

 Contract No. IST 2005-034891

Hydra

Networked Embedded System middleware for

Heterogeneous physical devices in a distributed architecture

 D6.2 MDA Design Document

Integrated Project

SO 2.5.3 Embedded systems

Project start date: 1st July 2006 Duration: 48 months

Published by the Hydra Consortium 2007-12-21- version 1.0

Coordinating Partner: C International Ltd.

Project co-funded by the European Commission

within the Sixth Framework Programme (2002 -2006)

Dissemination Level: Confidential

Hydra D6.2 MDA Design Document

Version 1.0 Page 2 of 89 2007-12-21

Document file: D6 2 MDA Design Document v1.0.doc

Work package: WP6

Tasks: T – 6.6

Document owner: CNet

Document history:

Version Author(s) Date Changes made

0.10 Matts Ahlsén 2007-08-28 TOC based on Aarhus Ontology WS

0.14 2007-10-19 Structure revised

0.15
Mathias Axling, Matts

Ahlsen
2007-10-26 Sec 4 + 7

0.16 Paolo Sperandio 2007-10-29 Sec 5, Wireless

0.17

Matts Ahlsén, Mathias

Axling, Peter Rosengren,

Peeter Kool, Paolo

Sperandio

2007-11-02 1st draft: sec 1,2,3,4,7

0.18
Klaus Marius Hansen,

Weishan Zhang
2007-11-12

Update of 4.1: code generation +

context modeling, 5.1 and 5.4

0.19
Peter Kostelnik, Matts

Ahlsen
2007-11-20 Update of Device Ontology

0.20
Peter Rosengren. Mathias

Axling, Matts Ahlsén
2007-11-25

Services and Device application

catalogue

0.21
Peter Kostelnik, Peter

Butka, Matts Ahlsén
2007-11-27 Standards & tools

0.22
Stephan Engberg, Morten

Harning
2007-11-30 Semantic resolution added

0.23

Peter Rosengren. Mathias

Axling, Matts Ahlsén,

Peeter Kool

2007-12-03 Update ch. 4-5-6

0.24

Peter Rosengren, Matts

Ahlsén, Peeter Kool, Paolo

Sperandio

2007-12-10 Update ch 5

0.35
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-12 Update ch 4

0.40
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-13

Update ch 6 with new manager

descriptions

0.43
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-13

Update ch 4-6, formatting, revision

of figures

0.50
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-14

Revised Managers descriptions for

Application Elements

0.60
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-15

Revised Managers descriptions for

Device Elements. Added Application

Orchestration Manager

0.70

Peter Rosengren, Matts

Ahlsén, Peeter Kool,

Weishan Zhang

2007-12-17
Revised manager descriptions,

updated Diagnostics Manager

0.80
Peter Rosengren, Matts

Ahlsén, Peeter Kool
2007-12-17 Spell-checked, updated Future Work.

0.85 Peter Rosengren, Matts 2007-12-20 Update with respect to review

Hydra D6.2 MDA Design Document

Version 1.0 Page 3 of 89 2007-12-21

Ahlsén, Peeter Kool comments

0.90

Peter Rosengren, Matts

Ahlsén, Peeter Kool,

Mathias Axling

2007-12-21 2nd revision after internal review

1.0

Peter Rosengren, Matts

Ahlsén, Peeter Kool,

Mathias Axling

2007-12-21
Final version submitted to the

European Commission

Internal review history:

Reviewed by Date Comments

Daniel Thiemert (University of Reading) 2007-12-19 Approved with comments

Pablo Rafael Antolin (TID) 2007-12-20 Approved with comments

Hydra D6.2 MDA Design Document

Version 1.0 Page 4 of 89 2007-12-21

Index:

1. Introduction .. 7

1.1 Background .. 7
1.2 Purpose, context and scope of this deliverable .. 7
1.3 Hydra Innovations and Contributions ... 8

1.3.1 Semantic Web ... 9
1.3.2 OMG Model-Driven Architecture .. 11
1.3.3 Automatic Device Classification and Ontology Design 11
1.3.4 Embedded device semantics and rule engines 12

2. Executive Summary ... 13

3. Requirements for the HYDRA Semantic Model-driven Architecture 15

3.1 User requirements .. 15
3.2 Quality attributes scenarios.. 18

4. HYDRA approach to Semantic MDA .. 20

4.1 Introduction ... 20
4.2 Semantic MDA at design-time .. 22

4.2.1 Model-driven code generation for physical devices 22
4.2.2 Model-driven code generation for Semantic Devices 23

4.3 Semantic MDA at Run-time .. 23
4.3.1 Models for Discovery and the Hydra Device Application Catalogue 23
4.3.2 Use of models for resolving security requirements 26
4.3.3 Use of models for context awareness ... 29

4.4 Standards used .. 31
4.4.1 Modelling and query languages ... 31
4.4.2 Reasoners .. 34

4.5 Platform and Tools .. 35
4.5.1 TopBraid composer ... 35
4.5.2 Protégé-OWL editor ... 35

5. HYDRA ontologies.. 37

5.1 HYDRA ontology architecture ... 37
5.2 Device ontology .. 37

5.2.1 Basic device information .. 37
5.2.2 Device malfunctions .. 38
5.2.3 Device capabilities and state machine .. 40
5.2.4 Device services ... 40
5.2.5 Modelling Wireless and Resource Consumption Aspects 41

6. Middleware managers ... 47

6.1 Application Device Manager ... 48
6.1.1 Purpose ... 48
6.1.2 Related WP6 requirements ... 48
6.1.3 Components ... 51
6.1.4 Dependencies ... 52
6.1.5 Interface .. 52

6.2 Application Service Manager .. 55
6.2.1 Purpose ... 55
6.2.2 Related WP6 requirements ... 55
6.2.3 Components ... 58
6.2.4 Dependencies ... 59
6.2.5 Interface .. 59

6.3 Application Orchestration Manager .. 60
6.3.1 Purpose ... 60
6.3.2 Related WP6 requirements ... 60
6.3.3 Components ... 62

Hydra D6.2 MDA Design Document

Version 1.0 Page 5 of 89 2007-12-21

6.3.4 Interface .. 62
6.4 Application Ontology Manager .. 63

6.4.1 Purpose ... 63
6.4.2 Related WP6 requirements ... 63
6.4.3 Components ... 68
6.4.4 Dependencies ... 69
6.4.5 Interface .. 69

6.5 Application Diagnostics Manager ... 72
6.5.1 Purpose ... 72
6.5.2 Related WP6 requirements ... 72
6.5.3 Components ... 75
6.5.4 Dependencies ... 76
6.5.5 Interface .. 76

6.6 Device Device Manager ... 77
6.6.1 Purpose ... 77
6.6.2 Related WP6 requirements ... 77
6.6.3 Components ... 80
6.6.4 Dependencies ... 81
6.6.5 Interface .. 81

6.7 Device Service Manager .. 82
6.7.1 Purpose ... 82
6.7.2 Related WP6 requirements ... 82
6.7.3 Components ... 83
6.7.4 Dependencies ... 83
6.7.5 Interface .. 83

6.8 Common XML-Schema .. 84

7. Future work ... 85

7.1 Device Discovery .. 85
7.2 Security ontology ... 85
7.3 SW components ontology .. 85
7.4 Ontology design and management .. 85

7.4.1 Ontology design process .. 86
7.4.2 Modifying and Evolving ontologies in HYDRA 86
7.4.3 Mediation, aligning and merging of ontologies 87

8. References .. 88

Figures:
FIGURE 1: THE MIDDLEWARE STACK AND THE ROLE OF WP 6. .. 8
FIGURE 2: SEMANTIC WEB LAYERS (W3C) ... 10
FIGURE 3: SEMANTIC DEVICES PROVIDE A HIGH-LEVEL PROGRAMMING INTERFACE. .. 20
FIGURE 4: AUTOMATIC GENERATION OF WEB SERVICE CODE FOR DEVICES. .. 22
FIGURE 5: THE HYDRA DAC BROWSER .. 24
FIGURE 6: EXPANSION OF SERVICES PROVIDED BY A DEVICE. .. 24
FIGURE 7: RETRIEVING AND EXECUTING SERVICES ON DEVICES. ... 25
FIGURE 8: AS A DEVICE IS DISCOVERED IN THE NETWORK, ITS TYPE IS RESOLVED AGAINST THE DEVICE ONTOLOGY, AND

THEN ENTERED INTO THE DAC NOTIFYING THE HYDRA APPLICATION. ... 26
FIGURE 9: HYDRA SECURITY METAMODEL [HYDRA, 2007C] ... 27
FIGURE 10: EXAMPLE OF A LOCATION CONCEPT MODELLED TO SUPPORT CONTEXT AWARENESS 29
FIGURE 11: EXAMPLE OF A PERSON CONCEPT MODELLED TO SUPPORT CONTEXT AWARENESS .. 30
FIGURE 12: THE BASIC HYDRA DEVICE TAXONOMY .. 38
FIGURE 13: THE MALFUNCTION PART OF THE HYDRA DEVICE ONTOLOGY .. 39
FIGURE 14: THE STATE MACHINE PART OF THE HYDRA DEVICE ONTOLOGY ... 40
FIGURE 15: MODELLING OF SERVICES IN THE HYDRA DEVICE ONTOLOGY.. 41
FIGURE 16: OVERVIEW OF APPLICATION ELEMENTS ... 47
FIGURE 17: APPLICATION DEVICE MANAGER.. 51
FIGURE 18: APPLICATION SERVICE MANAGER .. 58
FIGURE 19: APPLICATION ORCHESTRATION MANAGER ... 62

Hydra D6.2 MDA Design Document

Version 1.0 Page 6 of 89 2007-12-21

FIGURE 20: APPLICATION ONTOLOGY MANAGER.. 68
FIGURE 21: APPLICATION DIAGNOSTICS MANAGER .. 75
FIGURE 22: DEVICE DEVICE MANAGER ... 80
FIGURE 23: DEVICE SERVICE MANAGER ... 83

Hydra D6.2 MDA Design Document

Version 1.0 Page 7 of 89 2007-12-21

1. Introduction

1.1 Background

The Hydra project aims to research, develop, and validate middleware for networked embedded

systems that allows developers to develop cost-effective, high-performance ambient intelligence
applications for heterogeneous physical devices.

The first objective is to develop middleware based on a Service-oriented Architecture, to which the

underlying communication layer is transparent. The middleware will include support for distributed
as well as centralised architectures, security and trust, reflective properties and model-driven

development of applications.

The Hydra middleware will be deployable on both new and existing networks of distributed wireless

and wired devices, which operate with limited resources in terms of computing power, energy and

memory usage. It will allow for secure, trustworthy, and fault tolerant applications through the use
of novel distributed security and social trust components.

The embedded and mobile Service-oriented Architecture will provide interoperable access to data,
information and knowledge across heterogeneous platforms, including web services, and support

true ambient intelligence for ubiquitous networked devices.

The second objective of the Hydra project is to develop an Integrated Development Environment
(IDE). The IDE will be used by developers to develop innovative semantic model driven applications

with embedded ambient intelligence using the Hydra middleware.

1.2 Purpose, context and scope of this deliverable

Hydra aims to interconnect devices, people, terminals, buildings, etc. The Service-Oriented

Architecture and its related standards provide interoperability at a syntactic level. However, in Hydra
we also aim at providing interoperability at a semantic level. The objective of WP6 is to extend this

syntactic interoperability to the application level, i.e., in terms of semantic interoperability. This is
done by combining the use of ontologies with semantic web services.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, the

middleware layer should provide adaptations to whatever interface the devices offer. To achieve
this, Hydra aims to be able to describe the capabilities of the devices (ontologies) in such way that

an automatic agent can understand these capabilities and use them. Once the semantics describing
the model of the other device has been found, then the device capabilities could be accessed.

This document (D6.2) describes the Semantic Model Driven Architecture of HYDRA the objective of

which is to facilitate application development and to promote semantic interoperability for services
and devices. The semantic MDA of HYDRA includes a set of models, i.e., ontologies, and describes

how these can be used both in design-time and in run-time.

Hydra D6.2 MDA Design Document

Version 1.0 Page 8 of 89 2007-12-21

Figure 1: The middleware stack and the role of WP 6.

Figure 1 shows HYDRA and the Semantic MDA (WP6) in relation to generic middleware reference

model [Schmidt, 2002].

1.3 Hydra Innovations and Contributions

Hydra’s technological innovations in semantic MDA will be achieved in the following areas:

• To develop tools for (semi-)automatic building of device ontologies - evolving
ontologies, generalisation of concepts (knowledge generalisation)

• Techniques for automatic device classification and ontology updating.

• Ontologies over the middleware components themselves.

• Application of ontology-based semantic technologies on privacy and security issues

• Application of “low-level ontologies” in enabling intelligent services (personalisation,
alerting etc.) and search.

The following highlighted extract from table 5 in the DOW section 4.5 “Technologies to be used,

researched and developed” summaries the intended contributions from WP6 with respect to the
semantic model-driven architecture.

WP 6 SoA and MDA middleware

Technology

area

Use of existing
technologies

New technologies to

be developed

New
technologies to

be researched

Embedded
and mobile
service-
oriented
architectures
for AmI

The Hydra middleware
will be based on
mature web service
technologies such as
SOA, SOAP, WSDL,
BPEL etc. to the
furthest extend
possible

Embedded web
services will be built
using standard WS
technologies including:

Technologies for bringing
semantic web service
technology down to device
level to provide semantic
interoperability between
devices.

New technologies
for integration of
WS with the device
level will be
researched. This
will include:

 Automatic generation
of web services device
proxies.

 Caching principles

Hydra D6.2 MDA Design Document

Version 1.0 Page 9 of 89 2007-12-21

• Web services stack
• Fast evaluation of

WS
• Semantic stack

Semantic
Model-Driven
Architecture
for AmI

The model driven
architecture will be
build with standard
web service
technologies including
domain model meta
descriptors such as IFC
and HL7 classes

Ontology frameworks
will be based on
standards such as OWL

Horizontal standards
such as WS-
Coordination and WS-
Transaction will be
considered

New technologies for
maintaining and
accessing distributed
domain meta models
will be developed

Semantic cooperative
instantiation of
devices, personas and
services will be
developed

Technologies for
Automatic Device
classification

Technologies for
Semantic-
cooperative
reasoning.

New techniques
based on
combination UML
and OWL for
automatic
construction and
maintenance of
ontologies will be
researched.

Research of
principles and
technologies for
Intelligent Rules
Processing to allow
for configuration of
device behaviour.

Semantics
and
knowledge
management

Prototype semantic
approaches will be
used, e.g., inspired by
OWL-S or SWS based
on the Semantic Web,
to support properties
such as discovery,
context awareness,
self-* properties

Standard Knowledge
Management (KM)
techniques for
knowledge capture,
indexing and re-use
will be deployed where
needed and applicable

New technologies to
provide
interoperability at the
semantic level will be
developed including
profiling knowledge
repository
technologies for
preference
engineering

Table 1: WP6 contribution objectives

1.3.1 Semantic Web

Web technologies are shifting from rendering information in a format for human interpretation,
towards providing an automated environment for delivering a wide variety of e-commerce and

business-to-business services and applications such as the ones envisioned in Hydra.

Such services and applications will communicate and interoperate in a world composed of Web-

accessible programs and databases, and interface wirelessly with many smart devices and sensors.
These shifts have the potential to change significantly the way we communicate, co-operate, and

organise our commercial and personal relationships.

The Semantic Web is fundamental to enabling these types of services and applications by providing
a universally accessible platform that allows data to be shared and processed by automated tools,

and by providing the machine-understandable semantics of data and information that will enable
automatic information processing and exchange.

Hydra D6.2 MDA Design Document

Version 1.0 Page 10 of 89 2007-12-21

The Semantic Web principles are realized by layers of related Web technologies and standards,
commonly depicted as the Semantic Web Layers introduced by the W3C (Figure 2) (aka the

semantic web cake).

The Unicode and URI layers make
sure that we use international

characters sets and provide means for
identifying the objects in Semantic

Web. The XML layer with namespace
and schema definitions make sure we

can integrate the Semantic Web

definitions with the other XML based
standards. With RDF and RDFSchema

it is possible to make statements
about objects with URI's and define

vocabularies that can be referred to

by URI's. This is the layer where we
can give types to resources and links.

Figure 2: Semantic Web Layers (W3C)

The Ontology layer supports the evolution of vocabularies as it can define relations between the
different concepts. With the Digital Signature layer for detecting alterations to documents, these are

the layers that are currently being standardized in W3C working groups.

The top layers: Logic, Proof and Trust, are currently being researched and simple application

demonstrations are being constructed. The Logic layer enables the writing of rules while the Proof

layer executes the rules and evaluates, together with the trust layer mechanism for applications,
whether to trust the given proof or not.

OWL is a W3C recommendation [McGuinness, 2004]. The OWL Web Ontology Language is designed
for use by applications that need to process the content of information instead of just presenting

information to humans. OWL facilitates greater machine interpretability of Web content than that

supported by XML, RDF, and RDF Schema (RDF-S) by providing additional vocabulary along with
formal semantics. OWL has three increasingly expressive sublanguages: OWL Lite, OWL DL, and

OWL Full.

OWL has been designed to meet this need for a Web Ontology Language. OWL is part of the

growing stack of W3C recommendations related to the Semantic Web.

• XML provides a surface syntax for structured documents, but imposes no semantic

constraints on the meaning of these documents.

• XML Schema is a language for restricting the structure of XML documents and also
extends XML with data types.

• RDF, the Resource Description Framework [RDF, 2007], is a family of specifications
for a metadata model that is often implemented as an application of XML. The RDF

family of specifications is maintained by the World Wide Web Consortium (W3C).

• RDF is a data model for objects ("resources") and relations between them. It
provides a simple semantics for this data model, and these data models can be

represented in XML syntax.

• RDF Schema is a vocabulary for describing properties and classes of RDF resources,

with semantics for generalization-hierarchies of such properties and classes.

• OWL adds more vocabulary for describing properties and classes: among others,

relations between classes (e.g. disjointedness), cardinality (e.g. "exactly one"),

equality, richer typing of properties, characteristics of properties (e.g. symmetry)
and enumerated classes.

The RDF metadata model is based upon the idea of making statements about resources in the form
of a subject-predicate-object expression, called a triple in RDF terminology. The subject is the

resource being described. The predicate is a trait or aspect about that resource, and often expresses

Hydra D6.2 MDA Design Document

Version 1.0 Page 11 of 89 2007-12-21

a relationship between the subject and the object. The object is the object of the relationship or
value of that trait.

This mechanism for describing resources is a major component in what is proposed by the W3C's

Semantic Web activity: an evolutionary stage of the World Wide Web in which automated software
can store, exchange, and utilise metadata about the vast resources of the Web, in turn enabling

users to deal with those resources with greater efficiency and certainty. RDF's simple data model
and ability to model disparate, abstract concepts has also led to its increasing use in knowledge

management applications unrelated to Semantic Web activity.

The Dublin Core Metadata Initiative [DCMI, 2007] is an organization dedicated to promoting the

widespread adoption of interoperable metadata standards and developing specialized metadata

vocabularies for describing resources that enable more intelligent information discovery systems.

The Universal Description, Discovery and Integration (UDDI) protocol provides a catalogue for web

services. UDDI creates a standard interoperable platform that enables companies and applications to
quickly, easily, and dynamically find and use Web services over the Internet. UDDI also allows

operational registries to be maintained for different purposes in different contexts. UDDI is a cross-

industry effort driven by major platform and software providers, as well as marketplace operators
and e-business leaders within the OASIS standards consortium. The main contribution of Hydra to

the Semantic Web is to bring semantic web technologies down to the device level, i.e. each device
can act as a semantic web service accessible by other devices, users and software applications. We

will explore and support the use of standards such as WSMO, OWL-S and SAWSDL [SAWSDL, 2007].
This will be further researched in Task 6.5 SoA and Semantic Web Services for Devices, and

presented in deliverable D6.3 “Semantic Web Service Design Document”.

1.3.2 OMG Model-Driven Architecture

As an OMG process, the MDA represents a major evolutionary step in the way the OMG defines

interoperability standards. For a very long time, interoperability had been based largely on CORBA
standards and services. Heterogeneous software systems interoperate at the level of standard

component interfaces. The MDA process, on the other hand, places formal system models at the

core of the interoperability problem. What is most significant about this approach in relation to
Hydra is the independence of the system specification from the implementation technology or

platform. The system definition exists independently of any implementation model and has formal
mappings to many possible platform infrastructures (e.g., Java, XML, and SOAP).

The MDA has significant implications for the disciplines of Meta modelling and Adaptive Object

Models (AOMs). Meta modelling is the primary activity in the specification, or modelling, of
metadata. Interoperability in heterogeneous environments is ultimately achieved via shared

metadata and the overall strategy for sharing and understanding metadata consists of the
automated development, publishing, management, and interpretation of models. AOM technology

provides dynamic system behaviour based on run-time interpretation of such models. Architectures
based on AOMs are highly interoperable, easily extended at run-time, and completely dynamic in

terms of their overall behavioural specifications (i.e., their range of behaviour is not bound by hard-

coded logic).

The main contribution of Hydra will be in the use of ontologies both for the application developer

and the device developer. For the latter we will support an OMG MDA process at design time
through the use of ontologies semi-automatic code generation for devices. Ontologies will also be an

integral part of the run-time environment, i.e. program execution will be based on the models and

descriptions in the ontologies, providing an easy to configure and dynamic extensible middleware.

1.3.3 Automatic Device Classification and Ontology Design

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, two
broad options can be considered: a) to force every device to be compliant to some set of more or

less flexible interfaces, or b) to have Hydra middleware layer provide adaptation to whatever
interface the devices offer.

Hydra D6.2 MDA Design Document

Version 1.0 Page 12 of 89 2007-12-21

Since choice a) will probably not be applicable neither to the present nor to the future world, Hydra
will opt for choice b), so it will try to be able to adapt to all the variety of interfaces, information and

operations that the devices offer. And given the vast amount of devices, the only viable option to

address this issue is to try to do it in some automatic way.

In order to achieve this, Hydra aims to be able to describe the capabilities of the devices (using

ontologies) in such way that an automatic agent can understand these capabilities and use them.
Once the semantics describing the model of a peer device has been found, the device capabilities

could be accessed.

1.3.4 Embedded device semantics and rule engines

A final issue, which involves the adoption of semantic facilities into a novel platform such as the

envisaged one, comprises the development of reasoning rules and components that will make use of
dynamic meta-data to take advanced real-time decisions. It is clear that web services composition is

the technology envisaged to obtain complex functionality from atomic operations of heterogeneous
end-points (services, interfaces provided by any entity: user agents, servers, devices, etc.) The

reasoning over available data (not only services but also network status, context information,

availability of resources, etc.) becomes a critical task that should be solved to obtain later successful
compositions. This involves the merging of meta-data from multiple sources and may need for

complex algorithms being defined during the project. However, reasoners must rely on querying
languages over meta-data and there are several initiatives and languages that allow for queries over

RDF annotated data: RQL, RDQL and SPARQL. The selection among the aforementioned alternatives
will be guided both by the language capabilities, and the availability of further querying APIs and

frameworks for it (it is a fact that available frameworks or querying APIs are strongly associated and

dependent on these languages).

Hydra D6.2 MDA Design Document

Version 1.0 Page 13 of 89 2007-12-21

2. Executive Summary

This workpackage applies Service Oriented and Model Driven Architecture techniques to AmI

systems. All of the devices and services comprising a Hydra network will be integrated in a Service
Oriented Architecture (SoA), which will provide, among other things, interoperability. The Hydra
middleware thus also becomes the link between web services and devices. Interoperability, which

here is taken as the capability of components of Hydra to talk to each other no matter which is the
technology used to implement them or their physical location, is achieved by means of the usage of

many specifications in the context of the web services world, including XML, SOAP, WSDL, XML

Schema, WS-Security, WS-Addressing and several others. To summarise, the main purpose of the
Service-Oriented Architecture in Hydra is to provide interoperability between devices at a syntactic
level.

Hydra aims to interconnect devices, people, terminals, buildings, etc. As mentioned above, the

Service-Oriented Architecture and its related standards provide interoperability at a syntactic level.
However, in Hydra we also aim at providing interoperability at a semantic level. Thus, the Hydra

middleware must also model services offered by different devices from an applications point of view.

A main contribution of this workpackage to is to bring semantic web technologies down to the device
level, i.e., each device can act as a semantic web service accessible by other devices, users and

software application. This will be done in close cooperation with WP4 which are investigating
techniques for embedding web services into devices. In this WP we are concerned with automating

the generation of web services code for devices based on meta data and ontology descriptions.

In order to cope with the huge variety of capabilities of the devices to be integrated in Hydra, two
broad options can be considered: a) to force every device to be compliant to some set of more or

less flexible interfaces, or b) to have Hydra middle layer provide adaptation to whatever interface
the devices offer.

Since choice a) will probably not be applicable neither to the present nor to the future world, Hydra
will opt for choice b), so it will try to be able to adapt to the variety of interfaces, information and

operations that devices offer. And given the vast amount of devices, the only viable option to

address this issue is to try to do it in some automatic way.

In order to achieve this, Hydra aims to be able to describe the capabilities of the devices

(ontologies) in such way that an automatic agent can understand these capabilities and use them.
Once the semantics describing the model of a device has been found, then its device capabilities

could be accessed.

Hydra’s technological innovations in semantic MDA are in the following areas:

 To develop tools for (semi-)automatic building of device ontologies - evolving ontologies,

generalisation of concepts (knowledge generalisation).

 Techniques for automatic device classification and ontology updating.

 Ontologies over the middleware components themselves.

 Application of ontology-based semantic technologies on privacy and security issues

 Application of “low-level ontologies” in enabling intelligent services (personalisation, alerting

etc.) and search.

A final issue, which involves the adoption of semantic facilities into a novel platform such as the

envisaged one, comprises the development of reasoning rules and components that will make use of
dynamic meta-data to take advanced real-time decisions. It is clear that web services composition is

the technology envisaged to obtain complex functionality from atomic operations of heterogeneous

end-points (services, interfaces provided by any entity: user agents, servers, devices, etc.).

But reasoning over available data (not only services but also network status, context information,

availability of resources, etc.) becomes a critical task that should be solved to obtain later successful

Hydra D6.2 MDA Design Document

Version 1.0 Page 14 of 89 2007-12-21

compositions. This involves the merging of meta-data from multiple sources and may require
complex algorithms to be defined during the project.

Hydra D6.2 MDA Design Document

Version 1.0 Page 15 of 89 2007-12-21

3. Requirements for the HYDRA Semantic Model-driven

Architecture

3.1 User requirements

Below we present the current set of user requirements as produced by the Volere method in

workpackage 2.

Table 2: WP6 requirements summary list

Key Summary Source Rationale Fit Criteria

HYDRA-

91

Any HYDRA

device should

have an associated

description

WP6 MDA

Scenario

Focus Group

For management, search

and discovery purposes, all

HYDRA enabled devices

should be described

(classified) according to the

HYDRA device ontology.

Any device associated to a

HYDRA application is also

included in the HYDRA

device ontology, and its

description can be retrieved.

HYDRA-
101

Manual device

ontology

definition

WP6 MDA

Scenario

Focus Group

The developer should be

able to define and extend

device ontologies. The IDE

is required to provide

descriptors for devices and

device classes

The HYDRA IDE supports

the manual editing of devices

in the framework of a device

ontology.

HYDRA-
102

Device Ontology

with user interface
St. Augustin Tool that allows browsing,

searching, navigating device

classes and their

capabilities.

Tool for browsing device

ontology exists

HYDRA-
103

Automatic device

ontology

construction

St. Augustin

Workshop
The IDE should facilitate

the construction of a device

ontology should be

facilitated through finding

and parsing product or

device descriptions to

annotate and produce

ontology entries. The

component should handle

different input formats like

Word, PDF, HTML,

databases.

7 of 10 device descriptions

can be successfully processed

HYDRA-
109

Device

Virtualization
WP6 MDA

scenario

focus group

The complexity of devices

may be hidden, or

simplified, by means of

virtual device interfaces,

these would correspond to

"views" on device

descriptions as provided by

the HYDRA device models

(ontologies).

An existing virtualization can

be used to find exactly one

proper HYDRA device.

HYDRA-
110

Device

Categorisation
WP6 MDA

Focus Group
Middleware should after

discovery of device be able

to categories a device based

on device ontology

7 of 10 devices are correctly

categorised and described.

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-102
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-102
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110

Hydra D6.2 MDA Design Document

Version 1.0 Page 16 of 89 2007-12-21

information.

HYDRA-
112

Dynamic Web

Service

Generation

WP6 SoA

Focus Group
Configuration tool that is

able to generate the

necessary interfaces to wrap

the device functionality as a

web service.

7 of 10 device functionalities

are automatically represented

as web services

HYDRA-
114

Semantic enabling

of device web

services

WP6 SoA

Focus Group

Middleware should be able

to attach semantic

descriptions to device web

services based on device

ontology.

7 of 10 device are

semantically enabled.

HYDRA-
117

HYDRA

component

ontology

WP6 MDA

focus group
In order to support and ease

the management of the

HYDRA middleware, the

HYDRA middleware

components should be

described and mapped to a

corresponding HYDRA

middleware software

component ontology.

All HYDRA components can

be identified through a

software component ontology

HYDRA-
119

Domain modelling

support
WP6 MDA

focus group
The middleware and IDE

should be able to host or

interface with application

domain frameworks

representing core concepts

and functions of specific

application domains. These

could in the most basic form

be represented by UML

Profiles, or domain

ontologies.

The HYDRA IDE supports at

min 2 defined domain

modelling frameworks.

HYDRA-
120

Multiple Device

Virtualisations
WP6 MDA

Focus Group
It should be possible to have

several different

views/virtualisations of a

device depending on context

and applications.

At least 2 different

virtualisations are provided

HYDRA-
121

Compiled device

ontology
WP6 MDA

Focus Group
The device ontology should

be compiled to be deployed

and used in device

discovery process

Possible to compile device

ontology

HYDRA-
126

Automatic Device

ontology updates
WP6 MDA

Focus Group
The device ontology should

automatically update its

device descriptions.

The device ontology can

detect device updates and

handle that in 7 of 10 cases.

HYDRA-
139

Knowledge model

of hydra

middleware

State of the

Art
Knowledge model of the

whole middleware

providing developers with

knowledge on all

middleware components

offers a guidance how ho

compose a hydra-based

application.

Support for knowledge model

based rapid development is

available

HYDRA-
141

Download and

harmonisation of

third party device

Hydra D2.2

Initial

Technology

Watch

Device ontological models

describing devices, which

will be provided by

manufacturers or third

Ontologies from different

manufacturers can be used if

they are in RDF, OWL or

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-112
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-112
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-121
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-121
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-139
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-139
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-141
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-141

Hydra D6.2 MDA Design Document

Version 1.0 Page 17 of 89 2007-12-21

ontologies Report parties, should be

automatically downloaded

(updated) and harmonised to

ensure the same ontological

view. Formal definition of

ontologies should be

realised using the world

wide accepted formats,

recommended by W3C,

such as RDF, OWL, OWL-

S.

OWL-S

HYDRA-
143

Model-based

reasoning about

itself

Hydra D2.2

Initial

Technology

Watch

Report

Rich self knowledge model

of the middleware provides

the middleware with self-

awareness. It enables to

reason on middleware status

(self-diagnostics, current

configuration, optimality of

using available resources,

estimation response, etc.).

Middleware is able to reason

on itself. It is able to detect its

status in 9 of 10 cases.

HYDRA-
210

Middleware

should support

different

architectural styles

WP6 SoA

Focus Group
It must be possible to build

systems with different

architectures such as fully

decentralised vs.

centralised.

De/centralization can

pertain to:

- data/knowledge

- control

- computation

Supports at least two different

architecture styles

HYDRA-
212

Support for a

declarative

application

development

paradigm

WP6 SoA

Focus Group
A declarative approach can

hide complexity of

underlying structure and can

increase productivity of

embedded software

development.

More than 50% of the module

functionality should be

programmable using a

declarative approach.

HYDRA-
248

Definition of

Virtual Devices
WP6 Focus

group in

Kosice

In order to ensure

flexibility, protecting weak

devices and manage

differentiated access to

device and information, the

developer or advanced users

should be able to define

virtual devices that

replace/represent physical

devices.

Separation of physical and

logical device definition. A

virtual device can fully replace

a physical device

HYDRA-
316

Service

descriptions

should include

service semantics

UAAR focus

group
To support dynamic (and

reflective) systems, it is

important to know more

than just the syntax of an

interface to a discovered

service

Semantics approach defined.

Service description language

uses this approach. Semantic

service descriptions are

published

HYDRA-
359

Device ontology

versioning
WP6 MDA

Focus Group
The device ontology should

be able to handle different

versions of a device.

The device ontology can

maintain at minimum 2

versions of any single device

HYDRA- Ability to self- Hydra D2.2 Rich knowledge model Middleware is able to adapt its

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-143
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-143
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-210
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-210
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-212
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-212
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-248
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-248
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-316
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-316
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-359
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-359
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-365

Hydra D6.2 MDA Design Document

Version 1.0 Page 18 of 89 2007-12-21

365 adaptation Initial

Technology

Watch

Report

enables the middleware to

contain a representation of

itself and manipulate its

state during its execution.

This feature should serve as

the basis for self-adaptation

of the middleware (e.g.

reconfiguration of resource

usage, triggering the

component-based services).

configuration in 60% of

identified cases requiring

reconfiguration.

HYDRA-
376

Security

requirements must

be part of the

device ontology

WP 6 Focus

group

Kosice

Security must be defined

and resolved semantically
Security model part of device

ontology

HYDRA-
378

Application model

must provide the

security

requirements

WP3

Meeting

Kosice -

Roundtable

discussion -

S. Engberg

Application must provide

the security requirements on

a semantic level in order to

resolve if devices are

allowed to interact with the

application or to allow the

middleware to resolve the

security in the process

If the application model

contains security requirements

all requests will be resolved

correctly

HYDRA-
389

Service browsing

in device ontology
WP6

eHealth

focus group

It must be possible to view

services as central building

blocks, thus an application

developer should be able to

browse the device ontology

from a service perspective,

in addition to a device

perspective.

A developer can find services

and use them in development,

without an a priori knowledge

of the devices that implement

the services.

HYDRA-
390

Different views on

the device

ontology

WP6

eHealth

focus group

It should be possible to

present a developer user

with different perspectives

on the device ontology,

depending on that users

functional needs (e.g., a

services perspective, device

category perspective. etc.)

At least two different views

are available in the ontology

browser

HYDRA-
392

Rules for selection

of alternative

devices

WP6

eHealth

focus group

The developer user should

be able to specify how

devices can replace or

complement each other.

This is relevant in situations

when a device fail and

another device exists which

can provide a replacement

service, or, when different

levels of quality of service

are available.

In the SDK, contructs are

available that allow the

developer to specify rules for

when and how devices and

services can be interchanged

and combined.

3.2 Quality attributes scenarios

As a complement to the Volere requirements process, a set of Quality Attribute Scenarios were also
developed. These are based on a number of ISO Quality Attributes that can be used to characterize

different architecture qualities of the HYDRA architecture (e.g., portability, adaptability). The Quality

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-378
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-378
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-389
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-389
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-390
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-390
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392

Hydra D6.2 MDA Design Document

Version 1.0 Page 19 of 89 2007-12-21

Scenarios relate some of the Volere requirements to the corresponding Quality attributes, by
describing how particular quality attribute can be identified in the system architecture and possibly

also measured. These results are reported in deliverable D6.1 [Hydra, 2007].

Hydra D6.2 MDA Design Document

Version 1.0 Page 20 of 89 2007-12-21

4. HYDRA approach to Semantic MDA

4.1 Introduction

The semantic model-driven architecture of HYDRA (SeMDA) is based on the application of ontologies

and semantic web technologies to support the design of device-oriented networked applications and
is also intended as a run-time resource in the execution of device services.

The basic idea behind the HYDRA Semantic MDA is to differentiate between the physical devices and

the application´s view of the device. We introduce the concept of Semantic Devices. The physical
devices offers a set of services, a lamp might offer “on/off” and “dimming” as two services while a

pump might offer “increase flow” and “get water temperature” as two services.

The services offered by the physical devices have been designed independently of particular

applications in which the device might be used. A semantic device on the other hand represents

what the particular application would like to have. For instance, when we are designing the lighting
system for a building it would be more appropriate to model the application as working with a logical

lighting system that provides services like “working light”, “presentation light”, and “comfort light”
rather than working with a set of independent lamps that can be turned on/off. These logical devices

might in fact consist of aggregates of physical devices, and use different devices to deliver the

service depending on the situation. The service “Working light” might be achieved during daytime by
pulling up the blind (if it is down) and during evening by turning of a lamp (blind and lamp being

HYDRA devices). We call these logical aggregates of devices and their services for Semantic Devices.

Semantic Devices should be seen as a programming concept. The application programmer designs

and programs his application using semantic devices. Figure 3 below illustrates the concept. The
semantic device “Heating System” consist of three physical devices: a pump that circulates the

water, a thermometer that delivers the temperature and a light that flashes when something is

wrong.

The developer will only have to use the services offered by the semantic device “Heating System”,

for instances “Keep temperature:20 degrees Celsius” and “Set warning level:17 degrees Celsius”,
and does not need to know the underlying implementation of this particular heating system.

Light 1 Light 2Pump

Heating System Comfort Lighting Working Light

Home Automation

Home Automation System Application

Thermometer Window Blinds

Network Layer

Semantic Device Layer

External applications

Pump Thermometer Light 1 Light 2 Window Blinds

Figure 3: Semantic Devices provide a high-level programming interface.

Hydra D6.2 MDA Design Document

Version 1.0 Page 21 of 89 2007-12-21

The Semantic Device concept is flexible and will support both static mappings as well as dynamic
mappings to physical devices.

Static mappings can be both 1-to-1 from a semantic device to a physical device or mappings that

allow composition.

 An example of a 1-to-1 mapping would be a “semantic pump” that is exposed with all its

services to the programmer.

 An example of a composed mapping is a semantic heating system that is mapped to three

different underlying devices – a pump, a thermometer and a digital lamp.

Static mappings will require knowledge about which devices exists in the runtime environment, for

instance the heating system mentioned above will require the existence of the three underlying
devices – pump, thermometer and lamp – in for instance a building.

Dynamic mappings will allow semantic devices to be instantiated at runtime. Consider the heating

system above. We might define it as consisting of the following devices/services:

 a device that can circulate the water and increase its temperature

 a device that can measure and deliver temperature

 a device that can create an alarm/alert signal if temperature is out of range.

When such a device is entered into the runtime environment it will use service discovery to

instantiate itself and it will query the physical devices it discovers as to which can provide the
services/functions the semantic device requires. In this example the semantic device most probably

starts by finding a circulation pump.

But then it might find two different thermometers which both claims they can measure temperature.
The semantic device could then query about which of the thermometers can deliver the temperature

in Celsius, with what resolution and how often. In this case it might only be one of the
thermometers that meet the requirements. Finally the semantic device could search the network if

there is a physical device that can be used to generate an alarm if the temperature drops below a
threshold or increases to much. By some reasoning the semantic device can deduct that by flashing

the lamp repeatedly it can generate an alarm signal, so the lamp is included as part of the semantic

heating system.

The basic idea behind semantic devices is to hide all the underlying complexity of the mapping to,

discovery of and access to physical devices. The programmer just uses it as a normal object in his
application focusing on solving the application’s problems rather then the intrinsic of the physical

devices.

To achieve our vision of a Semantic Model Driven Architecture we have chosen to base our approach
on ontologies and related semantic technologies. In Hydra there are three major ontologies used -

Device Ontology, Security Ontology and Software Components Ontology.

The Hydra Device Ontology presents the basic high level concepts describing basic device related

information, which will be used in both development and run-time process. The device ontology is
divided into four interconnected modules:

 Basic device information and taxonomy

 Device malfunctions

 Device capabilities and state machine

 Device services

The content and structure of the Device Ontology as well as the others ontologies are described in

more detail in chapter 5.

To summarise, there are two uses of the semantic MDA in Hydra. Firstly, it is relevant at design-

time, and it will support both device developers as well as application developers. Secondly, at run-
time any Hydra application is driven from the semantic MDA.

Hydra D6.2 MDA Design Document

Version 1.0 Page 22 of 89 2007-12-21

4.2 Semantic MDA at design-time

4.2.1 Model-driven code generation for physical devices

The different ontologies in the semantic MDA are used at design time to generate web service code

for devices. This work is carried out as a part of WP 4 “Embedded AmI Architecture”. While WP4 is
concerned with generating small and efficient web service code that can be embedded into devices,

WP6 is concerned with utilising these device web services by mapping semantic devices to them to

provide programmers with a high level semantic interface to the devices. It should be noted that in
both WP4 and WP6 the same Device Ontology is used to ensure maximum re-use and a truly

semantic MDA approach. It is the responsibility of WP6 to define the structure and content of the
Device Ontology, as is described in chapter 5.

The details of the Hydra approach to web service code generation for devices are described in
Deliverable 4.2 [Hydra, 2007b]. This section thus briefly summarizes the approach.

The figure below shows the generation strategy for web services for devices. We have developed a

tool, Limbo, which takes as inputs an interface description (“Provide WSDL file”) and a semantic
description of the device on which a web service should run (“Provide OWL description”). The

interface description is assumed to be in the form of a WSDL file and the semantic description is a
link to an OWL description of the device (part of the Device Ontology).

Provide WSDL file
Provide OWL

description

Create embedded

service stubs

and skeletons

Create proxy

service stubs

and skeletons

[Resources available

and open device]
[Resources constrained

or closed device]

Figure 4: Automatic generation of web service code for devices.

The semantic description is used to

 Determine the compilation target. Depending on the available resources of a device, either

embedded stubs and skeletons are created for the web service (to run on the target device)
or proxy stubs and skeletons are created for the web service (to run on an OSGi gateway).

 Provide support for reporting device status. Based on a description of the device states at

runtime (through a state machine), support code is generated for reporting state changes

through the Hydra Event Manager. Eventually this also supports the self-* properties of
Hydra.

In both cases, refer to D4.2 “Embedded Service SDK Prototype and Report” for more detail.

Hydra D6.2 MDA Design Document

Version 1.0 Page 23 of 89 2007-12-21

4.2.2 Model-driven code generation for Semantic Devices

The descriptions of services in the Device Ontology can be used at design time to find suitable

services for the application that the HYDRA developer is working on. The descriptions of these

services will be used to generate code to call the service, query the device that implements the
service, and manipulate the data that the service operates on.

We are currently aiming at making the HYDRA SDK available in an object-oriented language
environment. Thus, the objects a developer can use to access the services (service proxies) as well

as objects from the Device ontology connected to the service (in its simplest form, the parameters
to the service operations) will be generated from the Device Ontology.

These device objects could be used when creating a semantic device or HYDRA application from the

selected devices and services. The services could also be used by a service orchestration engine
(however, considering that some applications will be standalone and have a fairly small footprint,

this may not be suitable for all HYDRA applications).

An example of this is a heating control system, where service proxies to call the heating system

services, device proxies to represent the heating system devices and classes representing the

domain classes (Temperature, TemperatureRange), will be generated for the HYDRA developer.

Some devices have a certain set of services built in, e.g. a thermometer that provides a

thermometer reading service. The thermometer service is not upgradeable and no other services can
be added to the device. In this case we can find out which services the device provides by looking

up the device in the ontology.

Some advanced devices such as smart phones and personal computers, however, are capable of

installing and hosting any number of services. This is a capability of devices that will be represented

in the Device Ontology. There are physical devices that come with a static set of services, devices
that are programmable and thus can host (almost) any service and devices that can host HYDRA

proxies for physical devices. A HYDRA developer can specify a service to be used, and leave the
device as generic as possible - any device that is capable of implementing the service. The necessary

code will be generated both for the service and the device.

How the application uses the Device Ontology should be configurable, so that the middleware
supports both standalone applications that only use the Device Ontology at design time as well as

applications that always query the Device Ontology for new types of services that match the
descriptions.

4.3 Semantic MDA at Run-time

4.3.1 Models for Discovery and the Hydra Device Application Catalogue

A fundamental part in every Hydra-based application is the Device Application Catalogue (DAC). This

is a runtime component that keeps track of and manages all devices that are currently active within

an application. The Hydra Device Application Catalogue serves all Hydra middleware managers with
the information and meta data they need regarding devices, their services, and their status.

The Hydra DAC uses the Hydra Device Ontology and models for discovery to recognise new devices
when they enter into a Hydra network. Based on the discovery model it queries the Device Ontology

to deduce what type of device has entered the network. The Hydra DAC can be queried by different
middleware managers to retrieve a service interface for different devices.

To illustrate the functionality of the Device Application Catalogue we can view the figure below that

shows a graphical browser tool, a Hydra DAC Browser that allows browsing of the different devices
that have currently been discovered by the Hydra DAC.

Hydra D6.2 MDA Design Document

Version 1.0 Page 24 of 89 2007-12-21

Figure 5: The Hydra DAC Browser

The browser tool uses the Device Application Catalogue to retrieve and display the services offered
by a certain device. An example is shown below, where the device “CNet Intelligent Door” provides

the services “GetErrorCode”, “GetErrorMessage”, “GetHydraID” and “GetStatus”.

Figure 6: Expansion of services provided by a device.

By retrieving a service interface for the device from the Device Application Catalogue the browser

tool can execute a service on the device. In the figure below we see how an SMS service is invoked
on the device “NokiaPhone”.

Hydra D6.2 MDA Design Document

Version 1.0 Page 25 of 89 2007-12-21

Figure 7: Retrieving and executing services on devices.

The models used at design time are also used in the discovery of devices. At design time, the
HYDRA application developer selects the HYDRA devices and services that will be used to implement

the application. This subset of the Device Ontology will form the basis for the Device Application

Catalogue. These devices may be defined at a fairly general level, e.g. the application may only be
interested in "HYDRA SMS Service" or "HYDRA Generic Smartphone Device" and any device entering

the network/(application context) that fits in these general categories will be presented to the
application. The application will then work against the more general device descriptions.

This means that an application should only know of the (types of) devices and services selected by
the developer when it was defined. Although other devices may be registered at the network level,

an application gets notified on a "needs/wants to know" basis. Note that this still means that the

application could use a device that was designed and built after the application was deployed, as
long as the device can be classified through the Device Ontology as being of a device type or using a

service that is known to the application, e.g., a HYDRA application built in 2008 could specify the use
of "HYDRA Generic Smartphone" and "HYDRA SMS Service" and thus use a "Nokia N2010

Smartphone" released two years later.

The above scenario means that although the Device Application Catalogue is defined at design time
as a selection from the Device Ontology at a specific point in time, the Device Ontology used at

runtime will be constantly updated. Whether the Ontology Manager always will use a full ontology or
in some cases a subset that is useful to the application for optimization is to be further investigated.

This will require solutions for versioning, caching and evolution of the Device Ontology.

If there are any non-HYDRA-enabled devices that the developer wants to use, these will have to be
HYDRA enabled first using the (HYDRA device mapping tools) e.g. LIMBO [Hydra, 2007b]. The

HYDRA developer will also have to define the application level events that are of interest to the
application, e.g. devices entering or leaving the network, error states, and so on.

In the SDK, only Hydra Devices are used. If the developer needs information about the specific
device at run time, this will be available on request (analogous to reflection capabilities in various

programming languages), but in most cases, the only objects that the application handles are

HYDRA devices.

When a device is discovered, the device type is looked up in the Device Ontology and if it can be

mapped to a Hydra Device (perhaps it will always be mapped to the most generic type of device or
“Hydra Unknown Device”) it will be placed in the Device Application Catalogue (DAC). If an

Hydra D6.2 MDA Design Document

Version 1.0 Page 26 of 89 2007-12-21

application subscribes to events regarding this type of device, it will be notified that the device is
available and has been placed in the Device Application Catalogue.

Figure 8: As a device is discovered in the network, its type is resolved against the

device ontology, and then entered into the DAC notifying the HYDRA application.

A HYDRA Application may present an external interface so that it can be integrated with other

applications and devices. It will do this by announcing itself as a HYDRA device with a set of
services. This is transparent to other devices, which means that some devices or services used in the

application will be composite ones: based on other HYDRA applications that have exposed external

interfaces. When such an application is discovered, the applications interested in that type of device
and its services will be notified as described above.

The DDK (Device Development Kit) is used to HYDRA-enable limited devices, while the SDK
(Software Development Kit) is used to build more advanced HYDRA applications (devices) using

other HYDRA devices (new “HYDRA heads” grow out continuously).

4.3.2 Use of models for resolving security requirements

This section is built on a walkthrough of the security model from deliverable D7.2 [Hydra, 2007c]

which will be further detailed as part of deliverable D7.3.

The dynamic and networked execution environment of HYDRA requires strong yet adaptable security

mechanisms to be in place. In order to establish the ability to securely connect any
application/device to any application/device, HYDRA also uses the semantic MDA to define and

enforce security policies.

Hydra D6.2 MDA Design Document

Version 1.0 Page 27 of 89 2007-12-21

Figure 9: HYDRA Security Metamodel [Hydra, 2007c]

A basic design objective for the HYDRA security model is to provide a secure information flow with a

minimum of pre-determined assumptions, while being able to dynamically resolve security

requirements. This approach has been referred to as the Semantic Resolution of Security (c.f D7.2).

The security policies of HYDRA can thus be defined and enforced based upon knowledge in the

Device Ontology as well as on knowledge of the context of devices, and also makes use of Virtual
Devices.

4.3.2.1 Local -out

Virtual Devices and Device Proxies can be developed by any developer given access to the necessary

device features.

The concept of Local-out means that a more local developed entity will take precedence over a more

globally developed entity, i.e. that the closest to the run-time environment take precedence over
developed modules further away from the Run-rime environment. For example, a Device

manufacturer of a Non-Hydra enabled device makes a Proxy implementation and deploys this at his

website to allow his device to be interoperable with Hydra. However, the local Domain Owner
prefers an alternative Proxy either because he developed it himself or because some other entity

made the Proxy available. When the Domain Owner downloads the version he prefers, it will take
precedence over the Device Manufacturer version.

4.3.2.2 Virtual Device Network Connection

When a device comes into contact with a HYDRA Gateway, it will respond to a challenge by the
HYDRA gateway by providing its device model type.

In the case a non-HYDRA device is discovered, HYDRA will from a model determination execute a

search Local-out (first local implementation, then manufacturer and then global) to determine if a
device model to describe the device can be located. If so the device model will be collected.

Hydra D6.2 MDA Design Document

Version 1.0 Page 28 of 89 2007-12-21

The device model can then contain linkage to a Proxy which is a specific implementation that
HYDRA-enable this specific device type to HYDRA. If so the Proxy can be fetched, loaded and

invoked in order to proceed with the device initialisation.

There must be specific security checks against both domain/network level security requirements and
device-specific security requirements related to both fetching, loading and invoking the Proxy to

protect against malicious code getting introduced this way. The most likely mechanisms will be
related to PKI-signatures to validate the module and the source location. If a Proxy is loaded, there

will likely be a Device model (in the Device Ontology) describing the Proxy-device (a non-hydra
device model is optionally hidden by specification in the Proxy Device description).

We know have a HYDRA-enabled device, either the physical device it self or a Proxy-implementation

that provide a HYDRA-interface to a non-Hydra device

In the case when a HYDRA device is discovered, HYDRA makes a search Local-out based on the

Device type for Virtual Device modules. If located, HYDRA loads the Virtual Device Model which may
include software modules adding new capabilities. The Virtual Device also introduces a Rules

resolution layer that can implement access controls to the device such as a biometric sensor device

adding end-user access controls.

In the communication with the newly discovered device, many communication protocols will also

leak device identifiers - if so the Proxy or the Virtual Device strips this and relay to the semantic
layer resolution while replacing it with a HYDRA Identifier (HID) for the network layer.

If the device is not able to manage its own HID interfaces, the Proxy or Virtual Device will act as an
intermediate shielding the physical device from direct communication unless communication occur at

the network layer outside HYDRA. .The HID is NOT representing the Device beyond network

communication. All core security aspects such as accountability, authorisation, credentials
negotiation is handled at the semantic layer

4.3.2.3 Semantic Resolver

The main element in the Semantic Resolution of Security is the Request. A request could be to
locate either special devices or special functionality. The requesting device / application will also

contain a dynamic set of Security requirements rules that govern the requirements that the

requested Device must full fill in order for the process to succeed.

A Request is caught by the Semantic Resolver that orchestrates the process of locating the right

devices and the subsequent resolution of security.

Based on the Device models incorporating the capabilities of the available Devices in the domain, the

resolver can have different logical mechanisms to choose how resolution occurs. The process can be

a multi-step process so that the Request can be functionally oriented and thereafter the security
resolution takes place. A specific device may fail to comply with specific Security Requirements, so

the process needs to be able to traverse through all possible candidates and somehow prioritise
based on most likely candidates.

The Resolver does NOT act as a Trusted Party, i.e. it will determine which exchanges of security
credentials that can and should take place and then support the end-to-end exchanges.

The Semantic Requirements is both transaction specific and can be dynamic depending on a number

of changing aspects such as,

 an alert mechanism,

 a regulatory change,

 a change down the security evaluation of a certain capability,

 or for instance, simply a change in security policy

Hydra D6.2 MDA Design Document

Version 1.0 Page 29 of 89 2007-12-21

4.3.2.4 Capability upgrade

To ensure interoperability, it is vital that capabilities providing the same logical operation both are
characterised as such in the Security Ontology.

When the Resolver detects a mismatch in security capabilities, it may initiate a process of Virtual

Device Upgrade through loading of new capabilities, if available. Often this is a simple matter where
one of the entities needs to upgrade a capability. The resolver will orchestrate the process. An

upgrade will result in a new Virtual Device and an updated device description that covers the
combined device.

Examples of such upgrades could be a newer symmetric encryption algorithm where the decrypt/re-
encrypt module acts as a part of the former device where the transformation happens as close to

the device as possible. Another example of a capability upgrade may be a sensor which was initially

deployed without user authentication, but where errors have lead to an upgrade of an Application
Security requirement that the End-user needs to authenticate as part of the device. This may be

resolved by a load module that communicates for instance with an end-user PDA and subsequently
the combination of a sensor device and PDA/End-User appearing as a virtual device with a richer

security profile. A third example is an application in need to upgrade capabilities and security

requirements. There the application may collaborate with online services

4.3.3 Use of models for context awareness

To support ambient intelligence applications we are also using models to provide context awareness
functionality. This work is mainly pursued in workpackage 7 as well as in workpackages 3 and 4. In

this section we give an example of how context can be handled by applying the ontology languages
OWL and SWRL (see section 4.4 for details on these technologies). We refer to the forthcoming

deliverable D3.8 and D7.3 for the overall approach to context management in HYDRA.

Below we can see how person and location are being modelled. The Location ontology imports

different type of location description ontologies, which is based on [Flury, 2004]. The Person
ontology is based on the SOUPA ontologies [Chen, 2005] and incorporated user-centered concepts

for example user habits and user preferences.

Figure 10: Example of a location concept modelled to support context awareness

Hydra D6.2 MDA Design Document

Version 1.0 Page 30 of 89 2007-12-21

Figure 11: Example of a person concept modelled to support context awareness

We will show an example with a Location based context awareness with SWRL to specify a complex

context, which is not easily achievable with OWL itself. SWRL shares OWL’s open world assumption,
and is adding more expressive power to the underlying ontology. SWRL generalized OWL

conditionals in two ways: arbitrary patterns of variables, free mixing of expressions (e.g., property
and class expressions).

A working scenario can be like the following: A GPS publishes its data through the event manager,

the Context manager gets raw GPS data, and processes it to get the coordinates, then the context
manager will update StateMachine ontology to include new location data into the GPS state machine

(update the activityResult datatype property associated with the objectProperty has Activity for the
Simple (sub class of State concept) state). As the GPS is supposed to be with a person (say Klaus) to

tell where he is, therefore the GPS data should also update the hasLocation property of the Person

ontology at the same time. Then the context manager may process a rule stating that if the
distance from home is more than 5 miles, then rule execution will create farAwayFromHome
property instance for Klaus, and at the same time, the context of farAwayFromHome (Klaus, “True”)
will be published via the event manager, other parties can then respond to the new context, and take
actions. For example home surveillance can use the highest security level policy.

The responsibilities of the managers can be changed when the design, performance, security issues

are all clarified. And in simple cases of context awareness, there can be no SWRL rules involved. A

prototypical implementation to prove the above concepts is implemented as shown in the paper

[Zhang, 2007], with the case of Diagnostics manager using the SWRL/OWL. The concept of

utilization of ontology and rules are the same in both Diagnostics manager and Context manager.
The class diagram is shown in the following figure.

Hydra D6.2 MDA Design Document

Version 1.0 Page 31 of 89 2007-12-21

From the class diagram we can see that the rule processing can be generalized, but the rule result
interpretation may be very different, from device to device, and from manager to manager. There

are also common reasoning functions that are universal to all the managers that need ontology
support, for example the class OntologyReasoning implemented with Protégé-OWL APIs.

SWRL is currently a W3C submission and attracts more and more attention from research for its

usage for context awareness and situation-awareness. However, the development of tools and APIs
are just starting or under planning. At present, we are using the SWRL tool from Protege [Oconnor,
2007].

4.4 Standards used

One of middleware is the ability to use of semantic web languages. In the development process,

three standards were used:

 Web Ontology Language (OWL) allows semantic description of the several elements in the

middleware environment. OWL was used as the main modelling language for ontology

specification, capturing the most important requirements for achieving semantic
interoperability in the Hydra

 Semantic Web Rule Language (SWRL) allows definition of rules, which were used to extend
the models of device state-machines.

 SPARQL query language for RDF was used to retrieve the information from ontologies in the

development process to test the representation capabilities of developed models and also in
Application Ontology Manager Implementation.

A short overview of used standards and reasoners with their possibilities of usage in the HYDRA is
presented in the sequel.

4.4.1 Modelling and query languages

4.4.1.1 Ontology Web Language (OWL)

The OWL Web Ontology Language [McGuinness, 2004] is designed for use by applications that need

to process the content of information instead of just presenting information to humans. OWL

Hydra D6.2 MDA Design Document

Version 1.0 Page 32 of 89 2007-12-21

facilitates greater machine interpretability of Web content than that supported by XML, RDF, and
RDF Schema (RDF-S) by providing additional vocabulary along with formal semantics. OWL has

three increasingly expressive sublanguages: OWL Lite, OWL DL, and OWL Full.

The basic reasons for decision to use of OWL for modelling in Hydra are:

 OWL extends all other languages like XML, RDF, and RDF-S. Actually, OWL has been

developed on top of the existing XML and RDF standards, which did not appear adequate for

achieving efficient semantic interoperability.

o E.g. in XML and XML Schema same term may be used with different meaning in

different contexts, and different terms may be used for items that have the same
meaning.

o E.g. RDF and RDF-S address some problem by allowing simple semantics to be

associated with identifiers. With RDFS, one can define classes that may have
multiple subclasses and superclasses, and can define properties, which may have

subproperties, domains, and ranges. However, in order to achieve interoperation
between numerous, autonomously developed and managed schemas, richer

semantics are needed, like disjoints and cardinality of relations.

o OWL adds more vocabulary for describing properties and classes, relations between
classes, cardinality, equality, richer typing of properties, characteristics of properties

and enumerated classes, and all available in three increasingly expressive and
increasingly complex sublanguages (Lite, DL, Full) designed for use by specific

communities of implementers and users.

 OWL is well-known widely used open W3C standard with very good support and promising

potential and real usage in several industry applications.

 OWL has wide support of modelling tools, platforms, and reasoners.

 Previous languages could express (in most cases) the same things, but for some of them

OWL provide direct solution by a predefined type of predicates.

 There are several well-known mechanisms for expressing OWL-Lite and OWL-DL ontologies

to stay on decidable level, where Description Logic (DL) could be used correctly.

 OWL language has proved its potential to use for modelling of semantic interoperability in

several middleware-based applications and domains.

In Hydra the same OWL-based framework can be used for representation of context, device
descriptions (capabilities), descriptions of middleware components, services, security aspects, with

several specific goals such as:

 Use of semantic models of device descriptions and services for model-driven architecture

design (code generation for devices and services).

 Use of semantic-based models in run-time for discovery of devices (adoption to interfaces

supported by device), resolving application requests, resolving security requirements,

services execution and context awareness.

 Modelling of particular elements to create necessary semantic-based models mostly based

on the Semantic Web technologies.

OWL Lite and DL should be used for reasoning with DL-reasoner for organizing context definitions,
merging domain knowledge into these definitions, and performing recognition of contexts from

sensor inputs. The ontology has many merits, of which the most notable are the excellent

extensibility, and high expression power. Many systems in the “ubiquitous” and embedded
environments are developed using DL-based ontologies and used with DL-based reasoning. Usually,

ontologies are used for modelling context that the systems should collect and analyze. A pure DL-
based approach, however, has certain limitations in a context environment. OWL and other

ontology languages based on Description Logic cannot properly handle rules expressed in Horn-

Hydra D6.2 MDA Design Document

Version 1.0 Page 33 of 89 2007-12-21

Logic. Hence, to ensure syntactic and semantic interoperability on device level (e.g. “low-level”
ontologies), SWRL (Semantic Web Rule Language) can be used for expressing rules.

4.4.1.2 Semantic Web Rule Language (SWRL)

SWRL [SWRL, 2004] combines sublanguages of the OWL (OWL DL and Lite) with those of the Rule

Markup Language (Unary/Binary Datalog). Actually, it is an extension of OWL which adds support for
Datalog syntax-style rules over OWL DL ontologies. Instead of arbitrary predicates (as in Datalog),

SWRL allows arbitrary OWL DL descriptions in both the head and the body of rules, where a unary
predicate corresponds to an OWL class and a binary predicate corresponds to an OWL property.

While a subset of SWRL falls inside Horn Logic, a SWRL knowledge base easily goes beyond this
fragment, because of the use of classical negation and existentially quantified variables and

disjunction in the head of the rule. A set of Horn Logic formulae can be reduced to standard Logic

Programming rules; the Horn Logic formulae and the Logic Programming rules entail exactly the
same set of ground formulae. Consequently, SWRL and standard rule languages differ in

expressiveness. The advantage of common rule languages which are based on Horn Logic is the
efficient reasoning support which has been developed for certain reasoning tasks like query

answering. By going beyond the Horn fragment, SWRL loses this advantage.

The intended meaning of SWRL rules can be read as: whenever the conditions specified in the
antecedent hold, then the conditions specified in the consequent must also hold. This is important

fact which predetermines this framework to be used in context awareness, security (policy), in other
words, if there is important to express facts about devices and their actual contexts, SWRL could

provide very promising framework for modelling of naturally spread knowledge on several devices,
application managers or context-aware elements in semantic middleware.

More details about usage of modelling directly for Hydra-related purposes are presented in particular

chapters in this document and/or other deliverables related to already mentioned topics like context
awareness, semantic security, semantic interoperability in Hydra middleware (device discovery and

usage in runtime, model-driven architecture design, etc).

4.4.1.3 SPARQL

Last topic to be mentioned in this section is querying of ontologies, this is based on the well-known

(and already mentioned) SPARQL. Many semantic reasoners/engines have built-in support for this

query language (e.g. Jena, RacerPro and Pellet). SPARQL is an RDF query language; its name is a
recursive acronym that stands for SPARQL Protocol and RDF Query Language, and it is undergoing

standardization under the W3C (currently November 2007 the status of SPARQL changed into
Proposed Recommendation). The beneficial properties of a query language (like SPARQL) for the

Semantic Web defined [Bailey, 2005]:

 Referentially transparent - “within the same scope, an expression always means the same”,

 Strong answer closure - the result of a query can be used as the input for further querying,

 Set-oriented functional – also known as a backtracking-free logic programming,

 Incomplete queries and answers - support for data on the Web that may not have defined

schemas,

 Multiple serialisation aware - able to serialise data to various formats including XML, OWL,

RDF,

 Queries that support reasoning capabilities - the ability to query different data sources and

infer new statements.

SPARQL is a Server-Client-based RDF query language. It has SQL syntax and is influenced by RDQL

and SquishQL4. SPARQL can process more complex query than RDQL and provides optional variable
binding and result size control mechanisms for real world usage. SPARQL allows for a query to

consist of triple patterns, conjunctions, disjunctions, and optional patterns. Several implementations

for multiple programming languages exist. The SPARQL query processor will search for sets of
triples that match particular triple patterns, binding the variables in the query to the corresponding

Hydra D6.2 MDA Design Document

Version 1.0 Page 34 of 89 2007-12-21

parts of each triple. To make queries concise, SPARQL allows the definition of prefixes and base
URIs.

4.4.2 Reasoners

Reasoning over designed ontologies is important part of any semantic-based application. Here we
can see several important aspects for usage of particular reasoners. First, reasoning over created

ontology and their instances, querying languages over meta-data. The selection among the
aforementioned alternatives is basically based on the language capabilities and the availability of

further querying APIs and frameworks for it (it is a fact that available frameworks or querying APIs
are strongly associated and dependent on the languages).

4.4.2.1 JENA

According to the fact that OWL is used for modelling in Hydra middleware, it is natural that

reasoners in our case have to support OWL-based (DL and OWL-Lite) reasoning. The main
application element of Hydra middleware responsible for ontologies is Application Ontology Manager.

In order to achieve unified and comprehensive solution in programmatic way, Jena Semantic Web
Framework (http://jena.sourceforge.net/) has been used for implementation of the manager. Jena is

specifically suited to develop Java-based Semantic Web applications. It is open source and grown

out of work with the HP Labs Semantic Web Programme. The Jena Framework includes:

 A RDF API

 Reading and writing RDF in RDF/XML, N3 and N-Triples

 An OWL API

 In-memory and persistent storage

 SPARQL query engine

 Rule support – own rule engine

Jena provides a very comprehensive framework easy usable not only for reasoning, but also for
other purposes of querying, persisting, updating and versioning of different types of ontologies in

Hydra middleware.

The only weakness of the Jena framework is SWRL support. Jena has its own Rule engine support,

which is slightly different to standard SWRL. Actually, in most cases (where SWRL is not directly

used) Jena prove its potential, only in some cases where SWRL plays an important role (e.g. see
chapter about use of models for context awareness) it can be problematic.

4.4.2.2 RacerPro

During the development and design of SWRL-based parts of middleware semantics another engine
has been used – RacerPro (http://www.racer-systems.com/). RacerPro is a knowledge

representation system that implements a highly optimized calculus for a very expressive description

logic augmented with qualifying number restrictions, role hierarchies, inverse roles, and transitive
roles. In addition to these basic features, RACER also provides facilities for algebraic reasoning

including concrete domains for dealing with min/max restrictions over the integers, linear polynomial
(in-)equations over the reals or cardinals with order relations, nonlinear multivariate polynomial (in-

)equations over complex numbers, equalities and inequalities of strings. Actually, RacerPro is
commercial and can be only used as trial for academic/research purposes, as it was somehow used

also in our case.

4.4.2.3 Pellet

A solution for future can be using of another open-source engine for rule support. Pellet
(http://pellet.owldl.com/) has an implementation of an algorithm for a DL-safe rules extension to

OWL-DL. This implementation allows one to load and reason with DL-safe rules encoded in SWRL.
Pellet has also been coupled with a Datalog reasoner to support AL-log (Datalog + OWL DL). This

http://jena.sourceforge.net/
http://www.racer-systems.com/
http://pellet.owldl.com/

Hydra D6.2 MDA Design Document

Version 1.0 Page 35 of 89 2007-12-21

coupling implements the traditional algorithm and a new pre-compilation technique that is
incomplete but more efficient. What is important here is that there is implemented reasoner

interface for Jena, so it is possible to use the rule support based on SWRL within whole framework.

Pellet reasoner was used in the ontology development process as the part of TopBraid composer
(see bellow).

4.5 Platform and Tools

In the ontology development process, includes two ontology editing tools supporting all of used
standards languages: TopBraid composer and Protégé-OWL editor.

4.5.1 TopBraid composer

TopBraid Composer (http://www.topbraidcomposer.com/), a component of TopBraid Suite, is a

modelling tool for the creation and maintenance of semantic models (ontologies). It is a complete
editor for RDF(S) and OWL models, as well as a platform for other RDF-based components and

services.

TopBraid Composer enables individual users and communities to collaborate effectively in developing
Semantic Web ontologies. Key features of TopBraid Composer include:

 Standards-based, syntax directed development of RDFS and OWL ontologies, SPARQL
queries and SWRL rules using ontology-driven forms, which can be customized. Ontologies

can be developed using form-based GUI or also the manual source code editing.

 Imports and namespace management.
 Re-use of the legacy models and data through XML, UML, spreadsheet and database

schema imports.
 Visualization and diagramming using UML class like diagrams or visual RDF

graphs.

 Consistency checking and debugging.
 Multi-user support.

 HTML documentation generation.

TopBraid Composer is implemented as an Eclipse plug-in. Many other Eclipse plugins for editing
other languages such as UML and XML exist, and therefore users can use a single tooling

environment for many different modelling tasks. Furthermore, the foundation on the Eclipse plug-in

architecture means that developers can build additional services (such as custom visualization and
reasoning engines) on top of TopBraid Composer.

TopBraid Composer is built on top of Jena, a Semantic Web framework from HP Labs. Jena is open-
source and plug-in developers will be able to exploit arbitrary Jena-based services. TopBraid

Composer is also shipped with the OWL DL Pellet reasoner from the University of Maryland MindLab.

Additional inference engines can be integrated and specified in the configuration preferences.

4.5.2 Protégé-OWL editor

The Protégé-OWL (http://protege.stanford.edu/overview/protege-owl.html) editor is an extension of
Protégé (http://protege.stanford.edu/) that supports the OWL. The Protégé platform supports two

main ways of modelling ontologies:

 The Protégé-Frames editor enables users to build and populate the frame-based

ontologies (in accordance with the Open Knowledge Based Connectivity Protocol

(OKBC)). Using this modelling approach, an ontology consists of a set of classes

organized in a subsumption hierarchy representing a domain concepts, a set of slots
describing the properties of classes and relationships, and a set of instances of defined

classes.

 The Protégé-OWL editor enables users to build ontologies directly on OWL standard.

Hydra D6.2 MDA Design Document

Version 1.0 Page 36 of 89 2007-12-21

HYDRA ontologies are modelled using OWL; the Protégé-OWL editor was used for development
purposes. Protégé OWL provides a variety of features that makes it very useful for building

ontologies in OWL, namely:

 Loaded or newly created ontologies can be maintained using form-based GUI. In various

visual ways of editing the classes, properties and individuals.

 Wizards to streamline complex tasks supporting common ontology-engineering patterns,

such as creating groups of classes, making a set of classes disjoint, creating a matrix of

properties in order to set many property values, and creating value partitions.
 Direct access to reasoners is used for three default types of reasoning: (1) consistency

checking, (2) classification (subsumption), and (3) instance classification).

 Multi-user support for synchronous knowledge entry.

 Support for multiple storage formats. Current formats include Clips, XML, RDF, N-

TRIPLE, N3, TURTLE and OWL.

Protégé-OWL's flexible architecture makes it easy to configure and extend the tool. Protégé-OWL is

integrated with Jena and has an open-source Java API for the development of custom-tailored user

interface components or arbitrary Semantic Web services.

Protégé has also strong ontology visualisation tools implemented as Protégé plug-ins. The well

known and commonly used are OWLViz and OntoViz plug-ins.

OWLViz is designed to be used with the Protege OWL plug-in. It enables the class hierarchies in an

OWL Ontology to be viewed and incrementally navigated, allowing comparison of the asserted class

hierarchy and the inferred class hierarchy. OWLViz integrates with the Protege-OWL plug-in, using
the same colour scheme so that primitive and defined classes can be distinguished, computed

changes to the class hierarchy may be clearly seen, and inconsistent concepts are highlighted in red.
OWLViz has the facility to save both the asserted and inferred views of the class hierarchy to various

concrete graphics formats including png, jpeg and svg.

The OntoViz Tab allows you to visualize Protege ontologies with the help of a highly sophisticated

graph visualization software called GraphViz (http://www.graphviz.org/) from AT&T. The types of

visualizations are highly configurable and include:

 Picking a set of classes or instances to visualize part of an ontology.

 Displaying slots and slot edges.

 Specifying colours for nodes and edges.

 When picking only a few classes or instances, you can apply various closure operators

(e.g., subclasses, superclasses) to visualize their vicinity.

Hydra D6.2 MDA Design Document

Version 1.0 Page 37 of 89 2007-12-21

5. HYDRA ontologies

5.1 HYDRA ontology architecture

In Hydra there are three major ontologies used: The Device Ontology, a Security Ontology and a

Software Components Ontology.

5.2 Device ontology

HYDRA device ontology presents the basic high level concepts describing basic device related

information, which will be used in both development and run-time process.

Ontologies have been developed using the OWL language. The references between more general
and specific concepts and modules (related ontologies) is realised using the OWL import mechanism.

In the development phase, every ontology module can be further extended by creating new
concepts according to the needs of representation of the new information about new device types

and models. The concepts can also be further specialized. For example, if the new device type is
needed, the adequate concept in the device classification module can be further subclassed by more

specialized concepts and the new properties can be added. Specific device models are created as the

instances of device ontology concepts are filled with real data.

The ontology diagrams presented in this chapter have been exported using the TopBraid editor.

Note, that presented diagrams describe only high-level ontology structure. In some cases, the
concept properties are hidden in order to reduce the complexity of figures.

The ontology architecture was designed to support the maintainability and future extensions of used

concepts. The HydraDevice concept presents the main ontology class. HydraDevice class has one
OWL DataType property deviceId, which is used in run-time as the unique URI assigned to the real

device instance connected to HYDRA. Using this URI, it is possible to retrieve and update the
relevant information related to the general description of a device and its actual run-time properties.

The complete structure of semantic device descriptions, represented by the full device ontology, is
divided into four interconnected modules:

 basic device information and taxonomy

 device malfunctions

 device capabilities and state machine

 device services

References to several ontology modules are realised as OWL ObjectProperties. The principal

structure and usage of each module will be described in more details.

5.2.1 Basic device information

Basic device information represents only general and ordinary device information.

The concept InfoDescription contains basic information about device friendly name, manufacturer

data (such as manufacturer name and URL) and device model data, namely model name, model

description and model number. The information is represented as OWL data type properties. The
InfoDescription class is referred from the HydraDevice concept using the info OWL object property.

An important part of the basic device information is the representation of device type. The type of
device is modelled as the OWL is-a hierarchy by subclassing the HydraDevice concept. This approach

leads to the model of flexible device taxonomy, which can be further modified and extended by
newly manufactured or not yet used device descriptions. The main purpose of device taxonomy is to

reduce the whole model complexity by distributing the several device information into smaller units.

Each device type should refer only to relevant part of all possible device information, for example
relevant device capabilities, service types, malfunctions, etc. The Device taxonomy should also

Hydra D6.2 MDA Design Document

Version 1.0 Page 38 of 89 2007-12-21

reduce the information complexity in both development and run-time process by selecting only the
set of device information relevant to actual context.

Further, the OWL object property hasEmbeddedDevice recursively refers to HydraDevice concept.

This property enables the creation of models of composite devices, such as in case of HeatingSystem
device used in first system prototype application. HeatingSystem can be, for example, composed of

Thermometer and Pump devices. Property hasEmbeddedDevice enables to access information on
several subsumption levels according to actual needs in dependence on actual context, run-time

properties, required services, etc.

The semantic model of the basic device description is illustrated in Figure 12. The initial device

taxonomy was taken from AMIGO project vocabularies for device descriptions [AMIGO, 2006].

Figure 12: The basic Hydra Device taxonomy

5.2.2 Device malfunctions

The semantic model of device malfunctions represents possible errors that may occur on devices.
The concept Malfunction is referred from the HydraDevice concept using the hasMalfunction OWL

object property. This concept contains general malfunction information, namely OWL data type
properties malfunctionName and malfunctionCode, where property malfunctionName represents

human readable name and malfunctionCode contains application specific malfunction reference.

Both properties are mainly used to access the information related to specific faults. OWL object
property hasCase of Malfunction concept represents the one-to-many relation to potential

malfunction cases represented by MalfunctionCase concept.

The concept MalfunctionCase contains two OWL data type properties cause and remedy, which

contain the human readable name of particular cause and human readable remedy describing how
to react to the given cause. Every device malfunction may have as many cases as needed.

In order to have a flexible model of malfunctions, the Malfunction concept can be further subclassed

to several malfunction levels or severity, such as, error, fatal, warning and info. Possible severity
levels can be further extended by the hierarchy of specific faults.

DevOnt 1: Device basic information.

Hydra D6.2 MDA Design Document

Version 1.0 Page 39 of 89 2007-12-21

Connecting the device taxonomy to the malfunction taxonomy creates a flexible representation of
fault states, which may occur on various device types and the possibilities of their solutions. The

malfunctions, using taxonomy relations, can be, according to actual context, used to retrieve the

more general fault descriptions in case, when the required specific description for the concrete
device (or device type) is missing. The connection of malfunction model and device state machine

can be used for diagnostic purposes. The various faults related to specific ontology states can, for
example, be used to predict or avoid the fatal error states of device or to invoke the related callback

events to handle the error states that may occur the run-time.

The model of basic device malfunctions is illustrated in figure Figure 13.

Figure 13: The malfunction part of the Hydra Device Ontology

DevOnt 2: Device malfunctions.

Hydra D6.2 MDA Design Document

Version 1.0 Page 40 of 89 2007-12-21

5.2.3 Device capabilities and state machine

Figure 14: The State machine part of the Hydra Device Ontology

5.2.4 Device services

The device services ontology component presents the semantic description of device services on the

higher, technology independent level. HYDRA service model enables the interoperability between
devices and services, employing the service capabilities, input and output parameters and supported

communication protocols supporting the device interaction.

The semantic service specification is based on the OWL-S [OWL-S, 2004] standard, which is

currently the most complete description of semantic markup for services following web service

architecture (the overview of related standards for semantic web service markup is presented in
D6.3 deliverable). The OWL-S approach was taken as the starting point for HYDRA service model.

The DeviceService concept is referred from HydraDevice using OWL object property hasService and
is composed of four main parts.

Hydra D6.2 MDA Design Document

Version 1.0 Page 41 of 89 2007-12-21

Figure 15: Modelling of services in the Hydra Device Ontology.

The concept ServiceCategory represents the taxonomy based on specific classification of services.

The taxonomy is also used to classify the services by their capabilities or usage purposes. Using the
service categorisation tends to reduced complexity of service discovery and development process by

selection of only services of specified type or usage.

The DeviceServiceProfile concept presents the basic service description used mainly for service

discovery process. The Service profile describes the general information, such as human readable

service name and description, service capabilities and service inputs and outputs. The Capability
concept is used to describe the specific service capabilities related to service functional properties,

such as ability to handle various media formats or to handle required device states. ServiceInput and
ServiceOutput parameters are specific subclasses of general ServiceParameter class and should be

annotated to a semantic model describing various input and output types in the syntactic (for

example, string, number) and semantic (for example, address, and user name) way. Capabilities and
input/output descriptions can be used for suitable service discovery or service composition, but also

for semi-automatic or fully automatic generation of self-descriptive service user interfaces.

DeviceServiceProcess concept describes the service process model, which defines if the service

represents the immediately invocable atomic process or work-flow of composite processes.

The DeviceServiceGrounding concept specifies the details, how to access the service and physically

realise the service invocation. Service grounding represents the mapping from abstract to concrete

specification of service elements used for interaction, namely the inputs and outputs of atomic
processes. The atomic processes are mapped into WSDL files provided by the specific devices.

Proposed HYDRA device services model presents only the first draft of the service modelling
approach and requires further investigation and research related to possible existing semantic

service markup standards (such as WSMO) and the system architecture requirements.

5.2.5 Modelling Wireless and Resource Consumption Aspects

The three HYDRA domains are realizable deploying Wireless Sensor Networks (WSN), for this reason

we have focused our attention on the technologies developed to deploy such networks. WSN is a

wireless network consisting of spatially distributed autonomous devices using sensors to
cooperatively monitor physical or environmental conditions, such as temperature, sound, vibration,

pressure, motion or pollutants, at different locations. Although WSN was born for military

Hydra D6.2 MDA Design Document

Version 1.0 Page 42 of 89 2007-12-21

applications they are now used in many civilian application areas, including environment and habitat
monitoring, healthcare applications, home automation, and traffic control.

WSNs are networks formed by small devices powered by batteries, in this way the main constraints

on sensor nodes result in corresponding constraints on resources such as energy, memory,
computational speed and bandwidth. The power consumption for the sensing, communication and

data processing is lower than the energy required for data communication.

The data transmission is the central point to deploy WSNs, in particular we must consider the

amount of data transmitted in WSNs. Using devices with a high transmission capacity will be a great
advantage during video streaming or downloading documents, but inside a WSN the

communications are formed by small packets, the dimensions of transmitted packets are

approximately of 10 or 100 kbit.

All of these aspects need to be described and captured in the Hydra Device Ontology to allow

different software managers to access the properties for different devices and make intelligent
decisions regarding how to most effectively use the scarce resources available in the device.

Starting from this assumptions we focused our attention on wireless technology providing less power

consumption and low data rate:

 Bluetooth

 ZigBee/XBee

 Wibree

 RFiD

 WiFi

 GSM

Obviously WiFi or GSM devices are not properly the less expensive wireless technologies from the
power consumptions hand side, but in the latest years and in particular for the WiFi, were developed

several core and power saving procedure that could reduce the power spent during data
transmissions or during the idle state of the devices.

5.2.5.1 Wireless protocols

Bluetooth

Born as cable replacement technology, Bluetooth device was also used to implement the first kind of
WSN, but cause to their power characteristic, the Bluetooth technology was considered inadequate

[Zheng, 2004] Table 3.

The high power consumption and the high data rate don’t respect the WSN assumptions; in this way
Bluetooth technology could be used to realize body area networks (BAN) of one day life1, but it is

not used to implement WSN for huge scenarios, like agriculture, where nodes must gather the
information in a range of several months. To realize such scenarios other technologies are developed

and an example of them is the ZigBee.

1 http://homepage.uab.edu/cdiamond/index.htm

http://homepage.uab.edu/cdiamond/index.htm

Hydra D6.2 MDA Design Document

Version 1.0 Page 43 of 89 2007-12-21

1 mW (0dBm)

25 mW (4dBm)

100 mW (20dBm)

Maximum Power

1 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class III

10 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class II

100 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class I

Range(I/O)Data RateOp.Freq.Protocol

1 mW (0dBm)

25 mW (4dBm)

100 mW (20dBm)

Maximum Power

1 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class III

10 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class II

100 m
1 Mbit/s ver (1.2)
3 Mbit/s ver (2.0)

2.4 GHzBluetooth class I

Range(I/O)Data RateOp.Freq.Protocol

Table 3 Bluetooth Characteristics

ZigBee

ZigBee standard was born to provide communication where the Bluetooth technology doesn’t assure
the best performance.

ZigBee is focused on control and automation, it uses low data rate, low power consumption, and
works with small packet devices. ZigBee networks can support a larger number of devices and a

longer range between devices, Table 4.

Table 4 ZigBee Characteristics

Wibree

Wibree is a new interoperable radio technology for small devices. It can be built into products such
as watches, wireless keyboards, gaming and sports sensors, which can connect to host devices such

as mobile phones and personal computers.

- mW (- dBm)

Maximum Power

5-10 m1 Mbit/s2.4 GHzWiBree

Range(I/O)Data RateOp.Freq.Protocol

- mW (- dBm)

Maximum Power

5-10 m1 Mbit/s2.4 GHzWiBree

Range(I/O)Data RateOp.Freq.Protocol

Table 5 WiBree Characteristics

At the moment there aren’t any available devices using Wibree standard.

RFiD

RFiD technology was realized to provide a support for operation like: automotive, product tracking,
transportation payments, etc. On the market exists three kind of RFiD devices, everyone working on

different frequency range 125/134 kHz, 13,56 MHz, 868/915 MHz, >2,4 GHz:

Hydra D6.2 MDA Design Document

Version 1.0 Page 44 of 89 2007-12-21

1. Passive RFID tags have no internal power supply. Passive tags have practical read distances
ranging from about 10 cm up to a few meters, depending on the chosen radio frequency

and antenna design

2. Active RFID tags have their own internal power source, which is used to power the
integrated circuits and broadcast the signal to the reader. Many active tags today have

practical ranges of hundreds of meters, and a battery life of up to 10 years in turn, they are
generally bigger and more expensive than the passive RFiD

3. Semi-active RFiD tags, are similar to active tags in that they have their own power source,
but the battery only powers the microchip and does not broadcast a signal. The RF energy is

reflected back to the reader like a passive tag

In this way if we want to deploy a WSN using RFiD devices we must use active and semi-active tags,
equipped with a microcontroller and with a remarkable memory.

WiFi

WiFi products are today the most available solutions for high data rate wireless communications, in
the years several different standards was developed to satisfy different needs, like interferences and

data rate. Table 6 shows some parameters identifying the several WiFi protocol realized until now,
the only aspect that are not indicated is the most important for our scope, the power consumptions.

50/5000 m54 Mbit/s3.7 GHz802.11y

70/250 m248 Mbit/s
2.4 GHz
5 GHz

802.11n

38/140 m54 Mbit/s2.4 GHz802.11g

38/140 m11 Mbit/s2.4 GHz802.11b

35/120 m54 Mbit/s5 GHz802.11a

Range(I/O)Data RateOp.Freq.Protocol

50/5000 m54 Mbit/s3.7 GHz802.11y

70/250 m248 Mbit/s
2.4 GHz
5 GHz

802.11n

38/140 m54 Mbit/s2.4 GHz802.11g

38/140 m11 Mbit/s2.4 GHz802.11b

35/120 m54 Mbit/s5 GHz802.11a

Range(I/O)Data RateOp.Freq.Protocol

Table 6 WiFI Characteristics
The power consumption of the WiFi technology is a constant aspect for these products, up to 20

dBm equal to 100 mW during communication. This value guarantees great performances in terms of

connection availability giving the possibility to reach internet also in no line of sight connection. But
if this aspect is one of the WiFi communication strong points, this represent a drawback for a lot of

handled devices that need to be awake for a great amount of time.

GSM

Global System for Mobile communication (GSM) is a globally accepted standard for digital cellular

communication. GSM uses the circa 900 Mhz band characterized by the 890-915MHz frequencies in
uplink and the 935-960MHz in downlink as indicated in the Table 7.

Hydra D6.2 MDA Design Document

Version 1.0 Page 45 of 89 2007-12-21

1 W (30dBm)

Maximum Power

270 kb/s

890-915MHz UL
935-960MHz DL
1710-1785 MHz UL
1805-1880 MHz DL

GSM

Data RateOp.Freq.Protocol

1 W (30dBm)

Maximum Power

270 kb/s

890-915MHz UL
935-960MHz DL
1710-1785 MHz UL
1805-1880 MHz DL

GSM

Data RateOp.Freq.Protocol

Table 7 GSM Characteristics

5.2.5.2 Power Consumption

All devices involved in communication spend a lot of their energy in data transmission. As could be
seen in Table 8, these values span from 0 dBm, for ZigBee, to 30 dBm, for GSM devices.

All the devices implementing these wireless technologies are handled devices and are powered by
batteries, exception done for those ones that could act like gateways or bridges, which could be

powered in many way:

1. Batteries 6V DC (Q52, Q53)

2. Power over Ethernet (Q52, Q53, Libellium Multigateway)

3. Power supplied by 220V (Libellium Multigateway)

In this way the problem arising with power consumption could be translated in lifetime problems.

Table 8 Power Consumption
To resolve such kind of problems several device manufacturers implement, inside their devices,

energy saving procedures. All these procedures, also called connection states, represent a reduction

in term of power consumption reducing the awake time of the devices forcing them to listen for
connections during scheduled times, or reducing the duty cycle of the involved device.

5.2.5.3 Wireless properties in the Device Ontology

All the showed technologies represent a solution in wireless communications for several scenarios, in
which we could:

 use ZigBee/XBee technology to develop WSNs for agriculture scenario (several market

solutions are proposed)

 use Bluetooth technology to develop WSNs for healthcare scenario (the development of the

new Medical Device Profile gives the opportunities to reduce cost size and power
consumptions)

 use ZigBee/XBee technology to develop WSNs for smart-home scenario (in particular a new

device coming from Zensys enterprise, Z Wave, is one of the suitable product able to realize
these applications as explained in D5.4)

Hydra D6.2 MDA Design Document

Version 1.0 Page 46 of 89 2007-12-21

As could be evident in the several tables showed in this paragraph, there are a lot of devices that
works in the ISM band at 2.4 GHZ. As explained in deliverable D5.4 this couldn’t represent a problem

in terms of Packet Loss in an heterogeneous network formed by a small number of devices, but

other analysis could be performed to evaluate other parameters that could jeopardize the network
efficiency.

To decrease the collision characteristic, due to the same medium sharing, could be suitable to
develop inside the device ontology same aspects that could be relevant, in particular, for the

transmission:

1. Transmission frequencies already occupied by some devices

2. Number of devices working at a particular frequency

3. Medium access criteria

Knowing a priori these and other information could improve the network performances in terms of

reduced interference.

A such kind of medium access criteria is already implemented in devices like Bluetooth core 5 that

have replaced the FH (Frequency Hopping) with the AFH (Adaptive Frequency Hopping).

To allow all devices which are part of Hydra to implement such mechanism could be a good solution
to add in the device ontology some issues where these aspects are signalled, in this way a new

device that wants to communicate inside the Hydra heterogeneous network could use frequencies
where the collision probability is reduced.

Hydra D6.2 MDA Design Document

Version 1.0 Page 47 of 89 2007-12-21

6. Middleware managers

This chapter describes the middleware manager elements (in red) that constitute the main parts of

the semantic MDA, explaining their roles, functions and component structure. Furthermore there is a

section covering the common XML-Schema that is used for representing common objects which is
related to the different ontologies.

The Functional Structure model is divided into two parts: Application Elements and Device Elements.
Both elements differ in the following aspects:

• Resources available on the of the machine on which they are supposed to

run (e.g., embedded platform vs. server platform)

• Intended purpose of the components (e.g., to develop domain-specific

applications or to develop application-independent device

The following diagrams explain how the application and device elements are logically grouped.

Application Elements

Application Context Manager

Application Policy Manager

Application Event Manager

Application Device Manager

Application Network Manager

Application Ontology Manager

Application Diagnostics Manager

Device Network Manager

Application Schedule Manager

Application Security Manager

Application Service Manager

Application Session Manager

Application Orchestration Manager

Figure 16: Overview of Application Elements

Hydra D6.2 MDA Design Document

Version 1.0 Page 48 of 89 2007-12-21

6.1 Application Device Manager

6.1.1 Purpose

The Application Device Manager manages all knowledge, metadata and information regarding

devices that have been discovered and are active in the Hydra network. The Application Device
Manager knows about devices from a network perspective but does not handle the locations or

context of the devices.

Main Functions:

 Discover new (existing) semantic devices

 Assigns a device type to the device based on Device Ontology.

 Returns service interface for the device

 Handles device virtualization (semantic devices)

 Handles semantic device aggregation

 Manages a Device Application Catalogue

6.1.2 Related WP6 requirements

[HYDRA-91] Any HYDRA device should have an associated description

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: For management, search and discovery purposes, all HYDRA enabled devices should be
described (classified) according to the HYDRA device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a HYDRA application is also included in the HYDRA device ontology,
and its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-108] Device discovery

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[HYDRA-109] Device Virtualization

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The complexity of devices may be hidden, or simplified, by means of virtual device interfaces;

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109

Hydra D6.2 MDA Design Document

Version 1.0 Page 49 of 89 2007-12-21

these would correspond to "views" on device descriptions as provided by the HYDRA device
models (ontologies).

Source: WP6 MDA scenario focus group

Fit Criteria: An existing virtualization can be used to find exactly one proper HYDRA device.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-110] Device Categorisation in runtime Created: 28/Nov/06 Updated: 09/Oct/07

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should after discovery of device be able to categorise a device based on device
ontology information.

Source: WP6 MDA Focus Group

Fit Criteria: 7 of 10 devices are correctly categorised and described.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

Dependencies: 101

[HYDRA-111] Dynamic Web Service Binding

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to after device discovery and categorisation expose a new device as
a web service that can be called without re-compilation.

Source: WP6 SoA Focus Group

Fit Criteria: New devices are callable and controllable in 7 out of 10 cases.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[HYDRA-112] Dynamic Web Service Generation

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Configuration tool that is able to generate the necessary interfaces to wrap the device
functionality as a web service.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 device functionalities are automatically represented as web services

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

 [HYDRA-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-111
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-112
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120

Hydra D6.2 MDA Design Document

Version 1.0 Page 50 of 89 2007-12-21

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-218] Support interaction devices

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Interaction devices provide users with different forms of output (display) capabilities. This could
include simple displays, tablets or more advanced units.

Source: WP6 MDA scenario

Fit Criteria: Interaction devices (displays) are included in the HYDRA device ontology and can be mapped to
the end-user interface of an application.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

neutral

[HYDRA-325] Support aggregation and separation of devices and services

Status: Part of specification

Project: HYDRA

Requirement Type: Functional

Workpackage: WP6

Rationale: Devices and services may exist in a separate application where they should not be influenced by
nearby (wireless) devices such as in the case of an apartment. Thus it should be possible to
view a set of services/devices as an aggregate that is separated and isolated from other sets of
services/devices

Source: UAAR focus group

Fit Criteria: Check support for aggregation and separation of devices/services

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-218
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-325
https://hydra.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=10000
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.2 MDA Design Document

Version 1.0 Page 51 of 89 2007-12-21

Dissatisfaction:

6.1.3 Components

Figure 17: Application Device Manager

There are three main subcomponents of the Device Manager.

6.1.3.1 Device Discovery

One of the major functions of the Application Device Manager is to discover new devices in the

network. It will support user-initiated discovery as well as automatic schemes. Requirements

108 and 218 are associated with this module.

Hydra D6.2 MDA Design Document

Version 1.0 Page 52 of 89 2007-12-21

6.1.3.2 Device Application Catalogue

The Device Application Catalogue keeps track of and manages all devices that are currently
active within one application. It can be queried about existing devices and their status. It can

also provide service interfaces for the different devices upon request. The Device Application

Catalogue will also keep track of when the device entered the system, when it was last heard of
and its current “error state”. The “error state” will reflect if the Device Application Catalogue

believes that the device is working. This state should be maintained by the Application
Diagnostic Manager. The Device Application Catalogue should also provide methods for

removing devices, i.e. that devices that are removed can unregister themselves from the
catalogue. Requirements 91, 98, 110 and 111 are associated with this module.

6.1.3.3 Device Service Generator

The Device Service Generator is responsible for generating a service interface for a certain

device. It will create a software wrapper around the device which other modules can use to
communicate with and control the device. Requirements 91, 111, 120 and 325 are associated

with this module.

6.1.4 Dependencies

Application Ontology Manager, Application Event Manager, Application Network Manager and

Application Security Manager

6.1.5 Interface

string ApplicationDeviceManager::ProcessErrorMessage(string deviceid, XmlNode theMessage)

Processes an error message.

Parameters:
theMessage The error message as an XML Node.

Returns:
A description of the error.

string ApplicationDeviceManager::ProcessErrorMessageString(string deviceid, string theMessage)

Parameters:
theMessage The error message as a string.

Returns:
A description of the error.

string ApplicationDeviceManager::SetDeviceStatus(string deviceid, string statusmessage)

Sets the device status.

Parameters:
deviceid The ID of the device.

statusmessage A message describing the changes to be made to the device status.

Returns:
The updated device status.

string ApplicationDeviceManager::GetDeviceInfo (string deviceid)

Returns status and other info of the device.

Parameters:
deviceid The ID of the device.

Returns:
The current device status and info.

Hydra D6.2 MDA Design Document

Version 1.0 Page 53 of 89 2007-12-21

XmlNode ApplicationDeviceManager::GetDeviceStatus (string deviceid)

Returns the device status as an XML Node.

Parameters:
deviceid The ID of the device.

Returns:
The current device status.

XmlNode ApplicationDeviceManager::GetDeviceXML (string deviceid)

Returns the XML description of the device.

Parameters:
deviceid The ID of the device.

Returns:
An XML Node containing the description of the device.

string ApplicationDeviceManager::GetDevices (string type)

Returns a list of the devices currently available in the network.

Parameters:
type A device type.

Returns:
Alist of the currently available devices.

XmlDocument ApplicationDeviceManager::GetDevicesAsXML (string type)

Returns a list of the devices currently available in the network.

Parameters:
type A device type.

Returns:
An Xml Document containing a list of the currently available devices.

XmlDocument ApplicationDeviceManager::GetDeviceOntologyDescriptionAsXML (string
deviceontology_id)

Returns the ontology description of the device as an OWL Document.

Parameters:
deviceontology_id The id of the device.

Returns:
The ontology description of the device as an OWL Document.

string ApplicationDeviceManager::GetDeviceOntologyDescription (string deviceontology_id)

Returns the ontology description of the device as a string.

Parameters:
deviceontology_id The id of the device.

Returns:
The ontology description of the device as a stringt.

string ApplicationDeviceManager::GetProperty (string deviceid, string property)

Returns the named property of the device.

Parameters:
deviceid The id of the device.

property The name of the property.

Returns:
The value of the property.

Hydra D6.2 MDA Design Document

Version 1.0 Page 54 of 89 2007-12-21

bool ApplicationDeviceManager::HasProperty (string deviceid, string property)

Indicates if the device has a property with the specified name.

Parameters:
deviceid The id of the device.

property The name of the property.

Returns:
True if the property exists, false otherwise.

string ApplicationDeviceManager::SetProperty (string deviceid, string property, string value)

Sets the named property of the device.

Parameters:
deviceid The id of the device.

property The name of the property.

value The new value of the property.

Returns:
The new value of the property.

string ApplicationDeviceManager::Invoke(XmlNode invokeMessage)

Generic method to invoke any method in a service on a device.

Parameters:
invokeMessage The invoking message containing deviceid,serviced, methodname, parameters, values

Returns:
The result of invoking the method.

string ApplicationDeviceManager::AddDevice(XmlNode devicedescription)

Allows manual adding of devices to the network that cannot be discovered using the default discovery

protocol

Parameters:
devicedescription The device to be added to the catalogue.

Returns:
The result of adding the device.

string ApplicationDeviceManager::DeleteDevice(string deviceid)

Deletes the device from the Device Application Catalogue

Parameters:
deviceid The deviceid of the device to be deleted from the network.

Returns:
The result of deleting the device.

bool ApplicationDeviceManager::IsRegistered(string HID)

Checks if a certain device with a Hydra ID is part of this catalogue.

Parameters:
HID The HID of the device.

Returns:
True if the device is registered, false otherwise.

Hydra D6.2 MDA Design Document

Version 1.0 Page 55 of 89 2007-12-21

6.2 Application Service Manager

6.2.1 Purpose

The purpose of the Application Service Manager is to discover, create and execute semantic (web)

services on top of devices. It adds a semantic layer and complements above the Application Device
Manager with a service perspective. Services might map to several device functionalities.

Main Functions:

 Service discovery

 Semantic service creation (service orchestration/clustering and mapping to device

service)

6.2.2 Related WP6 requirements

[HYDRA-104] Automatic Discovery of Services

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to configure the middleware to discover available services that meets
defined criteria.

Source: St. Augustin

Fit Criteria: 8 of 10 services are automatically discovered.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

 [HYDRA-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-114] Semantic enabling of device web services

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-104
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114

Hydra D6.2 MDA Design Document

Version 1.0 Page 56 of 89 2007-12-21

Developer
Dissatisfaction:

high

[HYDRA-119] Domain modelling support

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The middleware and IDE should be able to interface with application domain frameworks
representing core concepts and functions of specific application domains. These could in the
most basic form be represented by UML Profiles, or domain ontologies.

Source: WP6 MDA focus group

Fit Criteria: The HYDRA IDE supports at min 2 defined domain modelling frameworks.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Dependencies: 117

[HYDRA-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-129] Support for Semantic Web Standards for Device Communication

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should support different semantic web standards, including OWL-S, WSMO, and
selected parts of WS-*

Source: WP SoA Focus Group

Fit Criteria: Support for at least OWL-S and WSMO

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-325] Support aggregation and separation of devices and services

Status: Part of specification

Project: HYDRA

Requirement Type: Functional

Workpackage: WP6

Rationale: Devices and services may exist in a separate application where they should not be influenced by
nearby (wireless) devices such as in the case of an apartment. Thus it should be possible to

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-129
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-325
https://hydra.fit.fraunhofer.de/jira/secure/BrowseProject.jspa?id=10000

Hydra D6.2 MDA Design Document

Version 1.0 Page 57 of 89 2007-12-21

view a set of services/devices as an aggregate that is separated and isolated from other sets of
services/devices

Source: UAAR focus group

Fit Criteria: Check support for aggregation and separation of devices/services

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-372] Interfacing with external systems

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Searching and using external services in decision support and application intelligence must be
supported

Source: WP 6 Focus Group, WP2 Input

Fit Criteria: Access to external systems using web service protocols (WS-I Basic Profile) is supported

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-372
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.2 MDA Design Document

Version 1.0 Page 58 of 89 2007-12-21

6.2.3 Components

Figure 18: Application Service Manager

6.2.3.1 Service Discovery Module

One of the major functions of the Service Manager is to discover new services in the network. This is

taken care of by the Service Discovery Module. It will use the Device Manager to find out about
services offered by different devices.

6.2.3.2 Semantic Service Catalogue:

The Semantic Service Catalogue keeps track of and manages all service offered within one

application. It can be queried about existing services. It can also provide semantic service
interfaces for the different services upon request.

6.2.3.3 Semantic Service Generator

The Semantic Service Generator is responsible for generating a semantic service interface for
services offered by devices. It will create a software wrapper around the device services which

other modules can use. The generated software will support a semantic-based service interface.

It will support several semantic web standards, at least OWL-S and WSMO.

Hydra D6.2 MDA Design Document

Version 1.0 Page 59 of 89 2007-12-21

6.2.4 Dependencies

Application Service Manager, Application Ontology Manager and Application Security Manager

6.2.5 Interface

string ApplicationServiceManager::ProcessErrorMessage (XmlNode theMessage)

Processes an error message.

Parameters:
theMessage The error message as an XML Node.

Returns:
A description of the error.

string ApplicationServiceManager::ProcessErrorMessageString (string theMessage)

Processes an error message.

Parameters:
theMessage The error message as a string.

Returns:
A description of the error.

bool ApplicationServiceManager::HasService (string deviceid, string serviceid)

Checks if a service is available.

Parameters:
service serviceid The service name.

 deviceid The device to be queried

Returns:
True if service is available otherwise false.

string ApplicationServiceManager::GetServiceDescription (string devicetype, string serviceid)

Retrieves a device description.

Parameters:
devicetype The device type as a string.

serviceid The service id as a string.

Returns:
A string containing a service description in XML format.

XmlNode ApplicationServiceManager::GetServiceDescriptionAsXML (string devicetype, string
serviceid)

Retrieves a device description.

Parameters:
devicetype The device type as a string.

serviceid The service id as a string.

Returns:
An XmlNode containing a service description.

string ApplicationServiceManager::GetServices(string type)

Retrieves a list of available services.

Parameters:
type The device service type as a string.

Returns:
A string containing the list of available devices services in XML format.

Hydra D6.2 MDA Design Document

Version 1.0 Page 60 of 89 2007-12-21

XmlNode ApplicationServiceManager::GetServicesAsXML (string type)

Retrieves a list of available services.

Parameters:
type The device service type as a string.

Returns:
An XmlNode containing the list of available service.

string ApplicationServiceManager::Invoke(XmlNode invokeMessage)

Generic method to invoke any method in a service on a device.

Parameters:
invokeMessage The invoking message containing serviced, methodname, parameters, values

Returns:
The result of invoking the method.

6.3 Application Orchestration Manager

6.3.1 Purpose

The Application Orchestration Manager provides support for composite services and workflows. It is

an execution engine for the Hydra Device Orchestration Language (“DOLL”).

Main Functions:

 Execute call sequences consisting of invocations of Device services

 Provide scheduling of notifications and service calls for Hydra applications

6.3.2 Related WP6 requirements

[HYDRA-113] Composition (of services and devices)

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: In order to enhance or replace application level functions it will be useful to be able to compose
services and devices from different providers and/or manufacturers into high level
services/devices

Source: WP6 MDA Focus Group, WP6 eHealth Focus Group

Fit Criteria: Service composition during design-time is possible.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-392] Rules for selection of alternative devices

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The developer user should be able to specify how devices can replace or complement each
other. This is relevant in situations when a device fails and another device exists which can
provide a replacement service, or, when different levels of quality of service are available.

Source: WP6 eHealth focus group

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-113
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392

Hydra D6.2 MDA Design Document

Version 1.0 Page 61 of 89 2007-12-21

Fit Criteria: In the SDK, contructs are available that allow the developer to specify rules for when and how
devices and sevices can be interchanged and combined.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.2 MDA Design Document

Version 1.0 Page 62 of 89 2007-12-21

6.3.3 Components

Orchestration Manager

Orchestration Manager

Workflow Execution ManagerSchedule Manager

Orchestration Manager Interface

Application Device Manager

Figure 19: Application Orchestration Manager

Schedule Manager: The scheduler is responsible for running tasks or notifying applications when a
specific criteria is met. Such a criteria can be a e.g. specific (possibly recurring) time, system startup,

system shutdown.

Workflow Execution Manager: The workflow execution module interprets process descriptions

and executes a set of services. These processes may represent a complex service composed of other
services or part of a HYDRA application.

Dependencies: Application Device Manager

6.3.4 Interface

XmlNode OrchestrationManager::LoadProcessDescription (XmlNode processDescription) Loads a
process description into the Orchestration Manager.

Parameters:
processDescription The ontology deviceId.

Hydra D6.2 MDA Design Document

Version 1.0 Page 63 of 89 2007-12-21

Returns:
A XML node containing the result of the operation and invocation data or the description of any errors that

occurred during method invocation.

XmlNode OrchestrationManager::ListProcessDescriptions () Lists process descriptions previously loaded into

the Orchestration Manager.

Parameters:

Returns:
A XML node containing all process descriptions loaded into the Orchestration Manager.

XmlNode OrchestrationManager::InvokeProcessDescription (XmlNode invocationData) Invokes a process

description previously loaded into the Orchestration Manager.

Parameters:
invocationData An XML node with data identifying the process and invocation data for invocation.

Returns:
A XML node containing the result of and data returned from the invocation or the description of any errors that

occurred during invocation.

6.4 Application Ontology Manager

6.4.1 Purpose

One of the key components in the Hydra middleware is the Device Ontology, where all meta-

information and knowledge about devices and device types are stored. The purpose of the

Application Ontology Manager is to provide an interface for using the Device Ontology. This manager
could possibly also maintain other models in addition to devices.

Main Functions:

 Device description & annotation

 Parsing & annotation of device description

 Search/Query function

 Update

 Ontology versioning

 Reasoner module

6.4.2 Related WP6 requirements

[HYDRA-91] Any HYDRA device should have an associated description

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: For management, search and discovery purposes, all HYDRA enabled devices should be
described (classified) according to the HYDRA device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a HYDRA application is also included in the HYDRA device ontology,
and its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-98] Detection of device failures

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-98

Hydra D6.2 MDA Design Document

Version 1.0 Page 64 of 89 2007-12-21

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The system should be able to detect malfunctioning devices in order to be robust.

Source: WP6 MDA focus group

Fit Criteria: Malfunctioning devices are detected in 8 out of 10 cases.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-101] Manual device ontology definition

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The developer should be able to define and extend device ontologies. The IDE is required to
provide descriptors for devices and device classes

Source: WP6 MDA Scenario Focus Group

Fit Criteria: The HYDRA IDE supports the manual editing of devices in the framework of a device ontology.

Developer
Satisfaction:

low

Developer
Dissatisfaction:

high

[HYDRA-103] Automatic device ontology construction

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The construction of a device ontology should be facilitated through finding and parsing product
or device descriptions to annotate and produce ontology entries. The component should handle
different input formats like Word, PDF, HTML, databases.

Source: St. Augustin Workshop

Fit Criteria: 5 of 10 device descriptions can be successfully processed

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[HYDRA-108] Device discovery

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108

Hydra D6.2 MDA Design Document

Version 1.0 Page 65 of 89 2007-12-21

[HYDRA-110] Device Categorisation in runtime

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should after discovery of device be able to categorise a device based on device
ontology information.

Source: WP6 MDA Focus Group

Fit Criteria: 7 of 10 devices are correctly categorised and described.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

Dependencies: 101

[HYDRA-117] HYDRA component ontology

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: In order to support and ease the management of the HYDRA middleware, the HYDRA
middleware components should be described and mapped to a corresponding HYDRA
middleware software component ontology.

Source: WP6 MDA focus group

Fit Criteria: All HYDRA components can be identified through a software component ontology

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-119] Domain modelling support

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The middleware and IDE should be able to interface with application domain frameworks
representing core concepts and functions of specific application domains. These could in the
most basic form be represented by UML Profiles, or domain ontologies.

Source: WP6 MDA focus group

Fit Criteria: The HYDRA IDE supports at min 2 defined domain modelling frameworks.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

Dependencies: 117

[HYDRA-123] Support updates at run-time

Status: Part of specification

Requirement Type: Non-Functional - usability

Workpackage: WP6

Rationale: The middleware should be dynamically updatable at run-time due to critical systems updates
(security updates, component upgrades, etc.).

Source: WP6 MDA focus group

Fit Criteria: Deployed middleware should execute 70% of the dynamic updates without failure and restart

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-119
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-123

Hydra D6.2 MDA Design Document

Version 1.0 Page 66 of 89 2007-12-21

Developer
Satisfaction:

high

Developer
Dissatisfaction:

very low

[HYDRA-125] Transactional updates

Status: Part of specification

Requirement Type: Non-Functional - usability

Workpackage: WP6

Rationale: It should be possible to rollback and recover from an unsuccessful update.

Source: WP6 MDA Focus Group

Fit Criteria: Rollback works in 7 out of 10 scenarios.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-126] Automatic Device ontology updates

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The device ontology should automatically update its device descriptions.

Source: WP6 MDA Focus Group

Fit Criteria: The device ontology can detect device updates and handle that in 7 of 10 cases.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-139] Knowledge model of hydra middleware

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Knowledge model of the whole middleware providing developers with knowledge on all
middleware components offers a guidance how ho compose a hydra-based application.

Source: State of the Art

Fit Criteria: Support for knowledge model based rapid development is available

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

neutral

[HYDRA-141] Download and harmonisation of third party device ontologies

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Device ontological models describing devices, which will be provided by manufacturers or third
parties, should be automatically downloaded (updated) and harmonised to ensure the same
ontological view. Formal definition of ontologies should be realised using the world wide

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-125
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-139
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-141

Hydra D6.2 MDA Design Document

Version 1.0 Page 67 of 89 2007-12-21

accepted formats, recommended by W3C, such as RDF, OWL, and OWL-S.

Source: Hydra D2.2 Initial Technology Watch Report

Fit Criteria: Ontologies from different manufacturers can be used if they are in RDF, OWL or OWL-S

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[HYDRA-359] Handling of different device versions in device ontology

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The device ontology should be able to handle different versions of a device.

Source: WP6 MDA Focus Group

Fit Criteria: The device ontology can maintain at minimum 2 versions of any single device

Developer
Satisfaction:

high

Developer
Dissatisfaction:

neutral

[HYDRA-365] Ability to self-adaptation

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale:
A knowledge model enables the middleware to contain a representation of itself and manipulate
its state during its execution. This feature should serve as the basis for self-adaptation of the
middleware (e.g. reconfiguration of resource usage, triggering the component-based services).

Source: Hydra D2.2 Initial Technology Watch Report

Fit Criteria: Middleware is able to adapt its configuration in 60% of identified cases requiring reconfiguration.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

neutral

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-392] Rules for selection of alternative devices

Status: Part of specification

Requirement Type: Functional

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-359
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-365
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-392

Hydra D6.2 MDA Design Document

Version 1.0 Page 68 of 89 2007-12-21

Workpackage: WP6

Rationale: The developer user should be able to specify how devices can replace or complement each
other. This is relevant in situations when a device fails and another device exists which can
provide a replacement service, or, when different levels of quality of service are available.

Source: WP6 eHealth focus group

Fit Criteria: In the SDK, contructs are available that allow the developer to specify rules for when and how
devices and sevices can be interchanged and combined.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

6.4.3 Components

Figure 20: Application Ontology Manager

Hydra D6.2 MDA Design Document

Version 1.0 Page 69 of 89 2007-12-21

6.4.3.1 Reasoner

The reasoner module is responsible for reasoning about devices and their status and provides
inference mechanisms for instance to conclude what type of device has entered the network.

6.4.3.2 Query module

The query module allows for retrieving information regarding devices and their capabilities.

6.4.3.3 Update module

The update module allows entering of new information, deletion and changes to the ontology at
both design time and run time.

6.4.3.4 Versioning

The versioning module is responsible for managing different version of the ontology. This
includes different versions of devices and services.

6.4.3.5 Parse & Annotate

The parse & annotate modules is responsible for automatically update the ontology with new

device types. It does so by analyzing and annotates existing device and product descriptions
which are fed into the ontology.

6.4.4 Dependencies

External ontologies and product description databases

6.4.5 Interface

String ApplicationOntologyManager::getDeviceDescription (String deviceId)

Retrieves the device description from the ontology.

Parameters:
deviceId The ontology deviceId.

Returns:
A XML string containing the device description or the description of error that occurred during method

invocation.

String ApplicationOntologyManager::getDeviceDescriptions ()

Retrieves descriptions of all devices presented in the ontology.

Returns:
A XML string containing the descriptions of all devices contained in the ontology or the description of error

that occurred during method invocation.

String ApplicationOntologyManager::createNewDevice (String deviceType, String deviceId)

Creates the new device ontology instance.

Parameters:
deviceType The device type specified as the name of the ontology concept in the device type hierarchy.

deviceId The requested ontology deviceId.

Returns:
A XML string containing the description of unique and requested ontology id of newly created device instance

or the description of error that occurred during method invocation.

Hydra D6.2 MDA Design Document

Version 1.0 Page 70 of 89 2007-12-21

String ApplicationOntologyManager::setDeviceDescription (String deviceId, String description)

Sets or updates the basic device information in the ontology.

Parameters:
deviceId The ontology deviceId.

description The XML string specifying the new basic information of defined device.

Returns:
A XML string containing the update operation success or the description of error that occurred during method

invocation.

String ApplicationOntologyManager::getSupplierInfo (String deviceId)

Retrieves the device's supplier information from the ontology.

Parameters:
deviceId The ontology deviceId.

Returns:
A XML string containing the information of device supplier (manufacturer name and URL) or the description

of error, that occurred during method invocation.

String ApplicationOntologyManager::findDeviceDescription (String device)

Retrieves the device's description from the ontology.

Parameters:
device The name of the device.

Returns:
A XML string containing the information of the device.

String ApplicationOntologyManager::parseDeviceDescription (String description)

Parses a free-text, or semi-structured, device description and updates the ontology.

Parameters:
description A free-text, or semi-structured, device description of the device.

Returns:
The new deviceId create in the ontology.

String ApplicationOntologyManager::getDeviceClass (String deviceId)

Returns the class of a device.

Parameters:
deviceId The deviceId of the device.

Returns:
A string containing the device class.

String ApplicationOntologyManager::resolveError (String deviceType, String error)

Retrieves the errors for all devices of specified type.

Parameters:
deviceType The device type specified as the name of the ontology concept in the device type hierarchy.

error The human readable error description.

Returns:
A XML string containing the list of all devices, which contain the specified error or the description of error

that occurred during method invocation. For each device, the XML string contains the list of matching errors

and for each error the related cause-remedy pairs.

String ApplicationOntologyManager::resolveErrorByCode (String deviceType, String error)

Retrieves the errors for all devices of specified type.

Parameters:
deviceType The device type specified as the name of the ontology concept in the device type hierarchy.

Hydra D6.2 MDA Design Document

Version 1.0 Page 71 of 89 2007-12-21

error The error specified by ontology error code.

Returns:
A XML string containing the list of all devices, which contain the specified error or the description of error

that occurred during method invocation. For each device, the XML string contains the list of matching errors

and for each error the related cause-remedy pairs.

String ApplicationOntologyManager::getDeviceError (String deviceId, String error)

Retrieves the errors for specified device.

Parameters:
deviceId The ontology deviceId.

error The human readable error description.

Returns:
A XML string containing the list of all device errors matching the query or the description of error that

occurred during method invocation. For each error, the XML string contains the list of related cause-remedy

pairs.

String ApplicationOntologyManager::getDeviceErrorByCode (String deviceId, String error)

Retrieves the errors for specified device.

Parameters:
deviceId The ontology deviceId.

error The error specified by ontology error code.

Returns:
A XML string containing the list of all device errors matching the query or the description of error that

occurred during method invocation. For each error, the XML string contains the list of related cause-remedy

pairs.

String ApplicationOntologyManager::setDeviceErrors (String deviceId, String errors)

Sets or updates the device errors in the ontology.

Parameters:
deviceId The ontology deviceId.

description The XML string specifying the device errors and cause-remedy pairs.

Returns:
A XML string containing the update operation success or the description of error that occurred during method

invocation.

String ApplicationOntologyManager::removeDeviceErrors (String deviceId)

Removes the device errors from ontology.

Parameters:
deviceId The ontology deviceId.

Returns:
A XML string containing the remove operation success or the description of error that occurred during method

invocation.

String ApplicationOntologyManager::answer (String query)

Utility method: retrieves the result of SPARQL query.

Parameters:
query The SPARQL query.

Returns:
A XML string containing the result of executed SPARQL query or the error code. XML string and error codes

are automatically generated by Jena API.

String ApplicationOntologyManager::getDeviceTypes ()

Utility method: retrieves the names of device type hierarchy concepts.

Hydra D6.2 MDA Design Document

Version 1.0 Page 72 of 89 2007-12-21

Returns:
A string containing comma-separated list of names of device type hierarchy concepts.

6.5 Application Diagnostics Manager

6.5.1 Purpose

The purpose of the Application Diagnostics Manager is to monitor the system conditions and state. It
will be responsible for error detection and logging of device events. The Diagnostics Manager will be

an important component in providing the self-* properties of Hydra. Completely reliable failure

detection is impossible in a distributed system with the characteristics of Hydra, so the Diagnostics
Manager will need to work with imperfect failure detectors.

Main Functions:

 Systems diagnostics (e.g., a device is dead/ doesn't respond)

o dead/live lock detection

o software failure

o hardware failures
o network failures

 Device Diagnostics (device responds but...)

o service failure
o device status reports

 Application diagnostics / Monitoring

o global resource consumption
o overall property use (e.g., room is too warm)

 Logging

 Fault detection rule engine

o manages rules/dependencies over devices

6.5.2 Related WP6 requirements

[HYDRA-91] Any HYDRA device should have an associated description

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: For management, search and discovery purposes, all HYDRA enabled devices should be
described (classified) according to the HYDRA device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a HYDRA application is also included in the HYDRA device ontology,
and its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-94] Simulation environment

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-94

Hydra D6.2 MDA Design Document

Version 1.0 Page 73 of 89 2007-12-21

Rationale: Use of a simulation environment is important for validating the rules/software interaction with
devices. It can also be used for replaying the event log in order to examine unwanted system
behaviour.

Source: WP6 MDA Focus group

Fit Criteria: Simulation environment is available

Developer
Satisfaction:

high

Developer
Dissatisfaction:

very high

[HYDRA-96] Detect deadlocks

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The middleware must have functionalities for detecting deadlocks between devices, for instance
two devices that are waiting for each other to take an action.

Source: WP6 MDA Focus Group

Fit Criteria: Detects deadlocks in 7 out 10 cases

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[HYDRA-97] Detect livelocks

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The middleware must be able to detect livelocks between two or more devices, i.e. devices that
are constantly changing each others state back and forth.

Source: WP6 MDA Focus Group

Fit Criteria: Detects livelocks in 7 out of 10 cases

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[HYDRA-98] Detection of device failures

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The system should be able to detect malfunctioning devices in order to be robust.

Source: WP6 MDA focus group

Fit Criteria: Malfunctioning devices are detected in 8 out of 10 cases.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-122] Configurable and easy to install middleware

Status: Part of specification

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-96
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-97
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-98
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-122

Hydra D6.2 MDA Design Document

Version 1.0 Page 74 of 89 2007-12-21

Requirement Type: Non-Functional - usability

Workpackage: WP6

Rationale: The middleware should be configurable and easy to install/deploy.

Source: WP6 MDA Focus Group

Fit Criteria: The average installation time is less than 1 hour.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[HYDRA-125] Transactional updates

Status: Part of specification

Requirement Type: Non-Functional - usability

Workpackage: WP6

Rationale: It should be possible to rollback and recover from an unsuccessful update.

Source: WP6 MDA Focus Group

Fit Criteria: Rollback works in 7 out of 10 scenarios.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-125

Hydra D6.2 MDA Design Document

Version 1.0 Page 75 of 89 2007-12-21

6.5.3 Components

Application Diagnostics

Manager

Application Diagnostics Manager

Application Diagnostics Manager Interface

Log Facility Device MonitoringFault detection

Application Ontology Manager

Application Ontology Manager Interface

Application Event Manager

Application Event Manager Interface

Application Network Manager

Application Network Manager Interface

Device Status

Resource Manager

Resource Manager Interface

Communication Monitoring

Figure 21: Application Diagnostics Manager

6.5.3.1 Device Status

The Device Status module is responsible for finding out the status of a device and if there are

any malfunctions detected. This component should be coordinated with the device state
machine running on ResourceManager component in order to get all the interested information.

6.5.3.2 Log Facility

The Log Facility is used to log all events and interactions between devices. This is used by

several other modules to implement their functionality. The log can also be used to detect
different erroneous states.

6.5.3.3 Fault Detection

This component will execute rules or rule sets to discover if there is any malfunctioning or
strange behavior in the system. Recovery actions can also be published or taken in order to

achieve self-managing.

Hydra D6.2 MDA Design Document

Version 1.0 Page 76 of 89 2007-12-21

6.5.3.4 Device Monitoring

This component is used to process rules or rule sets to monitor devices in order to be
preemptive to avoid errors and malfunctions, for instance by monitoring the resource usage of

certain devices.

6.5.3.5 Communication Monitoring

This component is used to conduct packet sniffing on the host running the Web Services and
then can be used to make decisions on the working status of the device.

6.5.4 Dependencies

Application Ontology Manager, Application Event Manager, Application Network Manager,
Resource Manager

6.5.5 Interface

string DiagnosticsManager::checkDeviceCurrent (string DeviceId) [inline]

Get the current state of a device.

Parameters:

DeviceId The device id as string.

Returns:

A string containing the current state.

string DiagnosticsManager::getDeviceStateMachine (string DeviceId) [inline]

Get the device state machine.

Parameters:

DeviceId The device id as string.

Returns:

A string containing the current state.

string DiagnosticsManager::checkDevice (string DeviceId) [inline]

Execute the health monitoring rule for a device.

Parameters:

DeviceId The device id as string.

Returns:

A string containing the status.

string DiagnosticsManager::CheckAllCurrent () [inline]

Get all devices current status in order to have a feeling of how the system runs.

Hydra D6.2 MDA Design Document

Version 1.0 Page 77 of 89 2007-12-21

Returns:

A string containing the status.

6.6 Device Device Manager

6.6.1 Purpose

The Device Device Manager handles several service requests and manages the responses.

Main Functions:

 Maps requests to device services

 Response generation

 Advertising Hydra device description

 Advertises device services

6.6.2 Related WP6 requirements

[HYDRA-91] Any HYDRA device should have an associated description

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: For management, search and discovery purposes, all HYDRA enabled devices should be
described (classified) according to the HYDRA device ontology.

Source: WP6 MDA scenario

Fit Criteria: Any device associated to a HYDRA application is also included in the HYDRA device ontology,
and its description can be retrieved.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-92] Rule-based configuration of devices

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The possibility for the developer to specify device behaviour using rules. It should be possible to
derive and re-use rules from pre-existing or generic rule sets for application domains.
Possibility to hide device specific details.

Source: WP6 MDA Focus Group and WP6 eHealth focus group

Fit Criteria: The functionality (services) of a device is accessible (by user or application) thru a rule-based
interface.

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-108] Device discovery

Status: Part of specification

Requirement Type: Functional

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-91
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-108

Hydra D6.2 MDA Design Document

Version 1.0 Page 78 of 89 2007-12-21

Workpackage: WP6

Rationale: Middleware should be able to detect new device that enters the network

Source: St. Agustin

Fit Criteria: 7 of 10 devices are discovered

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[HYDRA-109] Device Virtualization

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: The complexity of devices may be hidden, or simplified, by means of virtual device interfaces;
these would correspond to "views" on device descriptions as provided by the HYDRA device
models (ontologies).

Source: WP6 MDA scenario focus group

Fit Criteria: An existing virtualization can be used to find exactly one proper HYDRA device.

Developer
Satisfaction:

neutral

Developer
Dissatisfaction:

neutral

[HYDRA-111] Dynamic Web Service Binding

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to after device discovery and categorisation expose a new device as
a web service that can be called without re-compilation.

Source: WP6 SoA Focus Group

Fit Criteria: New devices are callable and controllable in 7 out of 10 cases.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

very high

[HYDRA-114] Semantic enabling of device web services

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Middleware should be able to attach semantic descriptions to device web services based on
device ontology.

Source: WP6 SoA Focus Group

Fit Criteria: 7 of 10 devices are semantically enabled.

Developer
Satisfaction:

very high

Developer
Dissatisfaction:

high

[HYDRA-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-109
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-111
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-114
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120

Hydra D6.2 MDA Design Document

Version 1.0 Page 79 of 89 2007-12-21

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.2 MDA Design Document

Version 1.0 Page 80 of 89 2007-12-21

6.6.3 Components

Figure 22: Device Device Manager

6.6.3.1 Advertise

This module is responsible for broadcasting the existence of the device to the outside world. It will

support several discovery protocols, at least UPnP (Universal Plug and Play).

6.6.3.2 Request Mapping

This module maps a request from an outside caller to an internal service in the device.

6.6.3.3 Response Generator

This module maps translates the result of an internal service in the device to a response to the

caller.

6.6.3.4 Service Description

This module can advertise and provide the service description of the device.

Hydra D6.2 MDA Design Document

Version 1.0 Page 81 of 89 2007-12-21

6.6.4 Dependencies

Device Service Manager

6.6.5 Interface

string DeviceDeviceManager::RegisterError(string property, string errorcode)

Registers an error condition.

Parameters:
property The error property as string.

errorcode The error code as string.

Returns:
A string containing the registered error.

string DeviceDeviceManager::SendErrorMessage(string message)

Sends an error message for a specific device.

Parameters:
message The error message as string.

Returns:
A string containing the sent error message.

string DeviceDeviceManager::Invoke(string serviceid, string methodName, string parameters,
string values)

Executes a specific method for a service (using the device service manager).

Parameters:
serviceid The serviceid as string.

methodName The methodName as string.

parameters A comma delimited string with the parameter names.

parameters A comma delimited string with the parameter values (Matched against "parameters").

Returns:
A string indicating the result of the execution.

string DeviceDeviceManager::GetDeviceStatus ()

Retrieves the device status (using the device service manager).

Returns:
A string with the device status.

string DeviceDeviceManager::AddDAC(string dacaddress)

Adds a device application catalogue to this device list of catalogues when the device is discovered.

Returns:
A string with the device status.

string DeviceDeviceManager::GetDACList()

Returns the list of device application catalogues where the device has been discovered.

Returns:
A string with the device application catalogues.

Hydra D6.2 MDA Design Document

Version 1.0 Page 82 of 89 2007-12-21

6.7 Device Service Manager

6.7.1 Purpose

Implements service interface for physical devices.

Main Functions:

 Maps services to physical device operations

 Maps (physical) device events to Hydra enabled events

6.7.2 Related WP6 requirements

[HYDRA-120] Multiple Device Virtualisations

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: It should be possible to have several different views/virtualisations of a device depending on
context and applications.

Source: WP6 MDA Focus Group

Fit Criteria: At least 2 different virtualisations are provided

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

[HYDRA-376] Security requirements must be part of the Hydra MDA

Status: Part of specification

Requirement Type: Functional

Workpackage: WP6

Rationale: Security must be defined to be resolved semantically

Source: WP 6 Focus group Kosice

Fit Criteria: Security model can be defined semantically

Developer
Satisfaction:

high

Developer
Dissatisfaction:

high

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-120
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-376

Hydra D6.2 MDA Design Document

Version 1.0 Page 83 of 89 2007-12-21

6.7.3 Components

Figure 23: Device Service Manager

6.7.3.1 Service Mapping

This module maps device service request to internal device operations. One device can have

several service mappings.

6.7.3.2 Event Mapping

This module handles physical device events and maps them into Hydra-events.

6.7.4 Dependencies

Device Resource Manager, Device Context Manager

6.7.5 Interface

XmlDocument DeviceServiceManager::GetServiceDescription (string serviceid)

Retrieves a service description for a service.

Parameters:
serviceid The service id as string.

Hydra D6.2 MDA Design Document

Version 1.0 Page 84 of 89 2007-12-21

Returns:
An XmlDocument with service description.

string DeviceServiceManager::Invoke(string serviceid, string methodName, string parameters,
string values)

Executes a specific method for a service.

Parameters:
serviceid The serviceid as string.

methodName The methodName as string.

parameters A comma delimited string with the parameter names.

parameters A comma delimited string with the parameter values (Matched against "parameters").

Returns:
A string indicating the result of the execution.

string DeviceServiceManager::GetDeviceStatus ()

Retrieves the device status (using the device service manager).

Returns:
A string with the device status.

string DeviceServiceManager::GetProperty(string property)

Retrieves the property value for a given property of the device.

Parameters:
propertyid The propertyid as string.

Returns:
A string with the property value.

string DeviceServiceManager::HandleEvent(string event)

Process an event from the physical device and maps that into a Hydra Event.

Parameters:
event The event as string.

Returns:
A string representing the Hydra event.

6.8 Common XML-Schema

There will be a common XML-Schema derived from the contents and structure of the different
ontologies. The schema classes will be used in the different manager web service interfaces and

internal interfaces. The purpose of the common XML-Schema is to standardize the representation of
different common entities such as the HID, device et c in order to make it interoperable in-between

managers. The schema will also provide the base for implementing the data structures that will be

used and referenced by the SDK environment.

Hydra D6.2 MDA Design Document

Version 1.0 Page 85 of 89 2007-12-21

7. Future work

Future work within this workpackage includes integrating a security ontology in the semantic Model

Driven Architecture in cooperation with workpackage 7, as well as further extending the work on

software components ontology.

Since the Hydra semantic MDA is centered around ontologies we foresee a need for tools and

methods for design and managing these ontologies, therefore for the next development iterations
we will investigate how the design and management of the three Hydra ontologies can be carried

out efficiently.

7.1 Device Discovery

There are several issues to be further investigated for the management of the DAC and the

discovery process. In this (2nd) iteration we have decided that all service composition will occur at

design time. In the following iterations, the Hydra middleware may have to resolve at run time when
a set of devices and services that are present in the network constitute a composite device, and

place this composite device in the DAC. The Hydra discovery functions will be able to discover other
devices that use a number of different protocols; Bluetooth, UPnP, Zigbee etc. These may also be

able to announce themselves to other devices using all these protocols. However, not all Hydra

devices will be capable of this. The more limited devices will be able to handle web services (in order
to be Hydra devices), and these may also need some way of announcing themselves on the

network.

7.2 Security ontology

The further specification and use of a security ontology is under investigation in cooperation with

WP7.

7.3 SW components ontology

The purpose of a SW components ontology is to provide a model of the middleware software

[Oberle, 2006] components that comprise a HYDRA configuration (HYDRA-117: HYDRA component
ontology, HYDRA-139: Knowledge model of hydra middleware). This model will support activities of

composition, configuration, deployment and monitoring of the HYDRA middleware (HYDRA-115:

Decomposable middleware, HYDRA-122: Configurable and easy to install middleware).

The requirements to a component model are well met by the OSGi component model (which is also

basis for the dynamic component model in Java as described in JSR-2912. We will use this as a basis
for a component ontology. The specification allows components to be declared through metadata

and be assembled at runtime using a class loader delegation network. The specification also allows
components to be dynamically life cycle managed (install, start, stop, update, uninstall). The JSR-

291 specification is basically OSGi R4. It is suggested to model the OSGi Module Layer as an

ontology.

7.4 Ontology design and management

The Semantic MDA of HYDRA includes certain generic ontology management functions for the

HYDRA IDE. The HYDRA middleware as such does not impose any specific engineering or
management methods with respect to ontologies, but should be open to any approach.

In HYDRA we adopt the following view on the management of ontologies:

Ontology management is the whole set of methods and techniques that is necessary to efficiently

use multiple variants of ontologies from possibly different sources for different tasks. Therefore, an

2 http://jcp.org/aboutJava/communityprocess/final/jsr291/

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-117
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-139
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-115
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-122
http://jcp.org/aboutJava/communityprocess/final/jsr291/

Hydra D6.2 MDA Design Document

Version 1.0 Page 86 of 89 2007-12-21

ontology management system should be a framework for creating, modifying, versioning, querying,
and storing ontologies. It should allow an application to work with an ontology without worrying

about how the ontology is stored and accessed, how queries are processed, etc. Ontology

modification is accommodated when an ontology management system allows changes to the
ontology that is in use, without considering the consistency. Ontology evolution is accommodated

when an ontology management system facilitates the modification of ontology by preserving its
consistency. Ontology versioning is accommodated when an ontology management system allows

handling of ontology changes by creating and managing different versions of it [Hydra, 2006].

 “Ontologies, to be effective, need to change as fast as the parts of the world they describe” (Davies

et al.). This would hold for any model claiming to be an accurate abstraction of some part of the

world, but becomes very critical in an ontology-based system like HYDRA where openness and
reasoning over system capabilities expressed in models are vital.

Ontology changes can emanate from user requirements on changes to structure and classification;
in HYDRA this would be the developer users’ requirements. The changes can also be induced by

changes in the underlying domain objects being modelled by the ontology, in HYDRA, this would e.g.

be changes in device capabilities, in security protocols, or in middleware components.

7.4.1 Ontology design process

The initial HYDRA ontology design process is been manual, performed by ontology engineering
experts (a HYDRA partner) and domain (device) experts (developer users / focus group members).

The requirements capturing process is part of and based on the requirements work performed as
part of WP2 and the Volere elicitation process. This naturally follows the iterative approach of the

HYDRA project’s development model.

7.4.2 Modifying and Evolving ontologies in HYDRA

A developer must be able to define new or extend existing device ontologies (HYDRA-101: Manual

device ontology definition), and hence the SDK/IDE is required to provide the necessary tools,
including an ontology browser and editor.

To semantically maintain the device ontologies, it is necessary to identify and find the relevant

descriptive sources and to retrieve the necessary semantic descriptions. These description must then
be transformed into the model structure of the actual ontology.

The manual ontology updates are complemented by support mechanisms for (semi-) automatic
extension to ontologies. This support can be divided into mechanisms for:

- device descriptions mining and parsing

- device instance change discovery and capture

7.4.2.1 Automation support for classifying devices

HYDRA ontology evolution can be supported by providing functions for the automatic classification of

devices (HYDRA-103: Automatic device ontology construction).

The construction of a device ontology should be facilitated through finding and parsing product or

device descriptions to annotate and produce ontology entries. By this we mean the process of
retrieving device related information and the transformation of this into a device description which

can be included in the device ontology as a (sub-)class. The transformation process should be able

to map multiple input formats (such as MS Word, PDF, HTML, XML), to the ontology language of
HYDRA (OWL).

The updated ontology description is then usable in the process of dynamically binding a specific
device instance to the particular device class in the ontology (HYDRA-110: Device Categorisation in

runtime).

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-101
http://hydra.fit.fraunhofer.de/jira/browse/HYDRA-103
https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-110

Hydra D6.2 MDA Design Document

Version 1.0 Page 87 of 89 2007-12-21

7.4.2.2 Change discovery and capture

The complementary function to the above is to capture changes to existing devices and to propagate
these as updates to the ontology (HYDRA-126: Automatic Device ontology updates). This has been

referred to as data-driven change discovery, in ontology literature.

7.4.3 Mediation, aligning and merging of ontologies

A HYDRA installation must be able to interface with existing ontologies (HYDRA-141: Harmonization

of 3rd party device ontologies). A developer should be able to import an external (device) ontology
and be provided with tools for its adaptation and use in application development.

https://hydra.fit.fraunhofer.de/jira/browse/HYDRA-126

Hydra D6.2 MDA Design Document

Version 1.0 Page 88 of 89 2007-12-21

8. References

[AMIGO, 2006] IST Amigo Project (2006). Amigo middleware core: Prototype

implementation and documentation, deliverable 3.2. Technical report, IST-
2004-004182.

[Bailey, 2005] J. Bailey et al., Web and Semantic Web Query Languages: A Survey, LNCS
3564, Norbert Eisinger, Jan Maluszynski (editor(s)), 2005

[Chandrakasan, 2001] Amit Sinha and Anantha Chandrakasan, Dynamic Power Management in

Wireless Sensor Networks, IEEE Design & Test of Computers, Vol. 18, No. 2,
March-April 2001

[Chen, 2005] H. Chen, T. Finin, and A. Joshi. The SOUPA Ontology for Pervasive
Computing. Ontologies for Agents: Theory and Experiences, 2005.

[DCMI, 2007] DCMI. (2007). "The Dublin Core Metadata Initiative: http://dublincore.org/."
fromhttp://dublincore.org/.

[Flury, 2004] T. Flury, G. Privat, and F. Ramparany. OWL-based location ontology for

context-aware services. Proc. Artificial Intelligence in Mobile Systems,
Nottingham (UK), pages 52–58, 2004.

[Hydra, 2006] Hydra (2006). D2.2 Initial Technology Watch Report. Hydra Project
Deliverable, IST project 2005-034891.

[Hydra, 2007] Hydra (2007). D6.1 Quality Attribute Scenarios. Hydra Project Deliverable,

IST project 2005-034891.

[Hydra, 2007b] Hydra (2007). D4.2 Embedded Service SDK Prototype and Report. Hydra

Project Deliverable, IST project 2005-034891.

[Hydra, 2007c] Hydra (2007). D7.2 Draft of Virtualisation Ddesign Specification. Hydra

Project Deliverable, IST project 2005-034891.

[Matheus, 2005] C. Matheus. Using ontology-based rules for situation awareness and

information fusion. W3C Work. on Rule Languages for Interoperability,

2005.

[McGuinness, 2004] D.L. McGuinness, F. van Harmelen, OWL Web Ontology Language

Overview, W3C Recommendation, 2004

[Oberle, 2006] Oberle, D. (2006). Semantic Management of Middleware, Springer.

[Oconnor, 2007] M. J. O’Connor, S. W. Tu, A. K. Das, and M. A. Musen. Querying the

semantic web with swrl. In The International RuleML Symposium on Rule
Interchange and Applications (RuleML-2007), Orlando, FL, Oct. 2007. LNCS,

Springer-Verlag.

[OWL-S, 2004] D. Martin et al., OWL-S: Semantic Markup for Web Services,

http://www.daml.org/services/owl-s/1.1/overview/, 2004

[Plas, 2006] D.-J. Plas, M. Verheijen, H. Zwaal, and M. Hutschemaekers. Manipulating
context information with swrl. I/RS/2005/117, Freeband/A-MUSE/D3.12,

2006.

[RDF, 2007] RDF. (2007). "The Resource Description Framework (RDF):

http://www.w3.org/RDF/." from http://www.w3.org/RDF/.
[SAWSDL, 2007] SAWSDL (2007). Semantic Annotations for WSDL and XML Schema. W3C

Recommendation. J. Farrell and H. Lausen, W3C.

[Schmidt, 2002] Schmidt, D. C. (2002). "Middleware for real-time and embedded systems."

Communications of the ACM 45(6): 43-48.

http://dublincore.org/
http://dublincore.org/
http://www.daml.org/services/owl-s/1.1/overview/
http://www.w3.org/RDF/

Hydra D6.2 MDA Design Document

Version 1.0 Page 89 of 89 2007-12-21

[SPARQL, 2007] E. Prud'hommeaux, A. Seaborne, SPARQL Query Language for RDF, W3C
Proposed Recommendation, 2007

[SWRL, 2004] SWRL, 2004 I. Horrocks, et al., SWRL: A Semantic Web Rule Language

Combining OWL and RuleML, W3C Member Submission, 2004

[Zhang, 2007] Weishan Zhang, Klaus Marius Hansen, Kristian Ellebæk Kjær. Exploring

OWL/SWRL based Diagnosis in aWeb Service-based Middleware for
Embedded and Networked Systems. Submitted to ICECCS2008

[Zheng, 2004] Jianliang Zheng and Myung J. Lee, Will IEEE 802.15.4 Make Ubiquitous
Networking a Reality?: A Discussion on a Potential Low Power, Low Bit Rate

Standard, Communications Magazine, IEEE, Vol. 42, No. 6. (2004), pp. 140-

146.

