Functional Middleware
Layer

Middleware allows
implementation of
fault detection
service.

Major Although fault detection as part of the middleware is
not mandatory, the middleware must lay the
foundation (e.g. an API) for building such services.

The middleware includes an
API to implement fault
detection.

Part of
specification

HYDRA-161 Functional Middleware
Layer

Middleware must
implement a role
concept

Critical A role concept can significantly simplify the
resolution process of contradicting instructions.

A role concept implementaion
is part of the middleware that
can resolve contradicting
instructions in 90% of all cases.

Part of
specification

HYDRA-160 Functional Device
Discovery

Search masks for
device/service
discovery

Critical When the developer needs a service he wants to be
able to define search criteria for discovery of
services

Search criteria can be specified
and are respected by search
services

Part of
specification

HYDRA-159 Non-Functional
- operational

Architecture Service brokers
must be organized
in a hierarchical
way

Minor With hierarchical brokers the system becomes more
robust and scalable. Users do not want that
everything acts up in case of a fire and a broker goes
down.
Additionally hierarchical brokers allow for having
certain rules/services only within a sub-domain.

Brokers are organized
hierarchically

Part of
specification

HYDRA-158 Functional Communicati
on
Service
Discovery

There should be a
hook-up-service

Critical When the developer creates a new application/device
he wants to have a broker that can supply him with
all available services that match certain criteria.

A request for a specific service
according to specific keywords
results in the provision of the
corresponding service in 8 out
of 10 cases

Part of
specification

http://localhost:8010/jira/browse/HYDRA-162�
http://localhost:8010/jira/browse/HYDRA-161�
http://localhost:8010/jira/browse/HYDRA-160�
http://localhost:8010/jira/browse/HYDRA-159�
http://localhost:8010/jira/browse/HYDRA-158�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 72 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-157 Functional Service
Discovery

Availability of
combined services

Minor A developer wants to easily access a higher level
service which is in fact a combination of multiple
services

High level services, consisting
of at least two basic services,
can be composed manually by
the developer but this will not
be done automatically.

Part of
specification

HYDRA-155 Non-Functional
-
maintainability

Communicati
on

All communication
occurs through a
central
communication
unit

Critical Application developers need total control over a
HYDRA system. Decentralized communication is
considered as not feasible.

Communication and
coordination happens through
centralized unit.

Part of
specification

HYDRA-154 Non-Functional
- usability

Communicati
on

Physical details of
communication are
invisible to the
developer

Major Developer is only intererested in getting messages to
other devices and (very often) not in how they get
there

Developer can build up basic
communication links between
two devices without having to
know what the physical
transport layer looks like.

Part of
specification

HYDRA-153 Functional Configurabilit
y
Devices
IDE
Interface

Automatic
generation of user
interface

Minor Manufacturers describe their devices in a special
description language which can be used to
automatically generate user interfaces for each
device.

a user interface generator for
all devices with standard
capabilities exists

Part of
specification

HYDRA-152 Functional Interface User must be able
to overwrite
automatism

Critical Users dislike the idea of losing control and want to
have the means to change system decisions

User can overwrite system
automatisms in 90% of all
cases

Part of
specification

HYDRA-151 Functional Devices Devices send
events when their
status changes

Critical This alleviates the problem of always having to poll
for a device's status, when another device is
interested in that status.

10 status changes at device
level result in 10 events sent

Part of
specification

http://localhost:8010/jira/browse/HYDRA-157�
http://localhost:8010/jira/browse/HYDRA-155�
http://localhost:8010/jira/browse/HYDRA-154�
http://localhost:8010/jira/browse/HYDRA-153�
http://localhost:8010/jira/browse/HYDRA-152�
http://localhost:8010/jira/browse/HYDRA-151�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 73 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-148 Functional Middleware
Layer

Access to basic
and extended
functionality

Major The middleware should provide a device's basic
functionality via standardized, common methods.
The way, extended / extra functionality can be
accessed, should be also standardized.

HYDRA provides standardized
access methods for at least 90%
of all HYDRA-enabled
devices. Some devices can
have proprietary interfaces.

Part of
specification

HYDRA-147 Functional SDK Simple interface
for exploring /
testing devices

Major There should be an unintelligent/simple user
interface which allows one to explore / test the
functionality of a device out of the box.
This interface is not part of the device, but can
connect to all different kinds of devices.

A user interface for testing /
exploring the funtionality of a
device exists in the SDK.

Part of
specification

HYDRA-146 Functional Devices Report errors in
devices

Major Devices should be able to report errors The API provides at least one
interface for reporting all kinds
of possible errors to the
middleware

Part of
specification

HYDRA-144 Non-Functional
- usability

Networking Detect defective
connection

Minor The middleware should be able to detect if a device
that has recently been integrated into the hydra
network was not connected appropriately for
whatever reason.
May be that device simply does not fit into the
network of other devices.

Middleware is able to detect
defective connections of
devices in 8 out of 10 cases.

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-148�
http://localhost:8010/jira/browse/HYDRA-147�
http://localhost:8010/jira/browse/HYDRA-146�
http://localhost:8010/jira/browse/HYDRA-144�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 74 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-141 Functional _unassigned Download and
harmonisation of
third party device
ontologies

Major Device ontological models describing devices,
which will be provided by manufacturers or third
parties, should be automatically downloaded
(updated) and harmonised to ensure the same
ontological view. Formal definition of ontologies
should be realised using the world wide accepted
formats, recommended by W3C, such as RDF,
OWL, OWL-S.

Ontologies from different
manufacturers can be used if
they are in RDF, OWL or
OWL-S

Reopened

HYDRA-139 Functional Architecture Knowledge model
of hydra
middleware

Major Knowledge model of the whole middleware
providing developers with knowledge on all
middleware components offers a guidance how ho
compose a hydra-based application.

Support for knowledge model
based rapid development is
available

Part of
specification

HYDRA-138 Functional Modelling Reasoner module Major A reasoner is fundamental to use ontological
knowledge models and to infer new knowledge
based on information from the models.

Reasoner module exists. Part of
specification

http://localhost:8010/jira/browse/HYDRA-141�
http://localhost:8010/jira/browse/HYDRA-139�
http://localhost:8010/jira/browse/HYDRA-138�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 75 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-137 Functional Communicati
on

Knowledge model
of communication

Major A knowledge model of possible connections and
communication protocols of available devices, and
cooperation/negotiation patterns enables to control
communication within an application under normal
circumstances as well as in unpredictable situations
(fault tolerance and graceful degradation)

Devices are able to select
device and suitable protocol for
communication in dependence
of available devices and their
communication capabilities in
80% of irregular situations (if
there exists available
connection and communication
protocol).

Reopened

HYDRA-136 Non-Functional
- performance

Architecture Dynamic
architecture

Major An architecture of a running HYDRA system can be
easily modified by increasing or decreasing the
degree of centralisation in order to balance
utilisation of available resources.

In 95% of all cases, HYDRA
supprots dyncmic migration of
components to realise
centralised and decentralised
systems.

Part of
specification

HYDRA-135 Functional SDK Migration to other
platforms

Major The IDE should support easy migration of HYDRA
applications between different platforms. The IDE
should contain tools for the identification of
platform dependent code. Tools supporting the
identification and writing of platform specific code
should make the developement process more easy
and efective.

The IDE supports application
migration at least between two
different platforms.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-137�
http://localhost:8010/jira/browse/HYDRA-136�
http://localhost:8010/jira/browse/HYDRA-135�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 76 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-133 Non-Functional
- usability

SDK Platform
independent (meta)
codebase

Critical Using only one (meta) codebase for an application to
be deployed on several platforms reduces
development cost, time to deployment, and makes
maintenance more easy since the developer is not
bothered by writing platform specific code.

A unique codebase can be used
at least on two different
platforms.

Part of
specification

HYDRA-132 Functional Middleware
Layer

Hot swap of
platform
components

Major Deployed Hydra application should enable
replacement of a platform component (utilised by
some middleware module(s)) without interrupting
operation. It enables to reduce down time of the
application.

Hot swapping a component at
run time is possible in 50% of
all cases.

Part of
specification

HYDRA-131 Functional IDE Model-based rapid
development
environment

Major Development process can be speeded up by utilising
formal models (structural as well as behavioural) of
applications. Using the formal models, applications
could be analysed, simulated, visualised, validated
against requirements and documented on various
levels of abstraction.

IDE enables to use abstract
models.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-133�
http://localhost:8010/jira/browse/HYDRA-132�
http://localhost:8010/jira/browse/HYDRA-131�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 77 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-130 Non-Functional
- usability

Modelling Support for
abstract modelling

Major Enabling developers to work on more abstract level
makes their task easier due to cutting out the
necessity to cope with complexity imposed by target
platform specific issues.

No need to cope with target
platform specific issues in 9 out
of 10 cases.

Part of
specification

HYDRA-128 Functional Architecture
Communicati
on

Comply with
industrial standards

Major The IDE and middleware should embrace existing
industrial device integration and communication
standards (initially at least the EIB/KNX for
building automation).

Claimed support for any
specific standard in HYDRA
can be verified using the
conformance rules / procedures
available from the issuing
standards body.

Reopened

HYDRA-127 Functional Context
IDE
Middleware
Layer

Spatial information
management

Major In order to be able to deal with the location of
devices and other actors Hydra needs to manage
spatial information.

The system can refer to in 90%
of all cases "where" something
is with a accuracy of 80%.

Part of
specification

HYDRA-126 Functional IDE Automatic Device
ontology updates

Major The device ontology should automatically update its
device descriptions.

The device ontologty can
detect device updates and
handle that in 7 of 10 cases.

Part of
specification

HYDRA-125 Non-Functional
- usability

Middleware
Layer

Transactional
updates

Major It should be possible to rollback and recover from an
unsuccesful update.

Rollback works in 7 out of 10
scenarios.

Part of
specification

HYDRA-124 Non-Functional IDE
Middleware
Layer

Automatic
downloadable
updates over the
Internet

Major The middleware and IDE should have automatic
update facilities that allows downloading and
installation of latest security and functional updates.
This should be configurable.

Automatic updates works
without disruption.

Quality
Check passed

http://localhost:8010/jira/browse/HYDRA-130�
http://localhost:8010/jira/browse/HYDRA-128�
http://localhost:8010/jira/browse/HYDRA-127�
http://localhost:8010/jira/browse/HYDRA-126�
http://localhost:8010/jira/browse/HYDRA-125�
http://localhost:8010/jira/browse/HYDRA-124�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 78 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-123 Non-Functional
- usability

Architecture
Configurabilit
y

Support updates at
run-time

Major The middleware should be dynamically updatable at
run-time due to critical systems updates (security
updates, component upgrades, etc.).

Deployed middleware should
execute 70% of the dynamic
updates without failure and
restart

Part of
specification

HYDRA-122 Non-Functional
- usability

Middleware
Layer

Configurable and
easy to install
middleware

Major The middleware should be configurable and easy to
install/deploy.

The average installation time is
less than 1 hour.

Part of
specification

HYDRA-121 Functional IDE Optimised device
ontology

Major It should be possible to optimise the device ontology
for instance by deploying a subpart of it to be used
in device discovery process.

Possible to select and extract
subparts of the device ontology

Requirement
does not
make sense

HYDRA-119 Functional Architecture
Context
IDE

Domain modelling
support

Major The middleware and IDE should be able to interface
with application domain frameworks
representing core concepts and functions of specific
application domains. These could in the most basic
form be represented by UML Profiles, or domain
ontologies.

The HYDRA IDE supports at
min 2 defined domain
modelling frameworks.

Part of
specification

HYDRA-118 Non-Functional
- operational

Context
Device
Discovery
Middleware
Layer
Service
Discovery

Considering
interaction device
capabilities

Major The device should be able to collect data about the
environment regarding other hydra devices in its
proximity.
Additionally, the system should be able to use this
knowledge in adapting information sent to the
interaction devices.

Interaction devices receive
information that is tailored to
its capabilities

Part of
specification

http://localhost:8010/jira/browse/HYDRA-123�
http://localhost:8010/jira/browse/HYDRA-122�
http://localhost:8010/jira/browse/HYDRA-121�
http://localhost:8010/jira/browse/HYDRA-119�
http://localhost:8010/jira/browse/HYDRA-118�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 79 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-117 Functional Architecture
IDE
Middleware
Layer

HYDRA
component
ontology

Major In order to support automatic device proxy creation,
a HYDRA middleware managers ontology is
needed. The ontology will facilitate the selection of
the appropriate device and service managers to
implement the proxy, depending on the discovery
protocol and device types.

HYDRA devicce and service
managers can be identified and
selected through a software
component ontology

Part of
specification

HYDRA-116 Functional Middleware
Layer

Prioritisation of
services

Major Middleware should provide different
methods/policies to prioritise available services.

Supports at least 2 different
methods.

Quality
Check passed

HYDRA-109 Functional Configurabilit
y
Device
Discovery
IDE

Device
Virtualization

Major The complexity of devices may be hidden, or
simplified, by means of virtual device interfaces,
these would correspond to "views" on device
descriptions as provided by the HYDRA device
models (ontologies).

An existing virtualization can
be used to find exactly one
proper HYDRA device.

Part of
specification

HYDRA-107 Functional IDE Tool for managing
access rights of
services

Major Tool that allows setting and managing access rights
of services and resources.

Access rights can be
configured and managed.

Quality
Check passed

HYDRA-106 Functional Architecture
Middleware
Layer
SDK

Persistent storage Major Settings, configuration and other data should be
persistently stored in the system.

Data can be peristently stored. Reopened

HYDRA-105 Functional Middleware
Layer

Controlling access
rights to services

Major The middleware should provide methods to control
access rights to services and resoruces

All un-authorised accesses are
blocked.

Quality
Check passed

http://localhost:8010/jira/browse/HYDRA-117�
http://localhost:8010/jira/browse/HYDRA-116�
http://localhost:8010/jira/browse/HYDRA-109�
http://localhost:8010/jira/browse/HYDRA-107�
http://localhost:8010/jira/browse/HYDRA-106�
http://localhost:8010/jira/browse/HYDRA-105�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 80 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-104 Functional Middleware
Layer

Automatic
Discovery of
Services

Major It should be possible to configure the middleware to
discover available services that meets defined
criteria.

8 of 10 services are
automatically discovered.

Part of
specification

HYDRA-103 Functional IDE Automatic device
ontology
construction

Major The construction of a device ontology should be
facilitated through finding and parsing product or
device descriptions to annotate and produce
ontology entries. The component should handle
different input formats like Word, PDF, HTML,
databases.

5 of 10 device descriptions can
be succesfully processed

Part of
specification

HYDRA-102 Functional IDE Device Ontology
with user interface

Major Tool that allows browsing, searching, navigating
device classes and their capabilities.

Tool for browsing device
ontology exists

Part of
specification

HYDRA-100 Non-Functional
- operational

Architecture Graceful
degradation

Major The system should be able to continue working even
when devices and/or communication fails.

The system continues working Reopened

HYDRA-99 Functional IDE
Middleware
Layer

Device reliability
level

Major It must be possible to assign a reliability level to a
certain device that for instance can be used to
resolve contradictory device events.

Reliability levels exist. Part of
specification

HYDRA-98 Functional Middleware
Layer

Detection of
device failures

Major The system should be able to detect malfunctioning
devices in order to be robust.

Malfunctioning devices are
detected in 8 out fo 10 cases.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-104�
http://localhost:8010/jira/browse/HYDRA-103�
http://localhost:8010/jira/browse/HYDRA-102�
http://localhost:8010/jira/browse/HYDRA-100�
http://localhost:8010/jira/browse/HYDRA-99�
http://localhost:8010/jira/browse/HYDRA-98�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 81 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-97 Functional Middleware
Layer

Detect livelocks Major The middleware must be able to detect livelocks
between two or more devices, i.e. devices that are
constantly changing each others state back and forth.

Detects livelocks in 7 out of 10
cases

Part of
specification

HYDRA-96 Functional Middleware
Layer

Detect deadlocks Major The middleware must have functionalities for
detecting deadlocks between devices, for instance
two devices that are waiting for each other to take an
action.

Detects deadlocks in 7 out 10
cases

Part of
specification

HYDRA-95 Functional IDE Rule Editor Major A tool that allows editing, visualising and
structuring of device and application rules.

The rule editor works and
allows expression of 80 percent
of rules in an application

Quality
Check passed

HYDRA-94 Functional IDE Simulation
environment

Major Use of a simulation environment is important for
validating the rules/software interaction with
devices. It can also be used for replaying the event
log in order to examine unwanted system behaviour.

Simulation environment is
available

Part of
specification

HYDRA-93 Functional Configurabilit
y
IDE
Middleware
Layer

Re-playable event
logging

Major The HYDRA system should maintain a re-playable
event log of all events and tasks relevant for a
specific application and its set of related devices. It
should be possible to parameterize the logging
funcitonality regarding event types and time.

History list and event logging
is automatically available after
the application is deployed.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-97�
http://localhost:8010/jira/browse/HYDRA-96�
http://localhost:8010/jira/browse/HYDRA-95�
http://localhost:8010/jira/browse/HYDRA-94�
http://localhost:8010/jira/browse/HYDRA-93�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 82 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-92 Functional Middleware
Layer

Rule-based
configuration of
devices

Major The possibility for the developer to specify device
behavior using rules. It should be possible to derive
and re-use rules from pre-existing or generic rule
sets for application domains.
Possibility to hide device specific details.

The functionality (services) of
a device is accessible (by user
or application) thru a rule-
based interface.

Part of
specification

HYDRA-87 Functional Context AmI module Minor This module shall support discovery, security,
devices ontology, and domain ontology among
others to collect all ambient intelligence related
issues in one module.

A module exist that is able to
collect all ambient intelligence
related issues supporting
discovery, security, devices
ontology, and domain
ontology.

Part of
specification

HYDRA-86 Functional Modelling Self adaptability Critical The middleware should automatically adapt to new
situations, e.g. if another hardware component has
been made available. This functionality needs to
consider the influence of the work of already
existing hardware

Automatic adaptation to new
added /removed devices in 9
out of 10 cases

Part of
specification

HYDRA-84 Functional Configurabilit
y

Configuration
abilities for
developers

Major This is important for a flexible development At least 50 functionalities out
of 100 documented
functionalities of the device
can be configured by the
developers

Part of
specification

HYDRA-83 Functional Context Adapt presentation
to device
capabilities

Major Adjust and adapt content so that it is suitable for the
devices capabilities or objects which are planned for
displaying them

Every content adapts
automatically to the resolution,
screen size, and bandwith of
the displaying device in 99,9%
of all cases

Part of
specification

http://localhost:8010/jira/browse/HYDRA-92�
http://localhost:8010/jira/browse/HYDRA-87�
http://localhost:8010/jira/browse/HYDRA-86�
http://localhost:8010/jira/browse/HYDRA-84�
http://localhost:8010/jira/browse/HYDRA-83�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 83 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-82 Functional Middleware
Layer

Data Logging Major For system maintenance and debugging, logging
functionality is mandatory.

HYDRA provides a logging
component that can log system
actions. Also, an API is
available that enables
developers to include logging
in their applications.

Part of
specification

HYDRA-80 Functional Context Proactivity Major The system should react proactively anticipating
new operational circumstances taking into account
information from different sources

????????Does the system can
handle a limited set of expected
situations

Ambiguous
Requirement

HYDRA-76 Functional Interface
Security

Interfaces for user
configuration

Major To enable the user to configure his security settings,
the system should provide appropriate interfaces.

HYDRA supports particular
mechanisms in order to
improve security usability in
user interfaces

Requirement
does not
make sense

HYDRA-75 Functional Configurabilit
y
Devices
Security

Auto
configuration/ re-
configuration

Major To ensure, that the system is scalable, an auto-
configuration of the security system must be
provided. In this case auto-configuration means for
example the adoption of the security policies by the
entering device.

HYDRA allows to adopt
security policies of entering
devices to the GRID

Ambiguous
Requirement

HYDRA-72 Functional Modelling
Security

Role-based access
control

Major An entity does not trust another entity in all cases.
For example it may have trust in the abilities of
another as a technician, but not as a doctor.
Therefore, policies should regulate the entity's
permissions depending on the current context.

HYDRA allows role-based
access control modeling in
order to distinguish specific
levels of trust depending on the
given context.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-82�
http://localhost:8010/jira/browse/HYDRA-80�
http://localhost:8010/jira/browse/HYDRA-76�
http://localhost:8010/jira/browse/HYDRA-75�
http://localhost:8010/jira/browse/HYDRA-72�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 84 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-70 Functional Modelling
SDK
Security

The security
system/model must
be highly scalable.

Major As nodes will be easily added to networks or trusted
domains, the network itself will expand very easily.
Therefore the security system must be scalable.

The security system
continuously scales and allows
support for both small and
specific as well as large and
general ambient lifestyle
systems.

Requirement
does not
make sense

HYDRA-67 Functional _unassigned Support Wireless
Security

Major Since the majority of the communication in Hydra
will be wireless, the hydra security model should
enable the wireless security by supporting wireless
security protocols.

Is the wireless communication
secure in hydra?

Ambiguous
Requirement

HYDRA-66 Functional Security Access control for
context data

Major Since the users don't want others to have full access
to their data, context awareness control must be
provided. For example there is no need for the
technician to read the health related files of his
customer.

It is possible to control the
access to context data of a user
either during runtime or when
setting up the middleware

Reopened

HYDRA-63 Functional Communicati
on
Interface
Networking
Security

Remote access
through distrusted
networks

Major As users are moving freely around in their
environment, a secure remote access to their private
data/devices at home has to be ensured. This may be
realized through Virtual Private Networks (VPN).

HYDRA allows the integration
of mechanisms that allow
secure and confidential remote
access to private information.

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-70�
http://localhost:8010/jira/browse/HYDRA-67�
http://localhost:8010/jira/browse/HYDRA-66�
http://localhost:8010/jira/browse/HYDRA-63�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 85 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-60 Functional Configurabilit
y
Security

Delegation of
access rights

Major In case of eBilling and others, third party
authorisation (i.e. delegation of access rights from a
legitimate user to a different user of his choice) is
necessary. These may happen through certificates
and digital signatures.

Simulate a Billing Scenario and
check whether a third party can
do the transaction on behalf of
users.

Part of
specification

HYDRA-57 Functional Context
Security
Service
Discovery

Enable profiling Major To enable context-aware access, the security
model/system must provide user profiling.

This does not mean, that all the profile is open to
everybody. The profile may be stored within the
intimate domain, which is only accessible by the
owner, and only information necessary will be
passed out.

For access control, only the credentials may be used
for the profiling, which are not too private, as they
are exchanged anyway.

HYDRA allows and supports
profiling in order to enable
service providers to serve
personalised services to third
parties (e.g. end-users).

Ambiguous
Requirement

HYDRA-52 Functional Security Mechanisms for
non-repudiation

Major Especially for accounting information it is necessary
to proof that a transaction took place.

Set up a scenario in which a
communication partner can't
repudiate a message he has
sent.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-60�
http://localhost:8010/jira/browse/HYDRA-57�
http://localhost:8010/jira/browse/HYDRA-52�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 86 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-51 Functional Communicati
on
Configurabilit
y
Context
Security

Private
communication
must be
particularly
secured

Major Any private communication must not be monitored
by any unauthorised third party.

HYDRA middleware has to
provide particular mechanisms
to protect communication
indicated as 'private'.

Requirement
does not
make sense

HYDRA-50 Functional Architecture
Security

An identity
management must
be provided

Major HYDRA middleware has to provide highly
sophisticated mechanisms for identity management
in order to ensure that in systems featuring HYDRA
only authorised access to data, applications and
devices is possible.

Identity management
mechanisms are provided at all
levels and to all stakeholders.
Furthermore, the identification
process of the managers must
be uniform and standardised.

Reopened

HYDRA-48 Functional Communicati
on
Middleware
Layer
Security

Support for
multilateral
communication
involving several
security protocols.

Major The HYDRA security system should support
multilateral communication involving several
security protocols.

The HYDRA security
framework supports
mechanisms (e.g. as plug-in
extension) to support
multilateral communication
between today's and future
security protocols.

Ambiguous
Requirement

HYDRA-46 Functional Configurabilit
y
Interface
Security

End-User
Configurability

Major According to the so-called Beehive-Scenario end-
users must be able to do some minor configuration
by themselves (i.e for example user can introduce/
add a trusted device to his network).

HYDRA allows and supports
the developer-user to integrate
mechanisms in order to let the
end-user do some minor
configuration.

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-51�
http://localhost:8010/jira/browse/HYDRA-50�
http://localhost:8010/jira/browse/HYDRA-48�
http://localhost:8010/jira/browse/HYDRA-46�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 87 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-44 Functional IDE IDE must provide
support for Model
Driven
Architecture

Minor The developer must be able to choose the
appropriate software model for his/her project and
hence the IDE must provide support for model
driven architecture. The user must be able to select
various models while starting his project. For
example MVC architecture, Client-Server Model
etc.

The user is able to select MVC
Architecture for his new
project.

Part of
specification

HYDRA-43 Functional IDE Undo / Redo
Feauture

Trivial Just in the case of any other popular IDE, hydra IDE
must also have a Undo/redo functionality so that the
developer can go back to the previous state in case
of an error.

The HYDRA IDE provides
undo / redo functions.

Part of
specification

HYDRA-42 Functional IDE Maintaining a
History

Trivial The IDE must maintain a History cache for the
previous projects. It will make it easier for the
developer to access the project which he/she was
programming before and resume from where he/she
left.

The user is able to view the
history of his actions.

Part of
specification

HYDRA-41 Functional SDK Hydra Developer's
Companion

Major Complete and comprehensable documentation is
very important to the hydra software developer.

Complete documentation is
available. It is at least
considered "very helpful" by at
least 8 out of 10 developers.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-44�
http://localhost:8010/jira/browse/HYDRA-43�
http://localhost:8010/jira/browse/HYDRA-42�
http://localhost:8010/jira/browse/HYDRA-41�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 88 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-40 Functional IDE IDE must be
capable of
deploying software
to real devices.

Major The IDE must support multiple interfaces with
different devices, so that the developer can not only
test his code on the simulation tool but also deploy it
on the actual devices through the IDE. This might
require the IDE to have device specific interfaces/
drivers.

Developers can deploy their
application code on real
devices via the IDE.

Part of
specification

HYDRA-39 Functional SDK Cross compiling
on different
architectures

Minor Hydra SDK must support cross compiling on
different architectures

Cross compiling features are
available in the IDE.

Part of
specification

HYDRA-38 Functional IDE
SDK

Compiling &
debugging feature

Major Just like any other popular IDE, the Hydra IDE must
be able to compile and debug the code.

Compiling & debugging
functionality is available in the
IDE.

Part of
specification

HYDRA-37 Functional IDE Online Help /
documentation
with IDE

Minor IDE must provide a help/ documentation so that the
users can directly access the help pages to know
more about the working of IDE or about deploying
IDE and its various features.

Users are able to open & view
help pages related to creating a
new project and the
corresponding steps from
within the IDE.

Part of
specification

HYDRA-36 Non-Functional
- look and feel

IDE Drag & Drop
components

Minor Drag & Drop functionality makes the programming
easy for the developer

User is able to drag & drop
components into the project.

Part of
specification

HYDRA-34 Non-Functional
- usability

IDE The IDE must be
easy to use .

Major If the IDE is cluttered and complex, It will refrain
the users from using Hydra Middleware

40 out of 50 users should find
that the IDE is easy to use

Part of
specification

http://localhost:8010/jira/browse/HYDRA-40�
http://localhost:8010/jira/browse/HYDRA-39�
http://localhost:8010/jira/browse/HYDRA-38�
http://localhost:8010/jira/browse/HYDRA-37�
http://localhost:8010/jira/browse/HYDRA-36�
http://localhost:8010/jira/browse/HYDRA-34�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 89 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-31 Non-Functional
- look and feel

SDK An easy-to-use
programming
framework should
be provided

Critical The programming framework provided by the SDK
should be easy to use in the sense that it is intuitive.

9 out of 10 developers
recognise the IDE as intuitive.

Part of
specification

HYDRA-30 Functional IDE Security Modelling
to choose services
and devices

Major The developer should be able to choose predefined
security modules he wants to use in his application.
This could be done in a "Drag&Drop" way.

Tthe developer can include
predefined software modules
for security in his application.

Part of
specification

HYDRA-29 Functional IDE IDE provides real-
time hot plugging
of software
modules

Minor The developer must be able to add modules/plug-ins
and remove them from the IDE in real time.

The developer can add/delete
software modules in real time.

Part of
specification

HYDRA-28 Functional IDE Emulation /
simulation tool is
needed

Major Developers need to test applications under reality-
like conditions.
IDE integrated software modules for real time
evaluation of software components should be
available.

Eemulation / simulation tools
exist.

Part of
specification

HYDRA-27 Non-Functional
- usability

Configurabilit
y

Enable
configuration for
end-users

Major Users want to configure the system and perform
changes to the application with ease

90% of the end-users are able
to change the behaviour of their
application

Part of
specification

HYDRA-26 Non-Functional
- usability

Configurabilit
y

Central
configuration

Major In order to enhence the system's usability, all
HYDRA components sould be managable over a
single component.

The configuration and
administration of a HYDRA
system occurs via a central
component.

Part of
specification

http://localhost:8010/jira/browse/HYDRA-31�
http://localhost:8010/jira/browse/HYDRA-30�
http://localhost:8010/jira/browse/HYDRA-29�
http://localhost:8010/jira/browse/HYDRA-28�
http://localhost:8010/jira/browse/HYDRA-27�
http://localhost:8010/jira/browse/HYDRA-26�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 90 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-25 Functional Architecture
Configurabilit
y
Interface
Middleware
Layer
Security

Overwriting
system decisions

Critical Possibly dangerous outcomes of system decisions
must be overwritible by end-users

End-users can overwrite 90%
of the application decisions

Part of
specification

HYDRA-21 Constraint -
assumption

Architecture HYDRA should be
a Service-Oriented
Architecture
(SOA)

Blocker HYDRA should be a SOA per the Description of
Work of the project

HYDRA is compatible to the
SOA-definition by OASIS:
http://www.oasis-
open.org/committees/download
.php/19679/soa-rm-cs.pdf

Part of
specification

HYDRA-19 Constraint -
scope of the
product

Middleware
Layer

Support of low-end
devices

Major HYDRA must support low-end devices like RFID
tags. Therefore, HYDRA must be compatible with at
least 32-bit devices with < 512 KB RAM/FLASH or
less. For smaller devices, HYDRA provides proxies.

Middleware is able to be
installed and run on low-end
32-bit devices with 512 KB
RAM/FLASH in 90% of all
cases. . Proxies can be created
to support more limited devices
in 40% of all cases.

Part of
specification

HYDRA-17 Constraint -
requirement
constraint

Architecture When applicable,
middleware
interfaces are
exposed by WSA-
compatible
services

Major Web Service Architecture (WSA;
http://www.w3.org/TR/ws-arch/) introduces a
common definition of what a web service is and
describes minimal characteristics of what is common
to all web services. When web services are used in
HYDRA, they should comply to WSA

In min. 90% of all cases,
HYDRA web service interfaces
are realised as WSA-
compatible web services. In the
remaining cases, web services
use proprietary formats.

Part of
specification

HYDRA-14 Constraint -
assumption

Device
Discovery

Automatic device
discovery

Critical In order to be able to ad-hoc enter a device into an
environment

From 100 devices brought into
a new environment, at least 90
should be automatically
discovered

Part of
specification

http://localhost:8010/jira/browse/HYDRA-25�
http://localhost:8010/jira/browse/HYDRA-21�
http://localhost:8010/jira/browse/HYDRA-19�
http://localhost:8010/jira/browse/HYDRA-17�
http://localhost:8010/jira/browse/HYDRA-14�

Hydra D2.7 Updated Systems Requirements Report

Version 1.3 Page 91 of 91 04-01-2010

Key Requirement
Type

Component/s Summary Priority Rationale Fit Criteria Status

HYDRA-13 Functional _unassigned Communiction
module - negotiate
and establish
suitable
communication
channel

Major Open

HYDRA-10 Functional _unassigned Communiction
module - Identify
communication
partners in the
proximity like
sensors etc.

Major Open

HYDRA-9 Functional _unassigned Management of
Message Queues

Minor Open

HYDRA-8 Functional Security The middleware
must support
mechanisms for
user authentication

Blocker Different user groups with different access rights
and responsibilities interact with complex distributed
systems. HYDRA systems must be able to identify
users and determine their access rights and their role
in the system.

If necessary, HYDRA systems
can identify system users in
100% of all cases.

Ambiguous
Requirement

http://localhost:8010/jira/browse/HYDRA-13�
http://localhost:8010/jira/browse/HYDRA-10�
http://localhost:8010/jira/browse/HYDRA-9�
http://localhost:8010/jira/browse/HYDRA-8�

	1. Introduction
	1.1 Structure of this document

	2. Executive Summary
	3. Updated requirements for Hydra
	3.1 Requirements of WP3 - Architecture Design Specification
	3.1.1 Architecture
	3.1.2 Devices

	3.2 Requirements of WP4 - Embedded AmI Architecture
	3.2.1 Architecture
	3.2.2 Communication
	3.2.3 Configurability
	3.2.4 Networking
	3.2.5 IDE
	3.2.6 Interface

	3.3 Requirements of WP5 - Wireless Networks and Devices
	3.3.1 Architecture
	3.3.2 Communication
	3.3.3 Networking

	3.4 Requirements of WP6 - SOA and MDA Middleware
	3.4.1 Architecture
	3.4.2 Configurability
	3.4.3 Device Discovery / Devices
	3.4.4 IDE
	3.4.5 Middleware Layer
	3.4.6 Security
	3.4.7 Service Discovery

	3.5 Requirements of WP7 – Trust, Privacy and Security
	3.5.1 Architecture
	3.5.2 Communication
	3.5.3 IDE
	3.5.4 Security

	4. Impact on the Work Packages
	4.1 Impact on WP3
	4.1.1 Architecture
	4.1.2 Devices

	4.2 Impact on WP4
	4.2.1 Architecture
	4.2.2 Communication
	4.2.3 Configurability
	4.2.4 Networking
	4.2.5 IDE
	4.2.6 Interface

	4.3 Impact on WP5
	4.3.1 Architecture
	4.3.2 Communication
	4.3.3 Networking

	4.4 Impact on WP6
	4.4.1 Architecture
	4.4.2 Device Discovery
	4.4.3 IDE
	4.4.4 Middleware Layer
	4.4.5 Security
	4.4.6 Service Discovery

	4.5 Impact on WP7
	4.5.1 Architecture
	4.5.2 Communication
	4.5.3 IDE
	4.5.4 Security

	5. Conclusion
	6. Open requirements

